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Introduction

Where we were
Inspired by the computer metaphor, a few decades ago psychologists were describing the mind with “box 

models” like those illustrated in Figure 1 (e.g. see Bower & Hilgard, 1981, ch 13; Norman, 1970). Such models were 
supposed to illustrate the flow of information between processing stages or storage mechanisms. Sensory and motor 
organs were not in the picture, or if they were, they were not represented in any detail. Since most of the 
experiments addressed by the models involved memory paradigms, the storage systems were emphasized, but the 
contents of them were collections of items loosely-specified in terms of “features.” The processes by which 
information moved between the storage systems was not elaborated in any detail, and the “executive” was somehow 
responsible for overseeing all of the processing and changing it to suit the needs of the task. To the extent there was 
rigor in these models, it was supplied by simple probability-theory models for the individual boxes, such as the 
probability that an item would be lost as a function of time, or information was successfully transferred from one 
box to another.
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Figure 1. A typical “box model” in human information-processing theory.



Where we are
At the current time, many psychologists are describing the mind with models built within a cognitive architecture 

whose top-level structure is illustrated also with a box diagram such as Figure 2, which illustrates the EPIC 
architecture that will be described in somewhat more detail later in this chapter. But there are many critical 
differences between what is implied by these current diagrams and the earlier “box models.” The sensory-motor 
peripherals are in the diagram, reflecting how their properties are an explicit part of the model. Both memory 
systems and processing systems are shown, corresponding to the concept that a psychological theory must include 
both how knowledge is represented and how it is processed. There is no mysterious “executive” because all control 
of activity is done by the cognitive processor, which in addition to performing cognition, also controls the system as 
a whole, including itself. Thus the cognitive controller is synonymous with the cognitive processor – there is no 
other component in the system that controls the overall activity. Thus, for the rest of this chapter, the cognitive 
controller of the chapter title is identified with the cognitive processor in a cognitive architecture. 

Figure 2’s content is an example of a cognitive architecture in that the diagram represents an hypothetical 
collection of fixed mechanisms, analogous to a computer’s general-purpose hardware, that are “programmed” by 
information in memory with the knowledge of how to perform a specific task, analogous to a particular piece of 
software that might be running on a computer. A complete model for performance in a particular task thus consists 
of the hypothetical task-independent fixed architecture together with the task-specific knowledge in memory for 
how to perform the task. This attempt to partition psychological models into task-independent and task-dependent 
portions is the hallmark of current cognitive theory.

Overview of the Chapter
The subject of this chapter is the cognitive processor and how it controls the architecture as a whole, and itself as 

well. The basic control functions are to control input into the system, output from the system, and the control of 
cognition in terms of basic sequential processing, parallel processing, interrupt handling, and executive processes 
that monitor and control cognitive activity. The presentation is strictly theoretical (or meta-theoretical); no data are 
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Figure 2. The EPIC architecture in simplified form. The simulated environment, or device, is on the left; the 
simulated human on the right.



presented or compared to any models. The EPIC architecture will be used as the basic framework for discussion, 
because it illustrates many of the issues well. Examples will be drawn from actual working EPIC models.

The discussion will be based on the computer metaphor, which historically underlies the development of 
information-processing psychology, but it is actually more useful than ever. That is, the computer system was an 
obvious metaphor for human information-processing activity, and thus helped usher in a post-behavioristic 
“mentalism” that made it possible to discuss mental activity in a rigorous scientific fashion. However, the original 
computer metaphor was based on early computer technology circa 1960, and it was not updated as computers 
evolved. Current computer systems (see Tucker, 2004) are much more sophisticated, and have been so for a long 
time: they perform simultaneous I/O and computation, parallel and concurrent processing of multiple tasks, and are 
controlled by a general-purpose “executive” – an Operating System (OS). Thus the modern computer system is a 
valuable metaphor for cognitive control processes in humans because the corresponding psychological theory of 
control and executive processing is poorly developed and vague; in contrast, these are very well developed topics in 
computer technology. 

The obvious objection to the computer metaphor is that the brain is not a computer! The “hardware” of the brain 
is fundamentally different, and is vastly more complex and sophisticated. However, the computer system is the only 
information processing system on the planet that has fully understood control and executive mechanisms. The 
concepts involved both provide a working concrete example of such mechanisms, and set a lower bound on the 
complexity and sophistication of mechanisms that should be considered by psychological theory for similar 
functions. Thus applying the modern computer metaphor should be useful even if we have profound reservations 
about its applicability in detail. The relevant computer-metaphor concepts will be introduced as needed in the 
discussion. 

First, the EPIC architecture will be summarized. Then how the cognitive processor controls input and output will 
then be presented, followed by the bulk of the chapter, on the control of cognition. This is divided into two sections: 
The first covers the basic control of cognition, which concerns sequential, hierarchical, parallel, and interrupt flow 
of control. The second discusses executive control of cognition. Executive processes are illustrated with an example 
of two different executive regimes for a dual-task situation.  

Description of the EPIC Architecture

Basic structure
Figure 2 shows the overall structure of the EPIC architecture. The cognitive processor consists of a production 

rule interpreter that uses the contents of production memory, long-term memory, and the current contents of a 
production-system working memory to choose production rules to fire; the actions of these rules modify the contents 
of working memory, or instruct motor processors to carry out movements. Auditory, visual, and tactile processors 
deposit information about the current perceptual situation into working memory; the motor processors also deposit 
information about their current states into working memory. The motor processors control the hands, speech 
mechanisms, and eye movements. All of the processors run in parallel with each other. Note that the task 
environment (also called the simulated device, or simply the device) is a separate module that runs in parallel as 
well. The pervasive parallelism across perception, cognition, and action motivated the design of EPIC and is 
reflected in the acronym: Executive Processes Interact with and Control the rest of the system by monitoring their 
states and activity. Because of this fundamental focus, EPIC is a good choice for a discussion of cognitive control 
mechanisms. 

Figure 2 is a simplified view; each of the processors is fairly complex, as illustrated by Figure 3 that shows 
additional detail related to the visual system. The environment controls the current contents of the physical store; 
changes are sent to the eye processor, which represents the retinal system and how the visual properties of objects in 
the physical store are differentially available depending on their physical properties such as color and size, and their 
eccentricity – the distance from the center of the fovea. The resulting “filtered” information is sent to the sensory 
store, where it can persist for a fairly short time, and comprises the input to the perceptual processor, which 
performs the processes of recognition and encoding. The output of the perceptual processor is stored in the 
perceptual store, which is the visual working memory, and whose contents make up the visual modality-specific 
partition of the production-system working memory. Thus production rules can test visual information only in terms 
of the current contents of the perceptual store. Production rules can send commands to involuntary and voluntary 
ocular processors which control the position of the eyes. The voluntary ocular processor is directly controlled by the 
cognitive processor, which can command an eye movement to a designated object whose representation is in the 
perceptual store. The involuntary ocular processor generates “automatic” eye movements, such as reflex saccades to 
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a new or moving object, or smooth movements to keep the eye foveated on a slowly moving object, using the 
location information present in the sensory store. The cognitive processor can only enable or disable these automatic 
activities and so only indirectly controls the involuntary processor. More detail can be found in Meyer & Kieras 
(1997a), Kieras & Meyer (1997), and Kieras (2004).

Production Rules
The cognitive processor uses a very simple production system interpreter called the Parsimonious Production 

System (PPS. This interpreter has very simple syntax and semantics, but is implemented with a full rete-match 
algorithm (Forgy, 1982), so that it scales well in terms in of performance to large sets of production rules. The items 
in the production system working memory are simply lists of symbols – the interpreter does not assume any 
particular structure of memory; rather these are defined in terms of what inputs to working memory are provided by 
the perceptual and motor processors, and programming conventions for the production rules themselves. 

Like most production systems, PPS operates in cycles, which have a 50 ms period. During a period, the 
perceptual and motor processors continually update the production system working memory. At the beginning of 
each cycle, the additions and deletions of working memory items specified by the last rule firing are carried out, and 
then all production rules whose conditions are currently met are “fired” – their actions are executed. Note that all 
rules currently satisfied are fired on each cycle. Also, if there is more than one specific instantiation of a rule’s 
conditions present in working memory, the rule will be fired for each of them in the same cycle. There is no preset 
limit on how many rules can fire, or how many instantiations of them can fire, on a single cycle. 

This full parallelism is often mistaken for a claim of unlimited processing power, but it is not. The peripheral 
mechanisms limit how much information can be simultaneously present from perceptual and motor sources, and 
some limits are normally observed for the amount of information in working memory created and maintained by the 
production rules, but this is not enforced by the architecture. Note that as argued by Kieras, Meyer, Mueller & 
Seymour (1999) the true limits of working memory are not at all well understood empirically – e.g. compare 
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Baddeley & Logie (1999) with Ericsson & Kintsch (1995; Ericsson & Delaney, 1999). Working memory is either the 
traditional small-capacity modality-specific “scratchpad” memory, or it is a huge-capacity fast-write usage of long-
term memory enabled by well-learned task-specific retrieval strategies. These two concepts are probably compatible, 
but at this date there is not a theoretical consensus on what the “real” working memory is like. So the fact that EPIC 
does not impose working memory limits is a tactical decision on our part not to “hard-wire” our collective ignorance 
into the architecture, but rather to let experience with modeling various tasks determine what kinds and amounts of 
information are required for plausible modeling of important phenomena, and then use this knowledge to 
constructively specify and explain memory limitations and their sources. For example, the work in Kieras et al. 
(1999) suggests that verbal working memory limitations have their basis not in a direct limit on how many items can 
be kept active in memory, but rather is due to how long phonological representations persist in auditory memory 
relative to the speed with which they can be refreshed through rehearsal (see also Mueller, Seymour, Kieras, & 
Meyer, 2003), and how well the recall strategies can recover information from the resulting mélange of partially-
decayed representations (Mueller, 2002).

The partitions of the production-system working memory are one for each perceptual modality (e.g. auditory and 
visual), which are synonymous with the perceptual stores for the modality, and another partition for the states of the 
motor processors. A Control Store partition contains Goal, Step, and other similar items that are used to specify the 
flow of control through production rules. The Tag Store partition contains Tag items which simply associate a item 
in a modality working memory with a symbol designating a role in the production rules, analogous to a variable and 
its binding in a traditional programming language. That is, one set of production rules might be responsible for 
identifying which visual object is “the stimulus” for a task, and add a Tag accordingly. Other production rules could 
then refer to the current stimulus using the Tag instead of having to re-identify the stimulus repeatedly. 

Figure 4 shows two sample production rules from working models to illustrate how PPS rules look. Various 
aspects of these rules will be explained later, but for now it suffices to provide a simple overview of the basic syntax. 
The first rule identifies the visual object for a fixation point consisting of a red cross-hair. The second rule moves the 
cursor to a visual object. Each rule begins with a rule name, then a set of conditions after the If. The conditions are 
implicitly a conjunction; all of them must be satisfied for the rule to be fired. The actions listed after the Then are 
executed if the rule is fired. The Add and Delete actions modify the contents of the production system working 
memory. Send_to_motor is a command to a motor processor. Terms starting with a ? character are variables. In a 
condition, the variables are assigned whatever values necessary to make the condition item match an item in 
working memory. Variables appearing in actions take on the values assigned to them in the condition when the 
action is executed. Note that the variables are scoped only within the rule; once the rule is fired and executed, the 
variable values are discarded; there is no memory of them from one rule to the next, or one cycle to the next.

Control of Input
In computers, the process of input is under the ultimate control of the Central Processing Unit (CPU). That is, 

input from peripheral devices is normally only brought into the main memory if the CPU has instructed it. In early 
machines, instructions executed by the CPU performed the input/output (I/O) processing, but in modern machines 
(since about 1970) a hardware subsystem does all of the detail work. Basically, the CPU executes an instruction that 
commands an input subsystem to deliver specified information to an area of memory. Thus input involves a 
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(Top-see-fixation-point
If ((Goal Do Visual_search) (Step Waitfor Fixation-present)
	
 (Visual ?object Shape Cross_Hairs) (Visual ?object Color Red))
Then ((Add (Tag ?object fixation-point))
	
 (Delete (Step Waitfor Fixation-present)) (Add (Step Waitfor probe-present))))

(Top-make-response
If ((Goal Do Visual_search) (Step Make Response) 
	
 (Tag ?target target) (Tag ?cursor cursor) 
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Ply ?cursor ?target Right)
	
 (Delete (Step Make Response)) (Add (Step Make Response2))))

Figure 4. Example PPS production rules. See text for explanation.



bidirectional flow of information: Control and specification information goes from the CPU to the input device, and 
the input device responds by transferring information from the external environment to the CPU’s memory. 

In a cognitive architecture, the input processing is similarly done by perceptual subsystems, but the control of 
input depends on some basic assumptions stemming from the apparent fact that only a fraction of the current 
environmental input should be responded to. That is, cognition must be protected from an overwhelming flood of 
external input, so the amount of information that cognition takes as input must be limited in some way. In EPIC, the 
input to cognition is the information in the perceptual store, so the question is whether and how the cognitive 
processor must deal with unneeded information in the perceptual store. 

The traditional assumption in cognitive psychology is that a selection mechanism of some sort, usually named 
selective attention, controls what information is allowed to influence cognitive processing. In the box-model era, the 
mechanism was usually presented as some sort of filter between perception and cognition (see Norman, 1976). In 
current cognitive architectures, the attention mechanism typically uses activation levels to determine which 
condition items can trigger production rules. The idea of a selective attention mechanism has become so pervasive in 
cognitive theory that it seems odd not to simply adopt it, but it should be clear that the idea is not without its puzzles 
and problems, as consulting any textbook on the voluminous literature on classic topics such as early vs. late 
selection, and overt vs. covert attention should make clear. However, the actual phenomena of attention may be a 
result of a much wider range of mechanisms than an internal filter or activation. In particular, Findlay & Gilchrist 
(2003) point out how the concept of covert attention as been so heavily over-applied to visual perception that it has 
thoroughly obscured the more fundamental and powerful role played by the non-homogeneity of the retina, and 
voluntary eye movements that orient the high-resolution area of the retina on objects of interest. They argue that the 
role and effects traditionally assigned to covert visual attention are either subsumed by overt attention in the form of 
eye movements, or are very small compared to the effects of retinal non-homogeneity and eye movements. Thus a 
proper theory of attentional effects in vision would start with these fundamentals, and consider covert mechanisms 
only if there are important effects remaining.

As an alternative, EPIC assumes that when the characteristics of the peripheral systems, and how they can be 
cognitively controlled and accessed, are taken into account, the need for a separate information-limiting pre-
cognitive selection mechanism disappears. In the case of vision, EPIC assumes that the perceptual store has a very 
large capacity, but the non-homogeneity of the retina “automatically” results in the visual system having the most 
information about the object being fixated, and substantially less about other objects. Thus the total amount of visual 
information is limited at the peripheral level, and the objects that have the most information are determined by the 
current eye location. The selective function is implemented not by some kind of special attentional mechanism, but 
simply by production rules that decide where more detail is needed, and command a corresponding eye movement, 
using relevant portions of the available visual information to guide the choice.  Thus selection is handled simply in 
terms of what visual object the production rules single out for further processing, and what visual properties are used 
in this processing.

The first example rule in Figure 5, from a choice reaction task, illustrates this concept. The rule waits for a 
choice stimulus to appear, signaled by the detection of a visual onset event, which has been characterized as 
“capturing attention” (e.g. Yantis & Jonides, 1990). Visual onset events are assumed to be available over almost all 
of the visual field, so they will be detected even if the eyes are on some other object. This production rule adds a tag 
that the onset object is the choice stimulus, and then sets up the next production rules to fire. These will match on 
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(Waitfor_ChoiceStimulus
If ((Goal Do ChoiceTask) (Step Waitfor ChoiceStimulus)
	
 (Visual ?stimulus Detection Onset)
	
 (Not (Tag ?stimulus Choice_stimulus))))
Then ((Add (Tag ?stimulus Choice_stimulus))
	
 (Delete (Step Waitfor ChoiceStimulus)) (Add (Step Lookat ChoiceStimulus))))

(Top_Find_Hostile_blip
If ((Goal Monitor Situation) (Step Find Hostile_blip)
	
 (Visual ?blip Color Red) (Visual ?blip Shape Triangle)
	
 (Randomly_choose_one))
Then ((Add (Tag ?blip Current_track))))

Figure 5. Example of input selection in production rules. See text for explanation.



the tag for the Choice_stimulus to command the ocular processor to move the eyes to that stimulus object, and 
subsequent rules will use the tag to identify the object whose appearance will determine the response to be made.  
The second example rule in Figure 5 shows that the concept of selecting an object is not limited to events like onsets 
that “capture attention.”  This rule is from a radar-operator task model in which red triangular objects are “blips” that 
represent hostile aircraft, and so should be given priority. If the visual perceptual store contains an object that 
matches these perceptual properties, it is tagged as the current “track” for subsequent processing. In case there is 
more than one, one is chosen at random. In this case, other rules, following a different control structure, set up the 
next rules to fire, but these later rules will simply use the tag item to identify the selected object. Still other rules 
would deal with the possibility that a red triangular object might be present, but not visible given the current eye 
location.

The point of the examples is that there is no need for a distinct attention mechanism that pre-filters objects before 
cognition has access to them. Because the onset event, or the available perceptual properties, resulted in tagging a 
particular object as the stimulus, the subsequent response production rules can effectively ignore all other objects; 
the cognitive processor has been protected from excess and irrelevant information by a combination of peripheral 
limitations and a simple designation in working memory of which object is relevant for further processing. 

Tagging a particular object as the one of interest could be described as a form of covert attention, and moving the 
eyes to an object could be called a case of overt attention. Regardless of these labeling issues, there is no actual 
“attention” mechanism in EPIC; there are only objects tagged for further processing, and information that is 
available or not, depending on the eye position. In line with previous warnings in the history of psychological 
theory, the concept of “attention” as used in current cognitive psychology may be a case of reification: just because 
there are a set of phenomena labeled “attention” does not mean that there is a distinct internal mechanism that 
“does” attention. Rather, attention could simply be our label for the processing performed by the human system 
when it responds selectively to events in the environment. EPIC shows how attention can be implemented without a 
dedicated internal mechanism that selects what information will be supplied to the cognitive processor.

Control of Output
In computers, output requires a bidirectional flow of information: the CPU must know when an output device is 

ready to accept commands before it issues them. Again in modern machines, dedicated hardware subprocessors 
handle all the detail work, but the basic concept is that of “handshaking” – the CPU checks for whether the output 
subsystem is free, sends the next output command if so, and then waits for the output subsystem to signal that the 
operation is complete before sending the next output command. This process became more advanced over the years, 
so that for example, the output subprocessor needs only to be told where the data is in memory, and upon command, 
it begins to autonomously output each item, and signals the CPU when it is finished outputting the entire set of data.

Similarly, in a cognitive architecture, the output is done by motor subsystems, but the cognitive processor must 
check the states of the motor processors and coordinate the usage of different output modalities to meet the task 
demands. In EPIC as originally proposed (Kieras & Meyer, 1997; Meyer & Kieras, 1997a), the motor processor for 
each modality required a relatively large amount of time to prepare each a movement by programming its movement 
features, and then the prepared movement could be separately initiated and executed2. Preparation of the next 
movement could commence while the previous movement was being executed, allowing EPIC to make a series of 
movements at high speed. However, a slow and deliberate style would wait for each movement to be completed 
before commanding the next movement. Thus EPIC’s motor processors have two especially useful states: The 
Modality Free state means that the output modality (e.g. manual) is currently idle – a movement is neither being 
prepared nor is being executed. The Processor Free state means that any previously commanded movement has 
already started execution, so a new movement command will be accepted and prepared, and will execute as soon as 
the current movement (if any) is complete. Since the motor processor can prepare only one movement at a time, an 
error condition (jamming) will arise if it is commanded to prepare a new movement while it is still preparing one.  
By convention, a production rule that commands a movement always includes a condition that checks for whether 
the motor processor is in an appropriate state to prevent jamming. 

Figure 6 and 7 illustrate the extremes in motor sequence programming. Note how by deleting and adding Step 
items, each rule disables itself and enables the next rule in the sequence. In the slow movement sequence shown in 
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Figure 6, each rule waits for the previously commanded movement to be complete before commanding the next 
movement, and the last rule waits for the last movement to be complete before proceeding. In the fast movement 
sequence shown in Figure 7, each movement is commanded as soon as the processor is willing to accept it, and the 
last rule does not wait for the movement to be complete. As one might suspect, skilled performance in a task appears 
to involve the fast movement regime, while the usual assumptions of simple forms of GOMS models (see below) 
appear to be consistent with a slow movement regime (see Kieras, Wood, & Meyer, 1997; Kieras & Meyer, 2000). 

The point of these examples is that the cognitive strategy for how movements are marshaled and controlled can 
make a large difference in how rapidly a task can be performed, showing that some of the motoric aspects of a task 
are also a cognitive matter. Incorporating cognitive aspects of motor control is essential in modeling human 
performance, especially in highly interactive tasks such as computer operation.

Basic Control of Cognition
This section presents concept on the basic aspects of the flow of control in cognition,  covering sequential, 

parallel, and interrupt-driven flow of control. The next section will consider complex control at the level of 
executive processes.

Sequential flow of cognition
In a computer, certain aspects of the sequential control of execution are primitive hardware functions. In 

particular, the machine instructions comprising a program are normally laid out in a series of consecutive memory 
locations. The hardware responsible for fetching and then executing each instruction assumes that the next 
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(Slow_wait_to_start
If ((Goal Make Responses) (Step make first)
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Punch J Right Index)
	
 (Delete (Step make first))(Add (Step make second))))

(Slow_wait_for_first_done
If ((Goal Make Responses) (Step make second)
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Punch K Right Middle)
	
 (Delete (Step make second))(Add (Step waiton second))))

(Slow_wait_for_second_done
If ((Goal Make Responses) (Step waiton second)
	
 (Motor Manual Modality Free))
Then ((Delete (Step waiton second))(Add (Step continue  working))))

Figure 6. Example of rules that produce a slow sequence of movements by waiting for each movement to be 

(Fast_start_first
If ((Goal Make Responses) (Step make first)
	
 (Motor Manual Processor Free))
Then ((Send_to_motor Manual Perform Punch J Right Index)
	
 (Delete (Step make first))(Add (Step make second))))

(Fast_start_second_and_continue
If ((Goal Make Responses) (Step make second)
	
 (Motor Manual Processor Free))
Then ((Send_to_motor Manual Perform Punch K Right Middle)
	
 (Delete (Step make second))(Add (Step continue working))))

Figure 7. Example of rules that produce a fast sequence of movements by commanding each movement as soon as 
the motor processor is free.



instruction is normally in the next memory location; the hardware program counter or instruction address register is 
thus automatically incremented to point to the next instruction in memory. A program branch or go to instruction 
specifies an address for the next instruction that is not simply the next location; dedicated hardware will then set the 
program counter to that next address directly. However, there have been computers whose memory was organized 
differently so that sequential memory locations could not be assumed. An example is early machines that used a 
rotating magnetic drum as the main memory, where the delay waiting on the drum to rotate to any one position was 
substantial. Each instruction included the address of the next instruction, allowing them to be located on the drum in 
positions that minimized the delay in fetching the next instruction. 

Production rule architectures are more like the early drum storage machines than modern machines, in that the 
results of the actions in each production rule normally control which rule will fire next. In EPIC, in fact, the flow of 
control must be fully explicit in the rules, because no flow of control is implicit in the PPS interpreter. That is, since 
any number of rules can fire on any cycle, the only way to control which rules will fire is to write the rule conditions 
and actions so that the contents of working memory cause the right rules to fire on the right occasions in the right 
sequence. 

To bring some organization to PPS rules, Kieras & Polson (1985) and Bovair, Kieras, & Polson (1990) worked 
out how to organize production rules in terms of GOMS models (Card, Moran, & Newell, 1983; John & Kieras, 
1996; Kieras, 1988, 1997, 2004), which have been extremely useful in representing human procedural knowledge in 
models of human-computer interaction. The basic idea can be explained by explaining the acronym: procedural 
knowledge is well-represented in terms of Goals that can be accomplished by executing a series of Operators 
organized in terms of Methods, which are sequences of operators. Selection Rules choose between alternate methods 
for the same goal. Kieras & Polson realized that it is useful to distinguish goals and operator sequence; that is, a 
method for accomplishing a goal specifies a series of operators, conveniently grouped into steps. Thus basic 
sequential flow of control for EPIC models is provided using the scheme shown in Figure 8 (and anticipated by 
some of the earlier examples). If working memory starts with the contents (Goal Top) and (Step T1), the first rule, 
named Top1, will fire, and its actions will delete (Step T1) and add (Step T2). At this point, Top1 can no longer fire, 
since one of its condition items has been deleted, but the rule Top2 can now fire. Similarly, it disables itself and 
enables the next rule, Top3, and so forth. The entire series of rules is under the control of the goal item in memory, 
(Goal Top); other rules can manipulate the Goal item to control this method. For example, suppose the first rule fires 
at the same time as the Goal item is removed by some other rule; the (Step T2) item will be present, but rules will be 
disabled and the next rule Top2 will not fire. If the Goal item is replaced, execution will resume where it left off; 
Top2 will fire, followed by Top3. EPIC’s theory of executive processes is based on this concept of controlling 
methods by removing or replacing their controlling Goals. 

The other basic form of flow of control is subroutine call/return, whose role in re-using and organizing program 
code is fundamental to computer programming methodology. On a computer, when a call to a subroutine is made, 
the address of the next instruction is saved, and a branch is made to the address of the first instruction of the 
subroutine. When the subroutine completes its work, it returns by branching to the saved address of the next 
instruction in the calling code. In addition to this basic flow of control scheme, arrangements are made to give the 
subroutine temporary memory space and pass input and output values between the calling routine and the 
subroutine. While subroutine call and return can be done with simple instructions, most computer hardware has 
specialized instructions to allow this very common process to be executed quickly and with only a few instructions. 
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(Top1
If ((Goal Top)(Step T1))
Then ((Delete (Step T1))(Add (Step T2))))

(Top2
If ((Goal Top)(Step T2))
Then ((Delete (Step T2))(Add (Step T3))))

(Top3
If ((Goal Top)(Step T3))
Then ((Delete (Step T3))(Add (Step T4))))

Figure 8. Schematic illustration of basic sequential flow of control.



Again in the GOMS model, accomplishing goals typically involves accomplishing sub-goals, and the resulting 
hierarchy of methods describe the natural units or modules of procedural knowledge. Thus GOMS models make 
heavy use of an analogue of subroutine call and return, and EPIC models are programmed correspondingly using a 
set of conventions illustrated in Figure 9. The basic scheme can be termed hierarchical-sequential. The methods are 
arranged in a strict calling hierarchy, and the execution is strictly sequential. Each rule that is part of a method or 
submethod includes a condition that names the goal for the method. Thus the rules for a method can only fire if the 
corresponding goal is being accomplished. 

Rule Top1 calls a submethod by adding the goal for the submethod, (Goal Sub) in this example. It disables itself 
and enables the next rule in the calling sequence. This next rule includes a negated condition (Not (Goal Sub)), 
which means that the rule can fire only if the (Goal Sub) item is not present in working memory. Thus the next rule 
will wait until the subgoal item has been removed. By convention, the Step items for a submethod include the 
subgoal name, so when the (Goal Sub) item is placed in working memory by the Top1 rule, the rule Sub_startup 
fires because there are no step items belonging to this method. The startup rule enables the next rule in the method, 
which enables the next rule, as usual. Thanks to this scheme, the calling method does not need to know which Step 
item governs the first step of the submethod, which makes it easier to write re-usable methods that represent 
sharable pieces of procedural knowledge. Note how the submethod rules are all governed by the same (Goal Sub) 
item, so when the final submethod rule Sub2_terminate fires, the (Goal Sub) item and the last step are deleted; this 
indicates that the submethod has accomplished its goal, and the submethod rules are now all disabled. The 
disappearance of the subgoal triggers the next rule in the calling sequence, Top2, which then goes on to execute its 
next step.

Like most production-system cognitive architectures, EPIC assumes that working memory is shared across all of 
the production rules. Thus, the concepts in conventional programming languages of local variables, parameters, and 
return values do not apply – it is as if all the information is in global variables, accessible to all parts of the program. 
This presents some technical problems in writing re-usable sets of production rules, but it is not necessary to discuss 
them for the purposes of this chapter.

Parallel Flow
Parallelism is routine in computers. Perhaps the most distorted part of the computer metaphor is the notion that 

computers do only one thing at a time. While the capacity for parallel operation in computers has been steadily 
increasing, it is hardly a new capability. In fact, even the classic ENIAC was actually a parallel multiprocessor 
machine in which the separate computational modules were operating simultaneously.
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(Top1_call_submethod
If ((Goal Top)(Step T1))
Then ((Add (Goal Sub))(Delete (Step T1))(Add (Step T2))))
	

(Top2_wait_for_return
If ((Goal Top)(Step T2)(Not(Goal Sub))
Then ((Delete (Step T2))(Add (Step T3))))
	
 ... ... ... ... ... ...

(Sub_startup
If ((Goal Sub) Not(Step ???))
Then ((Add (Step S1))))

(Sub1
If ((Goal Sub) (Step S1))
Then ((Delete (Step S1))(Add (Step S2))))

(Sub2_terminate
If ((Goal Sub) (Step S2))
Then ((Delete (Step S2))(Delete (Goal Sub))))

Figure 9. Schematic illustration of hierarchical-sequential flow of control used in subroutine calls.



Current computers are usually classified as being either uniprocessor machines, containing only a single CPU, or 
multiprocessor machines, with multiple CPUs. However, even uniprocessor computers have considerable 
parallelism. As mentioned above, computers have long had subprocessors for input/output that run in parallel with 
the CPU. The internals of the CPU typically have also involved parallel data movement, but in modern CPUs, the 
subparts of the CPU also operate in parallel. For example, in pipelining and superscalar architectures, the CPU is 
executing more than one instruction simultaneously, and not necessarily even in the original order!

Multiprocessor machines either have a shared main memory, or communicate data over a network, and display 
true parallel program execution with their multiple CPUs – they can literally execute two machine instructions 
simultaneously, and thus execute two programs truly simultaneously. Such machines are not new (commercial 
versions appeared in the 1960s), but they have become quite inexpensive, as shown by the common dual-CPU 
desktop computer. 

Parallel flow of control in EPIC. Despite its routine presence in computers for decades, and the obviously 
massively parallel operation of the brain, parallel processing in cognitive theory has traditionally been treated as an 
exotic capability, with sequential processing assumed to be the normal mode of cognitive operation. There might be 
a variety of reasons for this bias, but most directly relevant to this chapter is the issue pointed out by Meyer and 
Kieras (1997a, b; 1999): There has been a long-standing tendency to mistake optional strategies adopted by subjects 
for “hardwired” architectural limitations that impose sequential processing. For example, in many dual-task 
paradigms, the task instructions and demands actually encourage unnecessarily sequential processing; in fact, 
different instructions and payoffs can encourage parallel processing (Meyer, Kieras, Lauber, Schumacher, Glass, 
Zurbriggen, Gmeindl, & Apfelblat, 1995; Meyer, Kieras, Schumacher, Fencsik, & Glass, 2001; Schumacher, Lauber, 
Glass, Zurbriggen, Gmeindl, Kieras, & Meyer, 1999; Schumacher, Seymour, Glass, Fencsik, Lauber, Kieras, & 
Meyer, 2001). Thus rather than a fundamental architectural feature, the presence of cognitive sequentiality is a result 
of a lack of strategic sophistication in the production rules in effect for a task. Against this background, it is useful to 
explore a different theoretical paradigm in which cognitive parallelism is normal rather than exotic and unusual.

EPIC directly supports full parallel processing since multiple production rules can fire on a cycle simultaneously 
and independently, and since Goals and Steps are simply working memory items, multiple ones can be present 
simultaneously – there is no stack that requires only one goal to be active at a time. Thus different threads of 
execution can be spawned and terminated at will. The previous Figure 9 illustrating hierarchical-sequential flow of 
control can be compared with Figure 10, which shows simultaneous execution of a top-level method and a 
submethod. The first rule in Figure 10 activates a submethod by adding its goal to working memory, but execution 
simultaneously continues with the next step in the calling method, until the rule for Step 8, which tests for the 
submethod having accomplished and removed its goal. Thus both the top-level goal and the subgoal are 
simultaneously pursued, each in its own thread of execution (see below for the corresponding thread concept in 
computing), but these are brought back into synchrony before Step T9 at the top level.

A few more schematic examples will illustrate the flexibility of parallel control in EPIC. Figure 11 shows how 
two subgoals could be simultaneously executed in parallel with the top level, which in this example waits for both of 
them to complete before proceeding; of course, this is optional – the submethods could simply be allowed to 
complete while other processes continue. Figure 12 shows single-step multiple threads within a method. The first 
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(Top1_start_submethod
If ((Goal Top)(Step T1))
Then ((Add (Goal Sub))
	
 (Delete (Step T1))(Add (Step T2))))

(Top2_keep_processing
If ((Goal Top)(Step T2))
Then ((Delete (Step T2))(Add (Step T3))))

	
 ... ... ... ... ... ...

(Top8_wait_for_submethod_complete
If ((Goal Top)(Step T8)
	
 (Not(Goal Sub))
Then ((Delete (Step T8))(Add (Step T9))))

Figure 10. Schematic illustration of overlapping hierarchical parallel flow of control.



rule enables all three different rules for the next step; one always fires to continue to the next step, but either, both, 
or neither of other two rules might fire as well. Figure 13 shows multiple threads within a method. The first rule 
spawns two threads in the form of different Step items, each of which starts a chain of rules governed by the same 
Goal item. If desired, these chains can simply be left to terminate on their own.

One often-cited advantage of a production rule representation for procedural knowledge is modularity – the 
independence of each production rule from other production rules. By allowing more than one rule to fire at once, it 
is possible to take more advantage of this modularity to provide a variety of flexible control structures. 
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(Top1
If ((Goal Top)(Step  T1))
Then ((Delete (Step  T1))(Add (Step  T2))))

(Top2_branch_1
If ((Goal Top)(Step  T2) /* some condition */)
Then (/* some action */))

(Top2_branch_2
If ((Goal Top)(Step  T2) /* some condition */)
Then (/* some action */))

(Top2_continue
If ((Goal Top)(Step  T2))
Then ((Delete (Step  T2))(Add (Step T3))))

Figure 12. Schematic illustration of multiple threads within a single step.

(Top1_spawn_threads
If ((Goal Top)(Step  T1))
Then ((Delete (Step  T1))(Add (Step T2))
	
 (Add (Step ThrA1))(Add (Step ThrB1))))

(TopThreadA
If ((Goal Top)(Step ThrA1))
Then ((Delete (Step ThrA1))(Add (Step ThrA2))))

(TopThreadB
If ((Goal Top)(Step ThrB1))
Then ((Delete (Step ThrB1))(Add (Step ThrB2))))

Figure 13. Schematic illustration of multiple threads within a method.

(Top1_start_two_submethods
If ((Goal Top) (Step T1))
Then ((Add (Goal Sub1))(Add (Goal Sub2))
	
 (Delete (Step T1))(Add (Step T2))))

(Top2_wait_for_both_complete
If ((Goal Top)(Step T2)
	
 (Not(Goal Sub1)(Not(Goal Sub2)))
Then ((Delete (Step T2))(Add (Step T3))))

Figure 11. Schematic illustration of parallel submethods.



Interrupt Control of Cognition
Computers have long had special interrupt hardware to allow a rapid response to external events that happen 

asynchronously, that is, at any time not necessarily in synchrony with activities of the computer. An interrupt signal 
will force a branch to a special address, where interrupt-handling code determines the cause of the interrupt, takes 
appropriate action, and then branches back to the original execution address. The hardware can be very elaborate, for 
example, automatically giving precedence to the highest-priority signal. Interrupts can be routine, or extraordinary. 
For example, control of input/output devices is routinely done with interrupts that signal that the device has 
completed an operation and is ready for the next datum or instructions. In contrast, some error conditions, such as an 
attempt to execute an invalid instruction, might cause an interrupt that results in a process being terminated, or even 
the OS entering an error state and waiting for a restart. Thus handling an interrupt spans a wide range of possible 
activities.

A production-system cognitive architecture can support interrupt handling, but only if the architecture has the 
appropriate properties. For example, it has to be possible for a rule to fire regardless of whatever else is going on, 
and the actions of the rule must be able to modify the state of the current processing, such as suspending other 
activities and starting new ones, essentially a form of executive process, which will be discussed later. Not all 
architectures can support interrupt rules in a straightforward way. EPIC’s cognitive parallelism and representation of 
control items in working memory makes interrupt rules very simple. 

The schematic first rule in Figure 14 illustrates a simple form of interrupt handling. This rule will fire 
unconditionally when a red object is present in the visual working memory, regardless of what other activity is 
underway. The second rule is governed by the goal of processing a blip in a radar-console task. If a visual object 
tagged as the current blip begins to disappear from the screen, the rule will delete the goal of processing the blip, and 
start a method that aborts the processing. A rule like this is needed in tasks where a visual object that is the subject of 
extended processing might disappear at any time; if the object disappears, the processing of it needs to be terminated 
and some “cleanup” work needs to be done. Such a rule is a simple way to handle what would otherwise be 
extremely awkward to implement in a strictly sequential architecture; it works because it can fire at any time its 
conditions are met, and its actions can control the state of other processing. 

Executive Control of Cognition

What is Executive Control?
In psychology, the term “executive” is vague and wide-ranging, having been applied in ways as suspect as a 

synonym for the homunculus, to being a specialized activity such as working memory management (see Monsell & 
Driver, 2000). In the sense used here, the executive is the process that controls what the human system as a whole is 
doing, such as what tasks are being performed, what resources are being used for them, and which tasks take priority 
over others, and how simultaneous tasks should be coordinated. In computers, this function is most similar to 
Operating Systems, so it is worthwhile to present a quick survey of the key concepts.  See Tucker (2004) or any 
modern Operating Systems textbook, such as Stallings (1998), for more detail.

Survey of Operating System Concepts
Operating Systems (OSs) originated at a time when computer hardware, especially the CPU, was vastly more 

expensive than it is now, so there were huge economic incentives to wring every last bit of performance from the 
investment by clever programming. Of course today the hardware is cheaper, but the demands are higher, so OS 
technology has continued to develop. The key trick is that since the CPU is tremendously faster than peripheral 
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(Watchfor_red
If ((Visual ?obj Color Red))
Then (/* some action */))

(Watchfor_disappearing_blip
If ((Goal Process Blip)
	
 (Tag ?blip Current_blip)(Visual ?blip Status Disappearing))
Then ((Delete (Goal Process Blip))(Add (Goal Abort Processing))))

Figure 14. Sample interrupt rules.



input/output devices, it is possible for the CPU to be executing instructions for one task while waiting for an input/
output operation for a different task to complete. Thus two data processing tasks could progress simultaneously by 
overlapping CPU execution of one with input/output waits for the other. 

This overlapping could be accomplished by custom-building a single complex program for each possible 
combination of computing jobs, but for almost all purposes, such detailed, difficult, and tedious programming work 
would be prohibitively expense. After various partial solutions (e.g. spooling) a grand generalization emerged 
around 1970, termed multiprogramming, or multiprocessing, that made it possible to write software for simultaneous 
or concurrent, task execution quite easily.

The basic idea is that a control program would always be present in memory, and would keep track of which 
other programs were present in memory, what their states were, and which resources were currently associated with 
them. This control program was at first called a resident monitor, later the OS. With the help of interrupts, the OS 
code can switch the CPU from one program to another by controlling where execution resumes after handling an 
interrupt. 

The OS manages programs in terms of processes, which are a set of resources, code in memory, data in memory, 
and an execution state or pathway. The resources include not only peripheral devices such as disk drives, but also 
space in memory and CPU time. When a program needs access to a resource, it makes a request to the OS, and waits 
until the request is granted. Because it is thus informed of resource needs and has all the required information 
available about all the processes, the OS can manage multiple processes in such a way that they can be 
simultaneously active as long as their resource requirements do not conflict, and that when conflicts do occur, they 
are resolved according to the specified priorities.

Two processes are non-cooperating if they do not attempt to communicate with each other or share resources. In 
this case, as long as the protocol for accessing resources through the OS is followed, the program for each process 
can be written independently, as if it was going to be the only program executed; the OS will automatically 
interleave its resource usage with that of other independent processes, and will ensure that they will not interfere 
with each other, and that the maximum throughput consistent with process priorities will be obtained. This is the 
major contribution of OS technology – enabling concurrent operation with simple programming techniques. 
Anybody who has written and run even simple programs on a modern computer has in fact used these facilities.

Cooperating processes are used in specialized applications and communicate with each other or access a shared 
resource such as a database. For such situations, the OS provides additional services to allow processes to 
communicate reliably with each other, and to ensure mutual exclusion on critical resources – such preventing two 
processes from attempting to modify the same area of memory simultaneously. Using these interprocess 
communication and mutual exclusion facilities properly in specialized applications is the hard part of 
multiprogramming technology.

One last distinction concerns the relationship between execution pathways and resources. Switching the CPU 
between processes can be very time-consuming since all of their resources might have to be switched as well. For 
example, if a low priority process gets suspended in order to free up required memory space for a high priority 
process, the OS will need to copy the program code, data, and execution state information for the low priority 
process out to disk storage, and then read it back into memory when it is time to resume the process (virtual memory 
hardware helps automate this process). In contrast, a thread is a lightweight process – it is an execution pathway that 
shares resources with other threads in the same process. The OS can switch execution between threads very quickly 
because some critical resources such as memory space are shared. Multithreaded programming is becoming steadily 
more common as a way to implement high-performance applications, but because the threads are usually 
cooperating, OS facilities for inter-thread communication and mutual exclusion are usually involved.

A key insight from OS methodology is that the key algorithms work for both uniprocessor and multiprocessor 
machines. While not explicitly acknowledged in OS textbooks, multiprogramming on a uniprocessor machine is 
essentially simulated parallel processing, so OS operations are similar for both true versus simulated parallel 
processing. Closely related is that fact that all of an OS’s capabilities can be implemented with very little specialized 
hardware support, although such hardware can improve efficiency and simplify the programming.

How should Executive Processes be Represented in a Cognitive Architecture?
Traditionally, executive processes are represented in a cognitive architecture as specialized built-in mechanisms. 

A well-known example is the Supervisory Attentional System in the Norman and Shallice (1986) proposal, which is 
a specialized brain system whose job it is to pick the most activated schema and cause it to take control of cognition. 
A more contemporary and computational example is Salvucci’s (Salvucci, Kushleyeva, & Lee, 2004) proposals to 
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add OS-like facilities into the core functionality of the ACT-R architecture. Proposals of this sort, which propose 
special-purpose “hardware” support in the architecture for executive processes, overlook the lesson from computing 
that minimal hardware support is necessary for OSs to work well. More seriously, they also overlook a wealth of 
literature on how executive control is a strategic process that is a result of learning and can be modified on the fly by 
changes in task priorities or instructions (for reviews, see Meyer & Kieras, 1997a,b, 1999; Kieras, Meyer, Ballas, & 
Lauber, 2000), which suggests that executive processes are similar to other forms of cognitive skill, and so should be 
represented simply as additional procedural knowledge rather than specialized architectural components.

EPIC’s solution is that simply by making task goals another kind of working memory item, and allowing more 
than one production rule to fire at a time, it is easy to write production rules that control other sets of production 
rules by modifying which goals are currently present in memory. Thus, no special-purpose architectural mechanisms 
are required for executive control. The parallelism is critical because it ensures that the executive rules and the 
individual sets of task rules can all execute simultaneously, meaning that the executive process rules can intervene 
whenever they need to, and the individual task rules do not need to constantly check for the states of other processes 
to allow for changes in which processes have control.

Thus the cognitive modeler can work like the modern computer programmer in that as long as the production 
rules for non-cooperating processes observe a protocol of asking the executive process for access to resources, they 
can be simply written as if they were the only production rules being executed at the time. Again analogously to 
modern computer programming, this allows sets of production rules for different tasks to be written as modules that 
implement principles of abstraction, encapsulation, and re-usable code; the fact that production rules can thus be 
organized into independent modular sets and flexibly combined has implications not just for the practicalities of 
modeling, but also for how humans might learn multitasking skills (see Kieras, Meyer, Ballas, & Lauber, 2000).

Executive Processes in EPIC
In EPIC an executive process is simply a set of production rules that control other sets of production rules by 

manipulating goal information in working memory, along with possibly other information as needed to control the 
execution of other production rules. This section discusses some distinctions relevant to the representation of 
executive processes.

Specialized vs. general executives. Kieras et al. (2000) made a distinctive between specialized executive 
processes that contain task-specific rules for coordinating two or more specific tasks. For example, the executive 
rules could pre-position the eyes to the locations where input for the tasks will appear, improving performance. A 
specialized executive could monitor the state of one task and modulate the other task to improve performance by 
changing specific control items in memory. The executive processes describing in the Meyer & Kieras (1997a, b) 
models for the psychological refractory period used this mechanism to account for the fine quantitative details in a 
high-precision data set. Making use of task-specific information means that the executive process production rules 
can be tuned to permit the maximum possible performance, but the details of the rules would only apply to that 
specific pair of tasks and their exact conditions. In addition, the production rules for each task will have to be written 
to take into account how they will be controlled by the executive process, typically in very specific ways.

In contrast, a general executive process can coordinate any set of subtasks because the executive process rules do 
not have to be changed to suit particular subtasks. The production rules for each task will have to follow the general 
executive’s protocol in order to allow them to be controlled by the general executive, but do not otherwise have to 
take into account which other tasks might be running at the same time. Usually, a general executive will be less 
efficient than a specialized executive, because it will not take advantage of any special characteristics of the situation 
to enable higher performance, but on the other hand, the general executive production rules are fully general, and do 
not have to be acquired and tuned for each new combination of tasks. 

Sequential vs. concurrent executives. The overall pattern of executive control of two or more tasks can be 
ranged from most sequential to most concurrent. A single-task executive ensures good performance on the highest 
priority task simply by ignoring the lower-priority tasks; the result is best-possible performance on the most 
important task. A sequential executive runs one task, then the other, and then repeats. This is a simple scheme for 
dealing with resource conflicts – only one task runs at a time, so conflicts are not possible. However, both of these 
simple solutions will underutilize the system resources since they will take no advantage of the possibilities of 
interleaving tasks. 

An interesting case is a time-slicing executive: on each cycle, an extremely simple executive removes the goal 
for one task, and inserts the other, so that each task is enabled on alternate cycles. To prevent resource conflicts, the 
production rules for each task must follow the protocol of not attempting to use a resource (such as a motor 
processor) that is already busy, but do not otherwise have to interact with the executive process or each other. Each 
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task is thus allowed to proceed as long as it uses resources that are free. This is a purely sequential executive that 
interleaves resource utilization between the tasks on an as-needed first-come/first-served basis. This scheme requires 
that each task can be suspended at any point without conflicts or loss of information, and the concurrent tasks be of 
equal priority. In some sample dual-task models, this scheme works surprising well because most of the time for the 
tasks consists of waiting on motor processors to complete their activity; the one-cycle delay in executing the 
production rules for each task impairs individual-task performance only very slightly, while the overall dual-task 
performance benefits by the automatic and very efficient interleaving of motor processor usage.

A fully parallel executive runs both tasks simultaneously, and intervenes only when necessary to prevent 
resource conflicts and enforce task priorities. Such an executive requires that each task interact with the executive 
before attempting to use a resource; only in this way can the executive allocate resources based on the relative 
priorities of the tasks.

Executive protocols. To run in an environment in which an executive process is in control, the task rules have to 
be written according to a protocol of some sort. Under EPIC, this requires that the tasks rules be governed by a 
single goal that an executive can manipulate to suspend or resume the task as a whole. In addition, some protocol 
governing access to resources must be followed. Under EPIC, a standard protocol is that a motor processor must not 
be commanded unless it is in a free state, as described previously. These basic assumptions lead to three kinds of 
executive protocols, described in terms of what kind of executive can successfully manage the task rules.

Single-task compatibility means that the task rules are written as if all resources were available for use by this set 
of rules at any time. The single-task, sequential, and time-slicing executives can successfully coordinate tasks that 
follow only this level of compatibility, but parallel executives cannot.

Specialized-executive compatibility means that the task rules assume the presence of a specific specialized 
executive that for example, places specific control items in memory or do some of the task-specific processing. Such 
task rule sets are completely tied to a specialized executive, which in turn is bound to a specific combination of task 
rules.

General-executive compatibility means that the task rules follow a general executive protocol for resource 
access; before attempting to use a resource, they always request allocation of that resource from the general 
executive, wait for the resource to be allocated, and then release the resource as soon as possible, or accept pre-
emption. If the task rule sets follow this protocol, then a general executive can reliably coordinate resource usage for 
any pair of tasks.

Examples of Executive Processes
This section provides concrete examples of the executive concepts and distinctions just presented. A model for a 

dual task situation will be presented in each of two executive control regimes: a specialized executive, and a general 
executive. First the task will be described, then the models presented.

The “Wickens” dual-task experiment. The Martin-Emerson & Wickens (1992) task was first used for EPIC 
modeling as reported in Kieras & Meyer (1995), and since then has been re-used by other modelers. The task is a 
simple dual-task, involving a two-choice reaction task and a basic compensatory tracking task. Kieras & Meyer 
originally chose it for modeling because it involved a manipulation of the visual relationship between the two tasks, 
with eye movements sometimes being required. 

Figure 15 shows the view of the display in the EPIC simulation package. The small square at the top of the 
display is the tracking target; the small cross is the tracking cursor. The subject’s task is to keep the cross on the 
target by moving a joystick, despite a forcing function that tries to randomly displace the cursor. The dark circle 
imposed on the target represents the one-degree foveal radius, showing that the eye is currently fixated on the target. 
The large concentric circle is a 10-degree calibration circle. The one-degree circle near the middle of the display 
marks where the choice stimulus will appear, which it does at random intervals. 

In Figure 16, the choice stimulus has appeared; it is either a right- or left-pointing arrow, and the subject is 
required to press the corresponding one of two buttons under fingers on the left hand. However, whether the arrow 
orientation can be discriminated visually depends on the distance between it and the current eye position; Martin-
Emerson and Wickens manipulated this over a wide range. For reasonable retinal availability characteristics, the eye 
must be moved for eccentricities like those illustrated. Figure 17 shows the position of eye on the choice target. 
Once the choice stimulus is identified, the response button and be pressed, and the tracking task resumed, returning 
to the situation shown in Figure 15. Dependent variables were the choice response latencies and tracking error 
accumulated during a two-second period starting when the choice stimulus appeared.
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Resource allocation in the Wickens task. Both tasks require use of the ocular motor processor for acquiring the 
stimulus (which implies use of fovea for each stimulus), and the manual motor processor for making the response. 
The motor processors are thus the critical resources, since under EPIC’s assumptions, a motor processor cannot 
simultaneously perform two different actions. Thus the two tasks must share them without conflict, and the 
efficiency of this sharing determines the overall dual task performance. If each task is implemented with its own set 
of production rules, then there must be an executive process that coordinates the execution of each set of task rules 
and their access to the ocular and manual motor processors. 

Before going further, it is worth discussing an alternative to an executive process: Suppose the human simply 
learns a single rule set for the Wickens task as a single complex combined task. That is, instead of trying to 
concurrently perform two distinct tasks, corresponding to two goals (Goal Do Tracking) and (Goal Do Choice), the 
human has only a single goal and its corresponding production rules: (Goal Do Combined_Task), and these 
production rules emit the appropriate sequence of motor movements for joystick manipulations, button pushing, and 
eye movements as required to respond to cursor movements and arrow appearances. As Kieras et al. (2000) argue, 
such a combined production rule set might well be a final end state of learning after considerable practice, but the 
dual task representation seems more likely to be the state of learning in typical dual-task experiments where only a 
moderate amount of practice has been done. At a purely theoretical level, if there are not separate production rules 
for each task, it means that we do not have a dual-task situation, but rather a complex single task that does not 
require the services of an executive. Thus, at least for the sake of theoretical exploration of executive processes, we 
need to continue with the assumption of separate task rule sets for each task.

Model components. To construct an EPIC model for the Wickens dual-task, we need four components: (1) A set 
of Startup rules that run at the beginning of the experiment to identify and tag the different screen objects for use in 
the other rule sets. (2) A set of rules for tracking, governed by (Goal Do Tracking). In this example, these can be 
written in two threads: one keeps the eye on the tracking target, while another moves the joystick whenever the 
cursor is too far from the target. Since this task is inherently continuous, these rules should be normally enabled by 
the more-or-less continuous presence of their governing goal in working memory. (3) A set of rules for the choice 
reaction task, governed by (Goal Do Choice). When the choice stimulus appears, the eye must be moved to the 
choice stimulus location, and then these rules select and execute the response depending on the shape property of the 
stimulus. This task is intermittent, but according to the experiment instructions, it is higher priority than the tracking 
task. (4) A set of executive rules for task coordination. In general form, they contain no information about the 
specific tasks, but in specialized form, they will need to use the choice stimulus onset as a trigger to determine when 
the choice task needs to run.  For brevity, the following will focus on the executive rules, and show rules for the two 
sub-tasks only where important to explain the executive process.
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Figure 15 (left). The “Wickens” task during tracking, as shown in EPIC’s display of the physical visual field. The 
small gray circle represents the position of the fovea; the larger concentric circle is a 10-degree calibration 
circle.

Figure 16 (center). The choice stimulus has appeared in the marker circle.

Figure 17 (right). The eye has been moved to the choice stimulus.



Sequential specialized executive. Figure 18 shows an example of how a sequential specialized executive can 
coordinate the two tasks. For clarity of exposition, key items in the rules are emphasized with bold face. The first 
rule, Top_startup, invokes the Identify Objects submethod, whose rules are not shown for brevity. This adds tags to 
memory identifying the visual objects corresponding to the tracking target and the cursor,which the tracking task 
rules refer to. The next rule, Top_start_tasks adds the tracking task goal, which “turns on” the tracking task rules, 
and then enables the next rule, Top_waitfor_choicestimulus. This rule fires when there is a visual onset event, and 
tags the visual object as the choice stimulus, and suspends the tracking task by removing its goal. The next rule in 
sequence starts the choice task. When the choice task is complete, the final executive rule, Top_resume_tracking, 
replaces the tracking task goal and returns to waiting for the choice stimulus.

Figures 19 and 20 show the tracking and choice task rules written assuming that a specialized executive is 
present, but as if no other task was present. The tracking task rules are very simple, but actually run as two separate 
one-rule threads. The first, Watch_target, simply moves the eye to the tracking target whenever the target is outside 
the fovea. The second requires that the target be in the fovea, and moves the joystick with a Ply movement to place 
the cursor on the target whenever the distance between the target and the cursor (supplied by the perceptual 
processor) is greater than a specified amount. Note that the two rules can fire independently and repeatedly.

The choice task rules are more sequential in nature, being written for presentation clarity in the slow response 
style described previously. The first is a standard startup rule. The second moves the eye to the choice stimulus – 
which the specialized executive had detected and tagged as part of its activity. Again for simplicity, these rules 
always move the eye to the choice stimulus, even when it might be close enough to the tracking target to be 
discriminated in parafoveal vision. For brevity, of the next rules to fire, only one of the response selection rules is 
shown, the one that maps a left-pointing arrow to the corresponding response button-press. The final rule waits for 
the keypress response to be complete, and then terminates the method. Note again how these rules do not depend on 
any content of the other task of tracking, but do depend on the executive process to determine when these rules 
should run, and identify their stimulus in the process. 

18

(Top_startup
If ((Goal Do Dual_task)(Not (Step ??? ???)))
Then ((Add (Goal Identify Objects))(Add (Step Start Tasks))))

(Top_start_tasks
If ((Goal Do Dual_task)(Step Start Tasks)
	
 (Not (Goal Identify Objects)))
Then ((Add (Goal Do Tracking))
	
 (Delete (Step Start Tasks))(Add (Step Waitfor ChoiceStimulus))))

(Top_waitfor_choicestimulus
If ((Goal Do Dual_task)(Step Waitfor ChoiceStimulus)
	
 (Visual ?stimulus Detection Onset))
Then ((Delete (Goal Do Tracking))
	
 (Add (Tag ?stimulus Choice_stimulus))
	
 (Delete (Step Waitfor ChoiceStimulus))(Add (Step Start ChoiceTask))))

(Top_start_choice_task
If ((Goal Do Dual_task)(Step Start ChoiceTask))
Then ((Add (Goal Do ChoiceTask))
	
 (Delete (Step Start ChoiceTask))(Add (Step Resume Tracking))))

(Top_resume_tracking
If ((Goal Do Dual_task)(Step Resume Tracking)
	
 (Not (Goal Do ChoiceTask)))
Then ((Add (Goal Do Tracking))
	
 (Delete (Step Resume Tracking))(Add (Step Waitfor ChoiceStimulus))))

Figure 18. Specialized sequential executive rules for the Wickens task.



The sequential specialized executive thus solves the resource allocation problem by forcing the tasks to execute 
sequentially – the higher priority choice task runs to completion while the tracking task is suspended. Each subtask 
rule set can then follow a simple protocol for accessing the motor processors, relying on the specialized executive to 
ensure that they are not in conflict. The disadvantage is that the tracking task is suspended for the entire time 
required for the choice task, which in the example presented here, is substantial. This executive is necessarily 
specialized because it must “know” something about the choice task – namely, what stimulus is the trigger for 
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(Watch_target
If ((Goal Do Tracking)(Step Watch Target)
	
 (Tag ?target Target)(Not (Visual ?target Eccentricity Fovea))
	
 (Motor Ocular Modality Free))
Then ((Send_to_motor Ocular Perform Move ?target)))

(Ply_cursor
If ((Goal Do Tracking)(Step Track Target)
	
 (Tag ?cursor Cursor)(Tag ?target Target)
	
 (Visual ?target Eccentricity Fovea)
	
 (Visual ?cursor Distance ?error)(Greater_than ?error .1)
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Ply ?cursor ?target Right)))

Figure 19. Tracking task rules that assume a specialized sequential executive.

(Choice_task_startup
If ((Goal Do ChoiceTask)(Not (Step ??? ???)))
Then ((Add (Step Lookat ChoiceStimulus))))	


(Lookat_choice_stimulus
If ((Goal Do ChoiceTask)(Step Lookat ChoiceStimulus)
	
 (Tag ?stimulus Choice_stimulus)
	
 (Motor Ocular Modality Free))
Then ((Send_to_motor Ocular Perform Move ?stimulus)
	
 (Delete (Step Lookat ChoiceStimulus))(Add (Step Waitfor EyeDone))))

. . .

(Select_response_left
If ((Goal Do ChoiceTask)(Step Select Response)
	
 (Tag ?stimulus Choice_stimulus)
	
 (Visual ?stimulus Shape Left_Arrow)
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Punch B1 Left Middle)
	
 (Delete (Step Select Response))(Add (Step Finish Task))))

. . .

(Finish_choice_task
If ((Goal Do ChoiceTask)(Step Finish Task)
	
 (Tag ?stimulus Choice_stimulus)
	
 (Motor Manual Modality Free))
Then ((Delete (Tag ?stimulus Choice_stimulus))
	
 (Delete (Step Finish Task))
	
 (Delete (Goal Do ChoiceTask))))

Figure 20. Choice task rules that assume a specialized sequential executive.



starting execution of the choice task. There is little additional harm done by having the specialized executive provide 
the stimulus specification to the choice task.

Parallel general executive. This form of executive is most like a modern computer OS in that it performs 
general resource management during parallel task execution. Both of the tasks are running constantly – both goals 
are always present in memory. One task goal is marked as higher priority than the other. Each task asks for 
permission to use a motor processor, whereupon the executive grants the request if the resource is free, or withholds 
permission if not. Each task releases a resource as soon as it is finished with it, and the executive reallocates the 
released resource to a task that is waiting for it. In case of conflict, the executive causes a higher-priority task to 
preempt a lower-priority task. The advantage to this general executive is that the task rules are independent of each 
other, and do not rely on the executive to handle any of the task specifics as in the previous example. The 
disadvantage is that the ask/wait/release processing each task must perform prior to using a resource constitutes 
some overhead. However, at least in the case of two tasks, this overhead can be minimized with a broad-but-shallow 
set of executive rules. 

Logically, it is impossible to do away with specialized executive knowledge completely, in that there must 
always be some executive rules that specify which specific tasks should be performed in a given situation and what 
their priority relationship is. These are shown in Figure 21. As before, the first step (not shown here) is identifying 
the visual objects. The next rule Top_start_tasks then adds the goals for both the tracking task and the choice task, 
and marks the tracking task as being lower priority than the choice task. At this point, the general executive and the 
two sets of task rules can handle all of the task coordination, so no further top-level rules are shown. 

Figure 22 shows the rules for the tracking task. A startup rule requests use of the ocular and manual motor 
processors by adding a Status item to memory. The Watch_target rule is the same as before, except its condition 
includes a Status item requiring that the tracking task has been allocated the ocular processor. Likewise, the 
Ply_cursor rule checks for permission to use the manual processor. Since the tracking task runs continuously but at a 
low priority, it never releases either processor – it is content to be pre-empted as necessary.

Figure 23 shows an excerpt of the rules for the choice task. The Waitfor_ChoiceStimulus rule is triggered by the 
stimulus onset, and requests use of the ocular processor. The executive process will note that the request is coming 
from the higher priority process, and will deallocate the ocular processor from the tracking task (which disables the 
Watch_target rule), and assign it to the choice task. The rule Lookat_choice_stimulus waits until permission is 
granted, then moves the eye to the choice stimulus, and releases the ocular processor. At this point the executive 
process reallocates the ocular processor back to the tracking task, re-enabling the Watch_target rule. The choice task 
rule Waitfor_shape fires when the shape of the choice stimulus becomes available, and requests the manual 
processor. In a similar manner, the executive withdraws the use of the manual processor from the tracking task and 
assigns it to the choice task, which then releases it in the same rule that commands the manual response.

To complete the example, Figure 24 shows a fragment of the general executive for coordinating any two tasks. 
The executive consists of many rules like those illustrated, one of which fires for each possible request or release 
situation, giving single-cycle response by the executive for resource requests and releases. For example, the first rule 
fires when the high priority task requests a resource currently in use by the low priority task, and its actions reassign 
the resource to the high-priority task, and note that the low priority task use of that resource has been suspended. 
The second rule fires when a task releases a resource when another task using that resource has been suspended, and 
reallocates the resource back to the suspended task.

Thus the use of the ocular and manual processors by the two sets of task rules are “automatically” interleaved by 
the general executive rules on an as-needed basis, and the resulting performance can be very high, even though there 
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(Top_start_tasks
If ((Goal Do Dual_task)(Step Start Tasks)
	
 (Not (Goal Identify Objects)))
Then (
	
 (Add (Goal Do Tracking))
 	
 (Add (Status Trackingtask Priority Low))
	
 (Add (Goal Do ChoiceTask))
 	
 (Add (Status Choicetask Priority High))
	
 (Delete (Step Start Tasks))
	
 (Add (Step Continue Running))))

Figure 21. Specialized task startup rule using a general executive.
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(Tracking_task_startup
If ((Goal Do Tracking)(Not (Step ??? ???)))
Then (
	
 (Add (Status Trackingtask Request Ocular))
	
 (Add (Status Trackingtask Request Manual))
	
 (Add (Step Watch Target))(Add (Step Track Target))))

(Watch_target
If ((Goal Do Tracking)(Step Watch Target)(Tag ?target Target)
	
 (Not (Visual ?target Eccentricity Fovea))
	
 (Status Trackingtask Has Ocular)
	
 (Motor Ocular Modality Free))
Then ((Send_to_motor Ocular Perform Move ?target)))

(Ply_cursor
If ((Goal Do Tracking)(Step Track Target)
	
 (Tag ?cursor Cursor)(Tag ?target Target)(Visual ?target Eccentricity Fovea)
	
 (Visual ?cursor Distance ?error)(Greater_than ?error .1)
	
 (Status Trackingtask Has Manual)
	
 (Motor Manual Modality Free))
Then ((Send_to_motor Manual Perform Ply ?cursor ?target Right)))

Figure 22. Tracking task rules using a general executive.

. . .
(Waitfor_ChoiceStimulus
If ((Goal Do ChoiceTask)(Step Waitfor ChoiceStimulus)
	
 (Visual ?stimulus Detection Onset)(Not (Tag ?stimulus Choice_stimulus)))
Then ((Add (Tag ?stimulus Choice_stimulus))(Add (Status Choicetask Request Ocular))
	
 (Delete (Step Waitfor ChoiceStimulus))
	
 (Add (Step Lookat ChoiceStimulus))(Add (Step Waitfor Shape))))

(Lookat_choice_stimulus
If ((Goal Do ChoiceTask)(Step Lookat ChoiceStimulus)(Tag ?stimulus Choice_stimulus)
	
 (Status Choicetask Has Ocular)(Motor Ocular Processor Free))
Then ((Send_to_motor Ocular Perform Move ?stimulus)
 	
 (Add (Status Choicetask Release Ocular))(Delete (Step Lookat ChoiceStimulus))))

(Waitfor_shape
If ((Goal Do ChoiceTask)(Step Waitfor Shape)
	
 (Tag ?stimulus Choice_stimulus)(Visual ?stimulus Shape ???))
Then ((Add (Status Choicetask Request Manual))
	
 (Delete (Step Waitfor Shape))(Add (Step Select Response))))

(Select_response_left
If ((Goal Do ChoiceTask)(Step Select Response)
	
 (Tag ?stimulus Choice_stimulus)(Visual ?stimulus Shape Left_Arrow)
	
 (Status Choicetask Has Manual)(Motor Manual Processor Free))
Then ((Send_to_motor Manual Perform Punch B1 Left Middle)
 	
 (Add (Status Choicetask Release Manual))
	
 (Delete (Step Select Response))(Add (Step Finish Task))))
. . .
(Finish_choice_task . . .
Then ((Add (Step Waitfor ChoiceStimulus))))

Figure 23. Excerpt of choice task rules using a general executive.



is some overhead imposed by the general executive. This overhead can be minimal in the case of two tasks because 
the rules to adjudicate resource conflicts between two tasks are relatively simple and limited in number, and so can 
be written in the illustrated manner to involve no more than a single cycle of overhead. To implement the same 
single-cycle process for three or more tasks leads to a combinatorial explosion in rules and rule complexity, and the 
multiple-cycle equivalent would be very complicated and slow-executing. 

Following up on the discussion of multitasking skill learning in Kieras et al. (2000), the complexity of all but the 
simplest general executive suggests that people have difficulty in multiple-task performance of novel task 
combinations primarily because they have not had occasion to tackle the difficult task of learning an efficient high-
capacity general executive, leaving them to flounder in a complex multiple-task situation. Perhaps true general 
multitask executives are so difficult to learn that they rarely appear except in very simple situations, meaning that 
complex multiple tasks might always require learning a specialized executive before good performance can be 
produced.

Which Executive Process Model Should be Used?
The above sections present several basic aspects of executive processes and illustrate in detail how the different 

models of executive processes can be implemented as production rules. One obvious question is the choice of 
executive process representation: Which executive process should be used in a model? As warned at the beginning, 
this is not an empirical chapter, and this question is basically an empirical question. 

But there are several reasons why it may be difficult or impractical to identify exactly what executive process is 
at work in a particular multiple-task data set.  As alluded to previously, Kieras et al. (2000) point out how some 
executive strategies seem to be compatible with different levels of skill development, especially at the extremes. 
However, the executive process that should make it easiest to combine novel tasks would be the general parallel 
executive, but which in turn seems to require considerable learning.  Thus the relationship of executive process type 
to state of practice may not be straightforward. In addition, it should be kept in mind that in a parallel cognitive 
architecture, the overt performance of the system will be more determined by degree of optimization of the 
perceptual-motor processes, and only slightly or not at all by the details of the control regime that implements that 
optimization. In other words, the differences between of the executive processes may not be on the critical path for 
determining task execution time. For example, the general parallel executive in the above example imposes only an 
occasional one-cycle overhead, and depending on the exact timings of the perceptual and motor activities, this 
overhead might not be visible in the manifested performance at all, and perhaps only in an extreme stable and 
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(GenEx_HP_Request_LP_Has_Preempt
If 
((Status ?high_task Request ?resource)(Status ?high_task Priority High)
(Not (Status ?high_task Has ?resource))(Not (Status ?high_task Suspended ?resource))
(Not (Status ?high_task Waiting ?resource))(Not (Status ?high_task Release ?resource))
(Status ?low_task Has ?resource)(Status ?low_task Priority Low)
(Not (Status ?low_task Request ?resource))(Not (Status ?low_task Release ?resource)))
Then
((Add (Status ?high_task Has ?resource))
(Delete (Status ?high_task Request ?resource))
(Delete (Status ?low_task Has ?resource))
(Add (Status ?low_task Suspended ?resource))))

(GenEx_Reallocate_Resource_to_Suspended
If 
((Status ?user Release ?resource)(Status ?user Has ?resource)
(Status ?low_task Suspended ?resource)
(Not (Status ??? Request ?resource))(Not (Status ??? Waiting ?resource)))
Then 
((Delete (Status ?user Has ?resource))
(Delete (Status ?user Release ?resource))
(Add (Status ?low_task Has ?resource))
(Delete (Status ?low_task Suspended ?resource))))

Figure 24. Excerpt from the rule set for a parallel general executive.



precise data set. Finally, as argued above, much of the details in task performance are influenced by the subjects’ 
strategies adopted under the influence of the task demands, which can be hard to control, or not controlled at all in 
many experimental paradigms.

Thus the different concepts of executive control are not offered necessarily as a better way to account for data, 
but rather as a better way to construct models. For example, the general parallel executive makes it very simple to 
construct a multi-task model that uses resources efficiently, and as argued in this chapter, there is no good reason to 
limit the cognitive processor in ways that would prevent its use. If it is difficult to demonstrate that any other 
executive model fits the data better, why not use the one that is the most theoretically productive and easy to use?

Another application of the executive process models would be in applying the bracketing heuristic proposed by 
Kieras & Meyer (2000) to models of multiple-task performance. This heuristic addresses the problem of how to 
predict performance in a task that depends heavily on individual task strategies, especially under conditions where 
no behavioral data is available to fit a model to, as in predicting human performance for purposes of system design.  
Alternatively, the heuristic provides a relatively easy way to explain effects in observed data where a well-fitting 
model would be hard to construct. The basic idea of the bracketing heuristic is to construct two a-priori models of 
the task: one is the fastest-possible model that uses a task strategy that produces the fastest possible performance 
allowed by the architecture. The other is the slowest-reasonable model uses a straightforward task strategy with no 
performance-optimizing “tricks”. The predicted performance from these two models should bracket the actual 
performance. In a design analysis context, these predictions can be used to determine whether the system would 
perform acceptably despite the uncertainty about what level of performance the actual users will produce. The 
alternative use of the bracketing models is as an aid to interpreting data. Since the two bracketing models are well-
understood, the data can be compared to them to arrive at a useful qualitative understanding of the effects in the data 
without the difficulties of iterating a single model to fit the data quantitatively, as illustrated in Kieras, Meyer, and 
Ballas (2001) who analyzed the tradeoffs manifested in two different interfaces for the same task.  

The different executive process models can help specify the bracketing models: the fastest-possible model could 
either be some form of specialized parallel executive, but using a general parallel executive would probably produce 
very similar performance and be much easier to construct. The slowest-reasonable model could be represented as a 
simple sequential executive, reflecting a deliberate “do one thing at a time” approach.  This approach would make 
the bracketing heuristic easier and more uniform to apply to the theoretical analysis of multiple-task performance.

Conclusion
Application of the modern computer metaphor to basic functions of cognitive control both clarifies some of the 

theoretical issues and opens up new areas for theoretical exploration. For example, the relation between the 
perceptual system and the cognitive processor can be characterized rather differently than the traditional attentional 
selection approach. Also, the heavy cognitive involvement in motor activity could be much further developed. But 
the main contribution of the modern computer metaphor is to open up the possibities for how cognition itself is 
organized and controlled, both in terms of basic flow-of-control issues such as parallelism and interrupts, and 
complex executive control of activity and resource allocation. 

For many years, cognitive theory has discussed cognitive control, executive processes, and resource allocation as 
fundamental concepts in human multiple-task performance. Now we can directly model them, so that theories about 
these topics can develop more concretely, rigorously, and quantifiably. EPIC’s flexible flow-of-control mechanisms 
makes these concepts easy to implement, meaning that we can propose a variety of executive strategies and explore 
their consequences, such as what is actually required to coordinate multiple arbitrary tasks. The currently popular 
application of an oversimplified computer metaphor grossly underestimates the sophistication of both computers and 
humans. In contrast, the ease of theorizing about cognitive control with EPIC suggests that a good strategy for the 
cognitive architecture community would be to keep the control characteristics of architectures open as more is 
learned about complex task performance. In fact, the concepts used in modern computer systems should place a 
lower bound on the mechanisms we consider for human cognitive control processes.
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