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ABSTRACT

Engineering models of human performance permit some

aspects of usability of interface designs to be predicted from

an analysis of the task, and thus can replace to some extent

expensive user testing data. The best developed such tools

are GOMS models, which have been shown to be accurate

and effective in predicting usability of the procedural

aspects of interface designs. This paper describes a

computer-based tool, GLEAN, that generates quantitative

predictions from a supplied GOMS model and a set of

benchmark tasks. GLEAN is demonstrated to reproduce the

results of a case study of GOMS model application with

considerable time savings over both manual modeling as

well as empirical testing.
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INTRODUCTION
Engineering Models for Usable Interface Design

The standard accepted technique for developing a usable

system, empirical user testing, is based on iterative testing

and design revision using actual users to test the system and
help identify usability problems. It is widely agreed that this

approach, inherited from Human Factors, does indeed work

when carefully applied [7]. However, Card, Moran, &

Newell [4] have argued, and many HCI researchers have

agreed (e.g. [2]), that empirical user testing is too slow and

expensive for modern software development practice,

especially when difficult-to-get domain experts are the

target user group. One response has been the development

of “discount” or “inspection” methods for assessing the

usability of an interface design quickly and at low cost [17].

However, another response, which has been evolving since
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the seminal Card, Moran, and Newell work, is the concept

of engineering models for usability. Engineering models for

usability are analogous to the models used in other

engineering disciplines in that they produce quantitative

predictions of how well humans will be able to perform

tasks with a proposed design. Such predictions can be used

as a surrogate for actual empirical user data. making it

possible to iterate through design revisions and evaluations

much more rapidly, Furthermore, unlike pure] y empirical

assessments, an engineering model for an interface design

can capture the essence of the design in an inspectable

representation, making it easier to reuse successful design

insights in the future.

The overall scheme for using engineering models in the user

interface design process is as follows: Following an initial

task analysis and proposed first interface design, the

interface designer would then use an engineering model to

find the applicable usability problems in the interface.

However, because there are other aspects of usability that

are poorly understood, some form of user testing is still

required to ensure a quality result. Only after dealing with

design problems revealed by the engineering model would

the designer then go on to user testing. If the user testing

reveals a serious problem, the design might have to be

fundamentally revised, but again the engineering models

will help refine the redesign quickly. Thus the slow and

expensive process of user testing is reserved for those

aspects of usability that can only be addressed at this time

by empirical trials. If engineering models can be fully

developed into computer-based tools, then the designer’s

creativity and development resources can be more fully

devoted to more challenging design problems, such as

entirely new concepts or approaches to the problem at hand.

The GOMS Model

The major extant form of engineering model for interface

design is the GOMS model, first proposed by Card, Moran,

and Newell. John & Kieras [8] list many successful

applications of GOMS to practical design problems, A

GOMS model is a description of the knowledge that a user

must have in order to carry out tasks on a device or system;
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it is a representation of the “how to do it” knowledge that is

required by a system in order to get the intended tasks
accomplished. The acronym GOMS stands for Goals,

Operators, Methods, and Selection Rules. Briefly, a GOMS

model consists of descriptions of the Methods needed to

accomplish specified Goals. The Methods are a series of

steps consisting of Operators that the user performs. A

Method may call for sub-Goals to be accomplished, so the

Methods have a hierarchical structure. If there is more than

one Method to accomplish a Goal, then Selection Rules

choose the appropriate Method depending on the context.

Describing the Goals, Operators, Methods, and Selection

Rules for a set of tasks in a formal way constitutes doing a

GOMS analysis, or constructing a GOMS model.

Research summarized by John& Kieras [8] has resulted in a

family of GOMS models and techniques for predicting key

aspects of usability of an interface. In particular, execution

time can be predicted by simulating the execution of the

methods required to perform the task. The time to learn how

to operate the interface can be predicted from the length of

the methods and transfer of training from the number of

methods or method steps previously learned. One important

feature of these GOMS models is that the “how to do it”

knowledge is described in a form that can actually be

executed – the analyst, or an appropriately programmed

computer, can go through the GOMS description, executing

the described actions, and actually carry out the task.

The type of GOMS model used in the work reported here is

known as the NGOMSL methodology [8,9, 10] and is based

on the cognitive modeling of human-computer interaction

by Kieras and Poison [1, 13]. NGOMSL is an acronym for

Natural GOMS Language, which is a structured natural

language used to represent the user’s methods and selection

rules. This paper introduces GOMSL, (GOMS Language),

which is a formalized, machine-executable form of

NGOMSL. The NGOMSL type of GOMS model has an

explicit representation of the user’s methods, which are

assumed to be strictly sequential and hierarchical in form,

and is useful for many desktop computing applications (see

[8] for more discussion).

Figure 1 provides a small example in GOMSL of a set of

methods for doing file moving and deleting on the

Macintosh. Each method accomplishes its goal by either

calling submethods to accomplish subgoals, or executing

primitive (“keystroke-level”) actions such as pressing the
mouse button. Other low-level operators, such as Step 1 in

the drag method represent how the user examines the screen

to find an object and then remembers its location as the

destination for a mouse point operation. Note how the

underlying simplicity and consistency of the Macintosh

methods is apparent from this small example – a single

general method is used for two different user goals.

Method for goal : Move (file) to (destination) .
Step 1. Accomplish goal : Drag (file) to

(destination)
Step 2. Return with goal accomplished.

Method for goal : Delete (file)
Step 1. Accomplish goal : Drag (file) to ( ‘ trash’ )
Step 2. Return with goal accomplished.

Method for goal : Drag ( source) to (destination)
Step 1. Find object whose label is source and

store its locatlon under source position.
Step 2. Decide: If hand is not at mouse then home

to mouse.

Step 3. Point to source position.
Step 4. Hold down mouse button.
Step 5. Find object whose label is destination and

store its location under destination position.
Step 6. Point to destination position.
Step 7. Release mouse button.
Step 8. Delete source position, delete destina~ion

position.
Step 9. Return with goal accomplished.

Fig.1. Anexample GOMSmodel: Methods formoving
anc9deleting files in the Macintosh Finder interface,
written inthe GOMSLnotation used in GLEAN. The
move and delete methods arecalleci with arguments
file and destination which are tags for file or folder
names in working memory, and then they call the drag

submethod. The find operator searches the screen for
an object and stores its location in working memory.
The point operator then uses this working memory
information. Seetext for further explanation.

Strengths and Limitations of GOMS Models

It isimportant to be clear on what GOMS models can and

cannot do (see [8] for more discussion). First, in order to

apply the GOMS technique, the designer (or interface

analyst, hereafter just referred to as the designer) must

conducts task analysis to identify what goals the user will

betrying to accomplish. Thedesigner canthenexpress ina

GOMSmodel how the usercan accomplish these goals with

the system being designed. Thus, GOMS modeling does not

replace the most critical process in designing a usable

system, that of understanding the user’s situation, working

context, and goals. Approaches to this stage of interface

design have been presented in sources such [7, 15].

Second, GOMS models can predict the procedural aspects

of usability; these concern the amount, consistency, and

efficiency of the procedures that users must follow. Since

the usability of many systems depends heavily on the

simplicity and efficiency of the procedures, the narrowly

focused GOMS model has considerable value in guiding

interface design. The reason why GOMS models can

predict these aspects of usability is that the methods for

accomplishing user goals tend to be tightly constrained by

the design of the interface, making it possible to construct a

GOMS model given just the interface design, prior to any

prototyping or user testing.

Third, there are other important aspects of usability that are

not related to the procedures entailed by the interface design,

These concern both lowest-level perceptual issues like the
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legibility of typefaces on CRTs, and also very high-level

issues such as the user’s conceptual knowledge of the

system, e.g.. whether the user has an appropriate “mental

model” [11], or the extent to which the system fits

appropriately into anorganization [see 8]. The lowest-level

issues are dealt with well by standard human factors

methodology, while understanding the higher-level concerns

is currently a matter of practitioner wisdom and the higher-

level task analysis techniques [15]. Considerably more

research is needed on the higher-level aspects of usability,

and too~s for dealing with the corresponding design issues

are far off. For these reasons, great attention must still be

given to the task analysis, and some user testing will still be

required to ensure a high-quality user interface.

Fourth, the development of the GOMS modeling techniques

has involved validating the analysis against empirical data,

as is also done in this paper. However, once the technique

has been validated and the relevant parameters estimated, no

empirical data collection or validation should be needed to

apply a GOMS analysis during practical system design.

Fifth, there has been a widespread belief that constructing

and using GOMS models is too time-consuming to be

practical (e.g., [16]). However, the many cases surveyed by

John & Kieras [8] make clear that members of the GOMS

family have been applied in many practical situations and

were often very time- and cost-effective. A substantial

problem is that the calculations required to derive the

predictions are tedious and mechanical. Eliminating this

problem is the target of the work reported here.

Goals of this Work

Our goal is to develop a family of computer-based tools that

will allow interface designers or analysts to easily develop

and rapidly apply GOMS model techniques and extensions

to them. The work reported here is part of the MUSETTE

project (Model-based USability Evaluation Tool and

Technique Ensemble). The first MUSETTE tool is called

GLEAN, for GOMS Language Evaluation and ANalysis,

The GLEAN user (the interface designer), will develop a

GOMS model for an existing or proposed interface.

GLEAN will then calculate estimated procedure learning

time and execution time for a set of benchmark tasks, and

will supply additional information to help identify problems

in the interface design.

As a test of the accuracy and functionality of GLEAN, we

applied it to a user interface analysis and design case

reported by Gong [5], who used GOMS analysis to identify

usability problems in a software product, and to evaluate the

improvement in the interface produced by correcting these

problems. Gong then also conducted a formal empirical

usability study to collect measures of actual usability. We

attempted to reproduce Gong’s models and predicted

usability results with GLEAN.

In the remainder of this paper, we first describe the design

goals for GLEAN and the current form of GLEAN. Then

we describe the application of GLEAN to Gong’s study and

the accuracy of the usability predictions.

DESCRIPTION OF GLEAN
Design Goals

A first and fundamental design goal is that GLEAN must

automate the tedious calculations required to generate

usability predictions from a GOMS model. A prototype

version of GLEAN, developed by Scott Wood [18],

demonstrated that this was feasible. Part of this goal is that

the designer should obtain the results of the GOMS analysis

in a useful and intelligible form.

A second design goal is that it must be easy, fast, and simple

for the designer to supply the inputs to GLEAN with

relatively little training. Note that task analysis is required

to determine what goals the user is trying to accomplish, and

at least the top-level methods that map the user goals to the

facilities available in the interface. So using GOMS

methodology will always require a desigher who is trained

to perform appropriate task analysis. Also, it is reasonable

that the designer have as much training as currently seems to

be necessary to get started in GOMS analysis (e.g. a one-day

short course; see [8]), but there should be very little learning

required to use the GOMS tool itself.

A third design goal is that the GOMS model notation in

GLEAN should be readable and comprehensible with little

or no training. That is, a designer using GLEAN should be

able to show an actual model to someone unfamiliar with

GOMS, and this other person must be able to grasp the gist

of the model with only a small amount of explanation. If

so, a designer will be able to explain, display, and justify the

results of the analysis to other parties (e.g. project

management) without a serious language barrier. Hence we

have tried to preserve the English-1ike flavor of NGOMSL

in the formalized GOMSL notation. The gamble is that this

English-1ike GOMSL might be harder to write than a more

compact notation, but almost anybody should be able to read

it with only a little explanation. The example shown in

Figure 1 illustrates this goal.

A final design goal was to simplify the development and

standardization of GOMS models by supporting the reuse of

GOMS methods. In many cases, the modeled interface is

being developed for a standard interface paradigm or

platform, such as the Macintosh or Windows. Many of the

interface methods are in fact supposed to be standard for the

platform and these standard methods should be available in

a library.

Structure of GLEAN

Figure. 2 shows the structure of GLEAN. In essence,

GLEAN is a facility for simulating the interaction between a

simulated user who interacts with a simulated device (the
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Fig. 2. Structure of GLEAN. The designer supplies benchmark tasks, a GOMS model, and a description of interface
behavior. GLEAN simulates the user-device interaction and generates usability metrics.

interface) to execute a set of specified benchmark tasks. To

set up the simulation, the designer supplies three

representations contained in simple text files and expressed

in a defined notation, The Task Instance Descriptions

specify the benchmark tasks. The user’s procedural

knowledge is represented with the GOMS model expressed

in the GOMSL notation. The behavior of the simulated

interface is specified by the Device Behavior Description,

which specifies the objects in the interface (e.g. icons on the

screen) in terms of abstract properties, such as their location

and appearance, and their behaviors in response to user

input.

The GOMSL Evaluator/Interpreter generates static measures

of usability from the GOMS model, such as the predicted

procedure learning time. It also generates dynamic

measures by executing the methods to accomplish each of

the specified benchmark tasks. During this execution, the

GOMS methods modify the user state, such as the contents

of working memory, and execute operators that represent

interactions with the device, such as locating an icon on the

screen or pointing with the mouse. The Device Behavior

Interpreter supplies information about the state of the

device, such as the current location of a specified icon, or

updates the state of the device, such as changing the cursor

location in response to mouse movement operators.

The main purpose of the simulated device is to

automatically generate the feedback required by the GOMS

model; for example, if the GOMS model needs to drag an

icon from one place to another, the device simulation

supplies the current location of the object and the mouse

cursor, and the new locations, along with the information

that the destination icon has become reverse-video. Such a

facility makes it much easier to debug and run the GOMS

models. However, to permit writing and partially testing a

GOMS model quickly, GLEAN permits the designer to run

a GOMS model without a specified simulated device.

Thus, to predict the usability of a proposed design with

GLEAN, the designer performs the following steps: (1)

chooses and represents the benchmark tasks; (2) writes the

GOMS model entailed by the user interface design; (3)

describes the behavior of the interface at the abstract level

required to provide any necessary feedback for the methods;

(4) debugs the model by running it with GLEAN and

correcting any errors; (5) obtains the predictions of usability

by running GLEAN on the final model; (6) examines the

usability predictions, the execution time profile, and the

structure of the GOMS methods to identify problems in the

interface design and suggest solutions; and (7) modifies the

GOMS model and device description to reflect the changes

in the interface design, conducts a new evaluation, and uses

the results to drive further design.

GOMS Model Representation

The GOMS model is expressed in the GOMSL notation and

consists of a set of application-specific methods, a library of

general methods for the interface paradigm (platform), and a

list of of additional required user knowledge in the form of

associations in long-term memory (LTM), such as under

which menu a particular command may be found. Due to
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limitations of space. a detailed presentation of the syntax

and semantics of GOMSL is not possible, but examination

of the examples should clarify most of the properties of

GOMSL.

The representation of the user’s working memory (WM)

requires discussion. A key requirement for an executable

GOMS model is the ability to explicitly represent how the

user is assumed to store and retrieve items in WM. Our goal

in designing this aspect of GOMSL was to enable methods

to be written in a simple style in which these WM operations

would not be obtrusive or clumsy, Thus, the user’s working

memory (WM) is assumed to be a simple list of properties

(tags) and associated values. A s t ore operator can store a

value in working memory under a specified tag, and any

operator can retrieve a WM item by referring to the tag as an

argument. When the information is no longer needed, a

delete operator will delete the tag and value. For

example, in the drag method shown in Figure 1, the

location of an object on the screen is stored under a tag

which is then used as an argument for a point operator,

and then finally discarded.

Information is passed from a method to a submethod

through WM; as shown in the Figure 1 example, a

parenthesized tag, or “pseudo-argument,” in a goal

description specifies which value in the current WM

contents is to be copied under a new tag for a submethod.

This approach allows submethods to be encapsulated to

some extent, analogously to conventional programming

languages, and thus enabling the use of method libraries.

However, there are several difficult issues about the

psychological and programming implications of this

representation that we have not fully resolved: WM tags are

used similarly to variables in ordinary programming

languages, but are fundamentally different. Since GOMSL

is intended to represent human procedural knowledge and

human limitations and abilities; it can not be a full-fledged

programming language that supports facilities such as

locally scoped variables and recursion. On the other hand,

the way GLEAN represents WM may be puzzling to the

intended audience; we will have to gain further experience

and feedback.

Benchmark Task Description

The Task Instance Description describes a set of specific

task instances to be used to predict execution times. These

descriptions are supposed to be as independent of the

interface design as possible, containing only declarative

information about the parameters and requirements of the

task. An example task representation from the Gong study

described below is shown in Figure 3 and illustrates some

important features. A task description is a set of objects,

each of which can have property-value pairs that specify
task parameters or subtasks. Our goal is to allow arbitrary

mixtures of task information whose organization is

Top level goal is Use the 3DSSPP.
Task: Use the 3DSSPP.
Task sequence is Specify anthropometry, Specify

the action at the hands, Specify the force at the
hands, Predict by hand locations .

Task: Specify anthropometry.
Gender is Male.
Height&Weight is 50th %ile.

Task: Specify the action at the hands.
Action is Lift Up.

Task: Specify the force at the hands.
Force sequence is Right Magnitude, Left Magnitude.
Number values are 13, 16.

Fig. 3. Anexample task instance description.

hierarchical, sequential, or unordered. In many task

domains, an instanceof a task contains task parameters or

subtasks that are unordered and always available; that is,

they have meaning independent of other parts of the task,

the order in which they appear in the description, or the

order of use during task performance. However, task

instances also can contain ordered subtasks or parameters,

which may have to be performed or used either in some

arbitrary order oranorder determinedly thestructure of the

task or the task methods. Our task instance description

notation allows us to define such sequences and associate

them with different portions of the task.

The Device Behavior Description and Interpreter

The Device Behavior Interpreter applies the device behavior

description to simulate at an abstract level of detail the

behavior of the device during task execution. This

description is an abstract representation of the device states

andtransitions, and what feedback is supplied tothe GOMS

method from the device; no actual implementation of device

functionality is required. For example, a GOMSL find

operator being executed will result in a query about the

current location of an icon on the device’s screen; the device

simulator will supply the location to the user simulation,

where it will be placed in the working memory partition of

the user state. Then a GOMSL point operator could be

executed to move the cursor to that location. The device

simulator would receive the point command, and update the

current location of the cursor in the device state. If the icon

is subsequently dragged, then its location would also be

updated.

This approach of simulating the abstract behavior of the

device was followed in the original Kieras and Poison

modeling work with a specialized transition-network

representation of the device behavior [1, 12, 13]. Our

current description notation is intended to be much easier to

use, being similar in syntax to GOMSL. The Device

Behavior Description includes the objects in the interface

their properties, and their behavior in response to user input.

For example, for the Macintosh, the device description
would contain an object for the trash can icon, its location,

and appearance, and how the appearance changes when the

user acts on the trash can; for example, it reverse-videos
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when another object is dragged onto it. In this notation, the

behavior is described by a procedure for each user operator

that describes how the device state should change. Using

this representation, we have developed a simulation of many

Macintosh interface behaviors. The adequacy of this

facility, and its possible future development, are discussed

more in the conclusion.

GOMSL Evaluator/Interpreter

When GLEAN first loads a model, the GOMSL

EvaluatorlInterpreter calculates estimated learning times.

When the model is run, the state of the simulated user is

updated during execution; for example, the contents of

working memory change and the hands move from place to

place. The user state can be interrogated by the methods, for

example, to determine whether the hand needs to be moved

from the keyboard to the mouse. At the designer’s option, a

full trace of each method step can be displayed, along with

the current contents of the simulated user’s working memory

and the current state of the device simulation. The final

output is a detailed profile showing the frequency, average

time, and total execution time of each operator and each

method. This profiling facility helps the designer to

determine the source of any differences in task execution

time when comparing interface designs.

GLEAN calculates execution time predictions by following

the recommendations in Kieras [9, 10] and Gong [5, 6]. For

example, each GOMSL step requires 0.1 s, each keystroke,

0.28 s. Gong [5] found that the 1.1 s mouse pointing time

recommended by Card, Moran, & Newell [4], which was

based on text editing activity, is actually quite inaccurate for

GUI interfaces, because mouse movements are often made

to large or close targets, such as activating windows,

clicking on buttons, and so forth. GLEAN maintains the

current position of the mouse cursor, and so can use Fitts’

Law [4] to calculate the time required to move the cursor to

a target object whose size is specified.

GLEAN calculates predicted procedure learning time

following the formulas recommended by Kieras [9, 10] and

Gong [5, 6]. GLEAN tallies the total number of method

steps to be learned, taking account of which methods the

designer has designated as already known to the user. For

example, a typical Macintosh user should already know the

basic Macintosh methods such as dragging and selecting, so

the learning time for a new Macintosh application should
not include the time for these methods. Thus the designer

can indicate that single methods, or all of the methods in a

file (e.g. the Macintosh basic methods library), are already

learned. In addition, GLEAN calculates a refined transfer of

training predictor [1,9] involving identifying identical steps

in methods with similar goals. Finally, the time to

memorize LTM associations is included in the learning time

as well, based on the number of chunks specified by the

designer.

However, at the time of this writing, the learning time

predictions are problematic and require recalibration. Since

the time to learn the procedures depends on the number of

steps in the methods, the learning time predictions are

sensitive to the “programming style” used in writing the

methods. The style rules and model structure suggestions in

the NGOMSL methodology [9, 10] are rather loose and

informal compared to GOMSL. NGOMSL was intended to

be suitable for easy construction and manual application,

while GOMSL is machine-executable and much more

tightly specified, especially with respect to WM usage and

task instance definitions. Consequently, we will have to

develop some new and more rigorous style rules for certain

aspects of GOMS model structure and representation, and

recalibrate the learning time prediction formulas

accordingly. This work is in progress.

In the meantime, note that the number of method steps

determines the amount of “cognitive overhead,” but does not

affect which or how many keystroke-level operators are

executed. Since the cognitive overhead contributes only a

little to the predicted execution time, GLEAN’s execution

time predictions are relatively unaffected by programming

style differences.

A final feature of interest is that the designer can define

special operators to represent special-case types of user

activity, and can override the default time values associated

with operators. Thus, following Gong’s recommendations,

in the results reported below, the experienced users are

assumed to overlap many mental operations (e.g. locate,

verify) with the accompanying physical actions, and so

these operators were set to zero time.

Technical Notes

GLEAN is currently implemented in Common Lisp/CLOS

and normally runs under Macintosh Common Lisp with a

rudimentary menu interface. Our current effort is to keep

the tool as platform-independent as possible, so the

Macintosh interface is purely a convenience. Future

versions are expected in be in C++ and use the Amulet

interface toolkit.

An important design feature is that all of the notations used

in GLEAN for the GOMS model, device description, and

task instance description, are parsed by a translator that

converts the representations into a set of internal objects
used by evaluation and simulation functions in GLEAN.

Thus details of the notation syntax can be modified

independently of the evaluation and simulator facilities and

it is possible to support multiple notations if desired. A

second noteworthy design feature is that the task instances,

contents of LTM, and the device state, are represented in a

uniform object-property-value structure, which simplifies

the definition of GOMSL operators and the notations.
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DEMONSTRATION OF GLEAN: REPRODUCING THE
GONG RESULTS

As a test of the accuracy and usability of GLEAN, we

applied it to a user interface analysis and design case study

conducted by Richard Gong [5, 6], who used GOMS

analysis to identify usability problems in a software product,

and to evaluate the improvement in the interface produced

by correcting these problems. Gong then also conducted a

formal empirical usability study to collect measures of

actual usability which he used to verify and correct the

GOMS prediction methodology. We attempted to reproduce

Gong’s models and predicted usability results with GLEAN.

Summary of Gong’s Study

Gong applied the GOMS model methodology described in

[9] to the design of a full-sized Macintosh computer

software application. This application is a CAD system for

the ergonomic design of factory workstations; it allows an

ergonomics analyst to determine whether a particular job

(e.g. installing automobile batteries on an assembly line)

will pose a risk of injury to the worker. The original

interface was constructed according to standard rules for the

platform. The main display is illustrated in Figure 4.

Conventional usability evaluation of this interface was

difficult because the user base consists of a small expert

population not readily available for full-scale usability tests,

and an informal user survey produced only information

about missing functionality or violations of expectations,

rather than difficulties in learning or use.

Working independently, Gong constructed a GOMS model

in NGOMSL of this original interface. and following the

procedures in [91, evaluated it both qualitatively and

quantitatively. The results of the GOMS evaluation was far

more detailed and specific than the user survey results.

Gong discovered a variety of problems in the interface

procedures that were predicted to produce longer learning

time and slower execution time than necessary. He

redesigned the interface in response to these problems; the

main display of the revised version is shown in Figure 5.

Note that the revised display appears to be considerably
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Fig. 4. The main display from Gong’s original interface.

more cluttered than the original, which violates one of the

most widely-followed traditional usability guidelines.

Despite the more cluttered display, Gong found that the

quantitative predictions from the GOMS analysis indicated

that the revised interface would be 46% faster to learn and

40% faster to use. In a formal empirical comparison of the

two versions, these predicted improvements were accurate

within IOYO, which is clearly accurate enough for

engineering design purposes.

For validation purposes, Gong predicted and collected the

task times for the two interfaces for a series of seven tasks,

each described on a sheet of paper showing the

biomechanical data input. The user had to obtain the desired

result from the system. Gong actually worked in terms of

execution times for a very stable subset of the complete task,

which he termed “form fill-in, ” in which the user sets

buttons and dialog fields to the proper values for the task.

While this is a relatively simple type of interface activity,

nonetheless it is heavily involved in many current interfaces.

GLEAN Models for Gong’s Interfaces
In our replication of Gong’s analysis, we recoded his

informal NGOMSL into GLEAN’s GOMSL for the two

interfaces. Our models included just the methods required

for Gong’s “form fill-in” part of the task. We constructed a

set of methods for the application- and interface-specific

portions of each of the two interfaces, and a second set of

methods for the generic interface procedures for the

platform. Following Gong, these generic methods were

constructed in two forms: A lower-limit form assumed that

the user used accelerator keys whenever possible, while an

upper-limit form represented the user always pointing and

clicking with the mouse. Actual users would be expected to

use some mixture of the two forms. In addition to the

methods, we represented each of Gong’s seven benchmark

tasks using our task instance description notation. The

models were tested to ensure that they generated the correct

sequence of user actions for each benchmark task.
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Fig. 5. The main display from Gong’s revised interface.
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Space limitations prevent illustrating the models in any

detail. In summary, both interface models had the same

task-domain-specific top level methods for cycling through

the subtasks, and shared the same upper- and lower-limit

libraries of generic methods. To illustrate the difference

between the two interfaces, Figure 6 shows one of the

interface-specific methods for the original interface, which

requires opening a dialog box with a menu access, and

Figure 7 shows the corresponding method in the revised

interface, which requires only activating an on-screen

window. The revised interface involves methods that are

shorter and faster to execute.

Method for goal: Specify the force at the hands.
Step 1. Accomplish goal: Make sure the dialog

(’Forces at Hands’) is visible.
Step 2. Accomplish goal: Specify the field

sequence ( ‘Force’ ) to contain the value sequence
(’Number’).

Step 3. Accomplish goal: Dismiss the dialog
(’Forces at Hands’) .

Step 4. Return with goal accomplished.

LTM item: Forces at Hands.
Access Menu is Task Settings.
Command key is F.
Chunks is 3.

Fig.6. Example interface-specif icmethod forthe
original interface, and the accompanying definitionof
command keyandmenu LTM associations. The fields
to befilledin arein adialogbox that must becalledup
and dismissed. The LTMitemisused bythe methodin
Figure 8 to call up the dialog.

Method for goal: Specify the force at the hands.
Step 1. Accomplish goal: Make sure the window

(’Forces at Hands’) is the active window.
Step 2. Accomplish goal: Specify the field sequence

(’Force’) to contain the value sequence
(’Number’).

Step 3. Return with goal accomplished.

Fig.7. Example interface-specif icmethod forthe
revised interface. The fields tobefilledin bythe method
are in an on-screen window.

Figure 8 gives some examples of the lower-limit generic

library methods for performing lower-level interactions on

the Macintosh platform. Both models used these libraries

for the lowest level methods.

In addition tothemethod differences, the two models also

differed in the number of Long-Term Memory associations
requiredto specify which menu to open orcommand keyto

strike to invoke specific commands. These associations

specifies with the methods, as shown in Figure6, and are

retrieved by the Retrieve from LTM operatorsin the

library methods shown in Figure 8.

The two interfaces did not differ much in how many

methods were required, but did differ in which generic

methods were invoked, how long the interface-specific

methods were, and how many LTM items wererequiredto

Method for goal: Make sure the dialog (new dialog)
is visible.

Step 1, Decide: If appearance of new dialog is
visible then Return with goal accomplished.

Step 2. Retrieve from LTM command key of new dialog
and store under key.

Step 3. Accomplish goal: Press the command key
(key)

Step 4. Return with goal accomplished.

Method for goal: Press the command key (target
key) .

Step 1. Decide: If hand is not at keyboard then
Home to keyboard.

Step 2. Keystroke ‘Command’ .
Step 3. Keystroke target key.
Step 4. Return with goal accomplished.

Fig.8. Example lowerlimitmethods fromthegeneric
method library. Acommand key associated intheuser’s
LTMwiththedesired dialog isusedtoopen thedialog.

specify the parameters for generic command-issuing

methods. The revised interface had more of the controls

visible on the screen at all times, so fewer LTM associations

were required, and the methods would be shorter to learn

and faster to execute, since it would not be necessary to

open and dismiss as many dialog boxes. This contrast can

be seenby examining Figures 6and7.

Accuracy of Predicted Times

As discussed above, the learning time predictions are in

need of recalibration due to the differencesin notation and

programming style between Gong’s informal NGOMSL

models and our formalized GOMSL ones. GLEANs

predicted learning time foreach interface is significantly

larger than what Gong observed; but the predicted

improvement between the original and revised interfaces is

roughly correct, but is too small: Gong observed a 46%

improvement in learning time, while GLEAN predicts a

31% improvement. Work to better characterize the relevant

modeling rules and to recalibrate the learning time

predictions is underway.

Figure9 shows the observed task execution times measured

by Gong fortheoriginal andrevised interfaces for each of

the seven tasks and the predicted times produced by

GLEAN. Following Gong’ssuggestion, the predictedtimes

were produced by averaging the predicted execution times

produced by the upper- and lower-limit models. The

difference between tasks and the two interfaces is predicted

very accurately by GLEAN; the absolute error of prediction

ranges from 1% to 16%, and averages 8%. Examining the
execution time profile produced by GLEAN for the two

interfaces shows that, as Gong described, the revised

interface user is faster because the original interface user

spends more time callingup and dismissing dialogs using

menu accesses and retrieving items from LTM. Clearly,
these results indicate that GOMS models using GLEAN are

capable of making useful and accurate predictionsof task

execution time.
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Fig. 9. Observed and predicted task execution times.
The revised interface is faster than the original
interface; the predicted values (small open shapes with
dashed lines) average within 8% of the observed times
(large solid shapes with solid lines).

Projection of Effort Savings due to GLEAN

Gong [5, 6] kept records of the amount of effort required to

construct and apply the GOMS model; here we consider

how the effort might have be decreased if GLEAN had been

available for Gong’s use.

Figure 10 shows a summary of the distribution of effort

reported by Gong in developing the interfaces. Interface

development includes all design drafting and interface

coding; user assessment includes both a user survey and

formal usability test; and the manual GOMS activity is the

11 days that Gong reported being spent on (1) creating the

100

1

Interlace Dev. User &sess. Manual GOMS GLEAN’GOMS

Aggregated Activity

Fig. 10. Effort requirements reported by Gong for
performing each type of activity, along with projected
requirement if GLEAN had been used for the GOMS
calculations.

the GOMS model, (2) generating the predictions, and (3)

interpreting the modeling results. Of these 11 days, Gong

(personal communication) spent about 4-5 days generating

the predictions by first creating the action trace for each task

by hand and listing the operator sequences, and then setting

up and checking spreadsheets, and finally obtaining the

predictions. This work GLEAN does within seconds; the

resulting projected time savings are included in the GLEAN

GOMS activity in Figure 10. This projection does not

include any additional time that might be required to express

the models in the formal GOMSL as opposed to the

relatively free-form NGOMSL used by Gong; note that the

work to express a GOMS model more formally might well

be repaid by greater ease in ensuring that the model is

correct and complete.

Furthermore, if more than one revision with additional

interface changes had been performed, the savings would

have been substantially more, both with using GLEAN, and

with using GOMS. The time to modify the GOMS model

would probably be very small for most interface revisions,

and the time to recalculate the results with GLEAN would

be almost zero, but manually would still probably take a few

days, In contrast, the user assessment time for even a small

interface variation would probably be doubled because an

entirely new complete user test would likely be required,

with little savings from the previous user test.

CONCLUSIONS AND FUTURE WORK

Our reproduction of Gong’s study makes a strong case, along

with the others summarized by John & Kieras [8], that

GOMS modeling is an efficient usability evaluation

technique, especially when augmented with automated tools

such as GLEAN.

Further work on developing GLEAN needs to focus on

several issues: In the immediate future, we plan to construct

a variety of models using GLEAN, and then apply GLEAN

to an actual interface being designed by a software

development project. This activity will help check for

adequate generality, scope, and ease of use of GOMSL and

the task instance language, and to clarify the requirements

for the device representation. In addition, we expect to gain

a better understanding of the kinds of output that the tool

should produce, such as more specific execution profiles.

Finally, of course, we need to obtain feedback from

representative software developers and interface designers

on the ease of learning and using both GOMSL and the

GLEAN tool itself.

In the longer term, we plan to incorporate results from

research in progress such as [ 14] for estimating the time

required for visual search and possibly identifying portions

of the interface where user errors are especially likely.

The device simulator portion of GLEAN is problematic.

Developing an accurate and complete GOMS model
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requires testing the model against the proposed interface;

having the proposed interface represented as a simulated

device greatly assists this testing. However, the more

elaborate and complete the device description and

simulation becomes, the more it becomes a duplication of

the actual interface implementation, and the less the

justification for having a separate facility for device

description and simulation in GLEAN. Coupling GLEAN

to a suitable interface development environment would

avoid this duplication.

An additional relationship between interface

implementations and GLEAN is that there is some

resemblance between the content of a GOMS model and

some representation of an interface itself, as should be

evident from the Figure 1 example above. GOMSL is

defined so that when written in a certain style, important

psychological aspects of the interface are captured, which is

not a goal of current UIMS efforts for representing

interfaces. But to some extent, each could be constructed

from the other, as was demonstrated by Byrne, Wood,

Sukaviriya, Foley, and Kieras [3] using UIDE and the

prototype GLEAN. If so, constructing an elaborate device

simulation just to assist the GOMS evaluation would be

wasteful; it should be possible to take advantage of the

redundancy between GOMS models and interface

representations to even further reduce the time required to

develop a usable interface.
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