
Cognitive Modeling Reveals
Menu Search is Both Random and Systematic

Anthony J. Hornof and David E. Kieras

Artificial Intelligence Laboratory
Electrical Engineering & Computer Science Department

University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110

+1 313 763 6985
hornof@umich.edu, kieras@eecs.umich.edu

Appears in the ACM CHI‘97 Conference Proceedings.

ABSTRACT
To understand how people search for a known target item in
an unordered pull-down menu, this research presents
cognitive models that vary serial versus parallel processing
of menu items, random versus systematic search, and
different numbers of menu items fitting into the fovea
simultaneously.  Varying these conditions, models were
constructed and run using the EPIC cognitive architecture.
The selection times predicted by the models are compared
with selection times of human subjects performing the
same menu task.  Comparing the predicted and observed
times, the models reveal that 1) people process more than
one menu item at a time, and 2) people search menus using
both random and systematic search strategies.
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INTRODUCTION
Models of human performance permit aspects of user
interfaces to be evaluated for usability by making
predictions based on task analysis and established principles
of human performance [4, 5].  Though much previous
research (including [3, 9, 12, 14]) has investigated menu
selection, there are no empirically validated models of the
low-level perceptual, cognitive, and motor processing that
people use when they select a known target item from an
unordered pull-down menu.

Researchers have proposed theories about the low-level
strategies that people use to find a known item in an
unordered menu.  Norman [12] and Vandierendonck, Van
Hoe, and De Soete [14] suggested that people process one
menu item at a time.  But they did not validate this low-
level assumption empirically.  There have also been
conflicting theories.  Card [3] proposed that people
randomly choose which item to examine next, while Lee
and MacGregor [9] provided evidence that people search
systematically from top to bottom.  The research presented
here examines the plausibility of these theories by
providing an empirically validated model of the low-level

perceptual, cognitive, and motor processing that people use
in a menu selection task.

THE EPIC COGNITIVE ARCHITECTURE
The EPIC (Executive Process Interactive Control) cognitive
architecture [6, 7] provides a general framework for
simulating a human interacting with their environment to
accomplish a task, and is well-suited to model a menu
selection task.  EPIC resembles the Model Human
Processor [4], but differs in that EPIC is a precise
computational model, has a programmable production-rule
cognitive processor, and incorporates more specific
constraints synthesized from human performance literature.

EPIC consists of a production-rule cognitive processor and
perceptual-motor peripherals.  To model human
performance aspects of accomplishing a task, a cognitive
strategy and perceptual-motor processing parameters must
be specified.  A cognitive strategy is represented as a set of
production rules, much the same way that CCT [2], ACT-R
[1], and SOAR [8] represent procedural knowledge.  The
simulation is driven by a description of the task
environment that specifies aspects of the environment that
would be directly observable to a human, such as what
objects appear at what times, and how the environment
changes based on EPIC’s motor movements.  EPIC
computational models are generative in that the production
rules only represent general procedural knowledge of the
task, and when EPIC interacts with the task environment,
EPIC generates a specific sequence of perceptual, cognitive,
and motor activities required to perform each specific
instance of the task.

EPIC takes as its input:
• The cognitive strategy for accomplishing a task.
• Availability of object features, to represent human

perceptual limitations.
• Details of the task environment.

EPIC generates as output:
• The time required to execute the task.
• A trace of the modeled human processing.
As shown in Figure 1, information flows from sense
organs, through perceptual processors, to a cognitive
processor (consisting of a production rule interpreter and a
working memory), and finally to motor processors that



control effector organs.  All processors run independently
and in parallel.
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Figure 1.  Subset of EPIC architecture, showing flow
of information and control.  The processors run
independently and in parallel.  Not shown: Auditory
and vocal motor processors, task environment.

A single stimulus in the task environment can produce
multiple outputs from a perceptual processor to be
deposited in working memory at different times.  First the
detection of a perceptual event is sent, followed later by
features that describe the event.  The perceptual processors
are “pipelined.”  If an object’s features begin moving to
working memory, the arrival of those features will not be
delayed by any other processing.  Working memory
contains these items deposited by perceptual processors, as
well as control information such as the current task goal.
At the end of each simulated 50 msec cycle, EPIC fires all
of the production rules whose conditions match the current
contents of working memory.  EPIC allows for parallel
execution of production rules in the cognitive processor,
and some parallelism in each motor processor.

In short, EPIC is applied to a task as follows:  The
production-rule strategy directs the eyes to objects in the
environment.  The eyes have a resolving power which
determines the processing time required for different object
features, such as location and text.  When information
needed to determine the next motor movement arrives in
working memory, the strategy instructs the ocular motor
and manual motor processors to move the eyes and hands.

Information processing and motor movement times are held
constant across modeling efforts, and are based on human
performance literature.  Manual movement times, for
example, are determined by Fitts’ law (see [4], Ch. 2).  For
lack of space, EPIC cannot be described in full detail here.
A more thorough description is presented in [6, 7].

THE TASK
The specific pull-down menu task modeled in this paper is
based on a menu selection task used by Nilsen in an
experiment with human subjects (Experiment 2 in [11]).
Nilsen used menus that had three, six, and nine menu
items.  Each menu item was a single numerical digit.
Menu items were randomly reordered for each trial.
Subjects were experienced mouse (and thus presumably
menu) users and were financially motivated to perform each
trial as quickly as possible.  Nilsen ran eight subjects, each
with six trials for every possible combination of menu
length and target position.  The distance between menu
items was roughly 0.2 inches.  The distance from eye to
screen was neither controlled nor measured.

As shown in Figure 2, each trial consisted of the following
steps:  Using the mouse, move the cursor to the GO box
which causes the precue of the target item to appear above
the GO box.  Commit the precue to memory.  Click on the
GO box.  The GO box and precue disappear, the menu
appears, and the clock starts.  As quickly as possible, click
on the target item in the menu.  The clock stops.
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Figure 2.  Nilsen’s task with six items in the menu.

This task isolates a subset of the processes required in a
“real world” menu task.  It is thus particularly well-suited
for studying the low-level perceptual-motor processes of
visual search and response selection.  The task is not
confounded with more complex processes of reading,
comprehension, judgment, decision making, and problem
solving.  Though Nilsen mostly used the data to examine
motor control, this modeling effort focuses on visual
search.  The data is particularly useful for modeling visual
search of menus because Nilsen varied menu length and
reported selection time as a function of the serial position
of the target menu item.  Few researchers have reported
such data.  As will be shown, this combination is critical
for revealing search strategy.



THE OBSERVED DATA
Figure 3 shows Nilsen’s observed data, averaged across
subjects and blocks, as well as the time required to move
the mouse to each position as predicted by Fitts’ law
(Welford’s form of Fitts’ law, see [4], Ch. 2).
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Figure 3.  Nilsen’s observed data (solid lines).  Mean
selection times as a function of serial position of target
item, for menus with three, six, or nine items.  Also:
Time required to move the mouse to each target
position as predicted by Fitts’ law (dashed line).

There are several key features to note in the observed data:

• When the target item is in the same position across
menus of different lengths, shorter menus are faster.

• Selection time increases with a fairly linear slope of
about 100 msec per item for each menu length
(excluding serial position 1).  As can be seen in the
graph, the mouse movement time predicted by Fitts’ law
cannot entirely account for this slope.

• The selection time for serial position 1 is a little higher
than the selection time for serial position 2.

The EPIC models that follow are all evaluated with respect
to how well they match these trends in Nilsen’s observed
data.

THE MODELS
This section presents six models that result from varying
two strategic dimensions:  Serial versus parallel processing
of menu items, and random versus systematic search.  In
the parallel processing models, the eye-to-screen distance is
varied (8 and 20 inches) to result in one or three items
being visible in the fovea simultaneously.  The fovea is
fixed as the circular region within 1º of visual angle from
the center of the gaze.  It is assumed that recognition of
digits is only possible in the fovea.

The discussion of each model includes a flowchart that
summarizes the production rules written in EPIC to
represent that model.  Production rules were written to
maximize performance within the constraints imposed by
EPIC, and to be as simple as possible.  EPIC was
otherwise used ‘as is’ for all models.  Details and
parameters such as the availability of object features were

established and validated in other modeling projects in
different task domains, and are discussed in [6, 7].

Serial Processing Models
The serial processing models represent a belief that people
move their gaze to an item, visually process it, decide if it
is the target, click on the item if it is, or go on to the next
item if it is not.  Figure 4 represents a serial processing
model proposed by Norman [12].  Since the model proposed
in Figure 4 does not specify the search strategy used to find
the next item, two separate sets of production rules were
built in EPIC to represent two possible models, one with
random search and the other with systematic top-to-bottom
search.

Scanning Process
Is list exhausted?
Find next Item

Encoding Process

Matching Process

MatchMismatch

Select Failure

Figure 4.  Norman’s [12] information processing
model for search of an explicitly known target.

Both serial processing models were only run with an eye-to-
screen distance of 8 inches so that only one item would fit
into the fovea at a time, insuring the serial encoding
process specified by Norman.  At greater distances, more
than one item would fit into the fovea simultaneously, and
parallel encoding would ensue.

Serial Processing Random Search Model
The results from running the Serial Processing Random
Search model are shown in Figure 5.  Each predicted
selection time is averaged from 300 trials run for that menu
length and serial position combination.
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Figure 5.  Selection times observed (solid lines) and
predicted (dashed lines) by the Serial Processing
Random Search model run with one item fitting into
the fovea.



The results in Figure 5 (on preceding page) suggest that the
Serial Processing Random Search model is wrong.  The
only feature in the observed data that this model accounts
for is that shorter menus are faster than longer menus.
Otherwise, the model does not fit the observed data.
Selection times are much too high overall.  Slopes are very
small because every item takes on average the same amount
of time to find and select; any slope that appears is due to
the mouse movement.  A higher selection time for serial
position 1 is not predicted.  This model does not account
for the observed data.

Serial Processing Systematic Search Model
The results from running the Serial Processing Systematic
Search model are shown in Figure 6.
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Figure 6.  Selection times observed (solid lines) and
predicted (dashed lines) by the Serial Processing
Systematic Search model run with one item fitting into
the fovea.  The predicted times for the same serial
position in different menu lengths are the same and are
thus superimposed.

The results in Figure 6 suggest that this model is also
wrong.  The only feature in the observed data that this
model accounts for is a positive slope greater than that of
the predicted Fitts movement time.  The model accounts for
no other features in the observed data.  Shorter menus are
not faster.  The slope of the predicted data is too steep.  The
selection time for serial position 1 is not higher than for
serial position 2.  This model does not account for the
observed data.

The prediction has a slope resulting from more than just the
mouse movement, but the predicted slope is too steep,
about 380 msec per item as opposed to about 100 msec per
item in the observed data.  The discrepancy between the
predicted and observed data results from all of the processing
that must take place before moving the gaze to the next
menu item.  The slope of approximately 380 msec results
because this is the time required for EPIC to move the eye,
perceptually process a menu item, move the features to
working memory, and decide on an item.  Serially
processing each item cannot produce a slope of 100 msec

per item.  Only by processing multiple items at once can a
model produce such a small slope.

The results provided by the serial processing models provide
strong evidence that, when scanning a menu, people process
more than one menu item at a time.  The serial processing
models asserted by Norman [12] and Vandierendonck, Van
Hoe, and De Soete [14] are highly implausible.  Menu
selection models should take this human capability into
consideration.  The remaining models presented in this
paper utilize parallel processing of menu items.

Parallel Processing Models
The parallel processing models represent a belief that people
move their gaze across the menu as quickly as their
perceptual-cognitive-motor processes allow, process the
features of all objects that appear in the fovea in parallel
using a “pipeline” facility to continue recognition even after
the gaze has shifted away, and at the same time continually
check working memory to see if the target item has yet
been seen.  As soon as the target item has been located, the
person moves their gaze to it and clicks on it.  In one of the
parallel processing models, people search randomly for the
target; in the other, they start at the top and scan down the
menu.

Both parallel processing models were run with different eye-
to-screen distances that resulted in one and three items
fitting into the fovea simultaneously.  When more than one
item is visible in the fovea, all of those objects’ features are
sent to working memory in parallel.  To prevent a random
eye “movement” to essentially the same location while
searching, both models choose the next item to look at
from outside the fovea.

Parallel Processing Random Search Model
The Parallel Processing Random Search model was inspired
by Card [3], who proposed that a random search model
could account for menu selection times observed in an
experimental task.  Card concluded that people randomly
decide which item in the menu to examine next.  But note
that Card’s task was not a search task in which subjects are
precued with the target item before timing starts.  Rather,
in Card’s task the target item appeared above the menu at
the same time that the menu itself appeared and at the same
time that the clock started, perhaps combining a matching
task with a search task.  In Nilsen’s task, modeled here,
subjects were precued and could commit the target item to
memory before initiating the timed portion of the trial.
These are arguably different tasks, with Nilsen’s more
closely resembling a menu task in which the user knows
the target item before opening the menu.

Figure 7 shows a flowchart that represents the production
rules built in EPIC to investigate the possibility that
subjects used a Parallel Processing Random Search strategy.
To prevent a random eye “movement” to essentially the
same location, the model chooses the next item from
among all items currently outside the fovea.



Click the mouse on GO box to show menu and 
move eyes to a random location on menu.

As soon as it is determined which items are not in the fovea, 
randomly choose one of the items and move eyes to it.

Quit searching when target item appears in working memory.

Move cursor and eyes to item.

Click mouse.

These 
steps take

place in 
parallel

Look at the precue.

Figure 7.  Parallel Processing Random Search model.

The results from running the Parallel Processing Random
Search model are shown in Figure 8.  Each predicted
selection time is averaged from 300 trials run for that menu
length and serial position combination.
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Figure 8.  Selection times observed (solid lines) and
predicted (dashed lines) by the Parallel Processing
Random Search model run with one item (top graph)
and three items (bottom graph) fitting into the fovea.

The predictions from the Parallel Processing Random
Search model have some features that correspond to the
observed data, but also have some problems.

As can be seen in Figure 8 (top graph), when one item at a
time is visible in the fovea, the model accounts for shorter
menus being faster, but no other features of the observed

data.  The overall predicted times are, however, significantly
lower than in the Serial Processing Random Search model
discussed above.

As can be seen in Figure 8 (bottom graph), when three
items are visible in the fovea simultaneously, the model
can account for some features of the observed data  Shorter
menus are faster, and about the right amount faster, as is
shown by the distance between the predicted lines
approximating the distance between the observed lines.  The
predicted values fall entirely within the range of the
observed values.  Most importantly, this model accounts
for serial position 1 being higher than serial position 2.
However, the overall slope is still too small.

In Figure 8 (bottom graph), both the first and last serial
positions are higher because the model combines random
search with three menu items fitting into the fovea.  Items
at both ends of the menu have a lower probability of being
in the fovea after any random fixation.  Any of the middle
menu items can be foveated by moving the eye to that
item, or to either of the two adjacent items.  But the first
and last items only have one adjacent item.  This might
explain serial position 1 being higher than serial position 2
in the observed data.

The predictions from the Parallel Processing Random
Search model suggest that the model is partly correct, and
partly incorrect.

Parallel Processing Systematic Search Model
Figure 9 is a flowchart that represents the production rules
built in EPIC to investigate the possibility that subjects
used a Parallel Processing Systematic Search strategy.
Though other systematic searches are possible, top-to-
bottom is the one most commonly proposed.

In this model, the first eye movement is made to any of the
items that are within one foveal radius from the topmost
item (to insure the first gaze captures the topmost item).
Each subsequent movement is made to an item one foveal
diameter below the center of the current fixation.  These
details represent the belief that, when using a systematic
search strategy, people attempt to maximize the foveal
coverage with a minimum number of eye movements.

Click the mouse on the GO box to show the menu and
move eyes to where one of the top items will appear.

Determine the item one foveal diameter below gaze.

Quit searching when target item appears in working memory.

Move mouse and gaze to item.

Click mouse.

These 
steps take

place in 
parallel.

Look at the precue.

Move eyes to that item.

Figure 9. Parallel Processing Systematic Search model.

The results from running the Parallel Processing
Systematic Search model are shown in Figure 10.  Each
predicted selection time is averaged from one trial run for
each possible combination of menu length, serial position,
and first eye movement.
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Figure 10.  Selection times observed (solid lines) and
predicted (dashed lines) by the Parallel Processing
Systematic Search model run with one item (top graph)
and three items (bottom graph) fitting into the fovea.
In each graph, the predicted times for the same serial
position in different length menus are the same and are
thus superimposed.

The predictions from the Parallel Processing Systematic
Search model have some features that correspond to the
observed, but also have some problems.

As can be seen in Figure 10 (top graph), when one item at
a time is visible in the fovea, the model only accounts for a
positive slope.  The model does not predict that shorter
menus will be faster, the slope is too steep, and serial
position 1 is not higher.

As can be seen in Figure 10 (bottom graph), when three
items are visible in the fovea simultaneously, the model
can account for important features of the data.  The slope is
correct and the predicted values fall entirely within the range
of the observed values.  But again, the model does not
account for shorter menus being faster, and serial position 1
is not higher.

These results show that the Parallel Processing Systematic
Search model can partially explain how the subjects

accomplished the task, but not account for all aspects of the
observed data.

None of the models presented thus far can account for all of
the features in the observed data.  The serial processing
models account for essentially none of the features of the
observed data.  But all features of the observed data are
accounted for by at least one of the various parallel
processing models, as shown in Figure 11.
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Figure 11.  Summary of how the parallel processing
models account for (+) and do not account for (–)
features in the observed data.

Hybrid Models
The hybrid models represent a belief that, when Nilsen ran
his experiment, 1) subjects used both random a n d
systematic search, and 2) screen-to-eye distance varied across
trials.

These models were motivated by observing, as shown in
Figure 11, that all of the features in the observed data are
accounted for by at least one of the parallel processing
models when run one or three items fitting into the fovea.
The random search model accounts for faster selection times
in shorter menus.  When three items fit into the fovea, the
random search model also accounts for serial position 1
being higher.  The systematic search model accounts for the
correct slope when three items fit into the fovea.

Dual Strategy Hybrid Model
The Dual Strategy Hybrid model represents the belief that
subjects processed menu items in parallel in all of the
observed trials, but that subjects searched randomly in half
of the trials and systematically in half of the trials.  Such a
model could accurately account for the observed data if
1) some subjects searched randomly and others
systematically, or 2) subjects varied their search strategy
from trial to trial.  Since the observed data were averaged
across subjects and blocks, either scenario would produce
the same results.



Predictions from this hybrid model can be obtained in two
ways.  The first is to build a set of EPIC production rules
that contain the rules from both the Parallel Processing
Random Search strategy and the Parallel Processing
Systematic Search strategy; the strategy would randomly
choose which search strategy to use at the start of each trial.
The second is to average the predicted values produced by
running the two models independently.  Since both
approaches would produce the same predictions, the second
approach was chosen for expedience.  Figure 12 shows the
results of this model, as determined by taking an
unweighted average of the results shown in Figure 8 and
Figure 10.
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Figure 12.  Selection times observed (solid lines) and
predicted (dashed lines) by the Dual Strategy Hybrid
model, with one item (top graph) and three items
(bottom graph) fitting into the fovea.

The predictions from the Dual Strategy Hybrid model can
account for most of the features in the observed data, but do
not fit the observed values perfectly.

As can be seen in Figure 12 (top graph), when one item fits
into the fovea, the model accounts for faster selection times
in shorter menus and produces a near-perfect slope.  But the
model does not account for the higher selection time in

serial position 1, and overall the predicted values are higher
than the observed values.

As can be seen in Figure 12 (bottom graph), when three
items fit into the fovea, the model accounts for faster
selection times in shorter menus, produces a comparable
slope, accounts for the higher selection time in serial
position 1, and predicts values that are in range of the
observed data.  The only shortcoming of this model is that
the predicted values do not exactly match the observed
values.

The predictions from the Dual Strategy Hybrid model
suggest that the model is almost correct.

Dual Strategy Varying Distance Hybrid Model
The Dual Strategy Varying Distance Hybrid model
represents a belief that subjects performed the menu
selection task as asserted by the Dual Strategy Hybrid
model and that the screen-to-eye distance varied across trials.
Since this distance was not controlled or measured during
the experiment, it is very likely that some subjects sat
closer to the computer screen than others, and that subjects
moved nearer to and further from the screen during the
course of the experiment.

Predictions from this hybrid model can be obtained in two
ways.  The first is to build a task environment that varies
the screen distance from trial to trial, and to run a set of
production rules developed for the Dual Strategy Hybrid
model using this task environment.  The second is to
average the predicted values produced by running the Dual
Strategy Hybrid model in two task environments, each with
a fixed screen-to-eye distance.  Since both approaches would
produce the same predictions, the second approach was
chosen for expedience.  Figure 13 shows the results of this
model, as determined by taking a weighted average of the
results shown in the two graphs in Figure 12, with 15%
from the top graph (one item in fovea) and 85% from the
bottom graph (three items in fovea).
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Figure 13.  Selection times observed (solid lines) and
predicted (dashed lines) with a Dual Strategy Varying
Distance Hybrid model, with 15% of the trials at a one-
item-in-fovea distance, and 85% of the trials at a three-
items-in-fovea distance.



The Dual Strategy Varying Distance Hybrid model accounts
for all of the features in the observed data.  As can be seen
in Figure 13, the model predicts the observed values very
well (r2 = 0.99).  Matching the observed values, the Dual
Strategy Varying Distance Hybrid model offers a highly
plausible explanation of the task environment and strategies
used by subjects in Nilsen’s experiment.

CONCLUSION
The models presented here provide evidence that 1) people
do not stop and decide on menu items individually, but
rather process many items in parallel, and 2) people search
menus using both systematic top-to-bottom and random
visual search strategies.  The models presented here provide
a plausible explanation of the low-level perceptual,
cognitive, and motor processing that people use when they
select an item from a menu.  Having validated aspects of
these models with empirical data, these models provide
strong evidence that previously asserted serial processing
theories [12, 14] are incorrect, and that there is an element
of truth to both previously asserted random search models
(such as in [3]) and previously asserted systematic search
models (such as in [9]).  Perhaps unmeasured or unreported
factors in the experiments biased subjects in one experiment
towards random search and in another experiment towards
systematic search, thus giving rise to these conflicting
theories.

FUTURE WORK
Future plans include to attempt to explain Nilsen’s
observed data for ordered menus with an ordered menu
selection model.

Also looking to the future, successfully modeling menu
search provides evidence that a general purpose tool for
evaluating the efficiency of visual aspects interfaces might
be feasible.  The tool would take as its input a definition of
a screen layout and a task.  The tool would provide as
output a prediction of the time required for the user to
execute the task.  Previous researchers have set a precedent
that such a tool can be built [10, 13].  Such a tool would
analyze screen layouts and predict the cognitive effort
required by a user to extract the information needed to
accomplish a task.
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