
GOMS Models for Task Analysis
David Kieras

University of Michigan

To appear in:

D. Diaper & N. Stanton (Eds.) (in press). Task analysis for human-computer interaction. Lawrence Erlbaum
Associates

Abstract

Analyzing a task into Goals, Operators, Methods, and Selection rules (GOMS) is an established method
for characterizing a user's procedural knowledge. When combined with additional theoretical
mechanisms, the resulting GOMS model provides a way to quantitatively predict human learning and
performance for an interface design, in addition to serving as a useful qualitative description of how the
user will use a computer system to perform a task. This chapter focusses on GOMS models as a task-
analytic notation and how to construct them.

Introduction

The purpose of task analysis is to understand the user's activity in the context of the whole human-
machine system, for either an existing or a future system. While understanding human activity
scientifically is the goal of psychology and the social sciences, the constraints on system design activity
preclude the lengthy and precise analysis and experimentation involved in scientific work. Thus a task
analysis for system design must be rather more informal, and primarily heuristic in flavor compared to
scientific research. The task analyst must do his or her best to understand the user's task situation well
enough to influence the system design given the limited time and resources available.

Despite the fundamentally informal character of task analysis, many formal and quasi-formal systems
for task analysis have been proposed. However, these systems do not in themselves analyze the task or
produce an understanding of the task. Rather, they are ways to help the analyst observe and think
carefully about the user's actual task activity, and provide a format for recording and communicating the
results of the task analysis. Thus a task analysis methodology both specifies what kinds of task
information are likely to be useful to analyze, and provides a heuristic test for whether the task has
actually been understood. That is, a good test for understanding something is whether one can represent it
or document it, and constructing such a representation can be a good approach to trying to understand it.
A formal representation of a task helps by ensuring that the analyst's understanding is more reliably
communicated. Finally, some of the more formal representations can be used as the basis for computer
simulations or mathematical analyses to obtain quantitative predictions of task performance, but it must
be understood that such results are no more correct than the original, and informally-obtained,
understanding underlying the representation.

GOMS is such a formalized representation that can be used to predict task performance well enough
that a GOMS model can be used as a substitute for much (but not all) of the empirical user testing needed
to arrive at a system design that is both functional and usable. This predictive function is normally
presented as the rationale for GOMS modeling (see Card, Moran, & Newell, 1983; John & Kieras, 1996a,
b; Kieras, in press). However, GOMS models also qualify as a form of task-analytic representation, with
properties similar to Hierarchical Task Analysis (HTA, see Annett, Duncan, Stammers, and Gray, 1971;
Kirwan & Ainsworth, 1992), but with the special advantage of being able to generate useful predictions of
learning and performance.

This chapter presents GOMS modeling as a task analysis method, emphasizing the process of analysis
and construction of a GOMS model. Information about using the GOMS model for design evaluation and
prediction of learning and performance is not covered here. GOMS methodology is quite detailed,
especially when GOMS is used in a computer simulation of human performance, but due to lack of space,
the presentation has been considerably simplified, and almost all specifics related to performance
prediction have been eliminated. The interested reader should examine the cited sources and contact the
author for treatments that are both more complete and more up to date. Also due to the lack of space, this
chapter contains only one complete example of a GOMS model, a simple text editor (at the end of the
chapter). The reader might find it useful to gain a preliminary understanding of what a GOMS model is
like by briefly examining this example before reading further.

The GOMS Model

A GOMS model is a description of the procedural knowledge that a user must have in order to carry out
tasks on a device or system; it is a representation of the "how to do it" knowledge that is required by a
system in order to get the intended tasks accomplished. The acronym GOMS stands for Goals, Operators,
Methods, and Selection Rules. Briefly, a GOMS model consists of descriptions of the Methods needed to
accomplish specified Goals. The Methods are a series of steps consisting of Operators that the user
performs. A Method may call for sub-Goals to be accomplished, so the Methods have a hierarchical
structure. If there is more than one Method to accomplish a Goal, then Selection Rules choose the

2

appropriate Method depending on the context. Describing the Goals, Operators, Methods, and Selection
Rules for a set of tasks in a formal way constitutes doing a GOMS analysis, or constructing a GOMS
model.

In the Card, et al. formulation, the new user of a computer system will use various problem-solving and
learning strategies to figure out how to accomplish tasks using the computer system, and then with
additional practice, these results of problem-solving will become methods - procedures that the user can
routinely invoke to accomplish tasks in a smooth, skilled manner. The properties of the methods will thus
govern both the ease of learning and ease of use of the computer system. In the research program
stemming from the original proposal, approaches to representing GOMS models based on cognitive
psychology theory have been developed and validated empirically, along with the corresponding
techniques and computer-based tools for representing, analyzing, and predicting human performance in
human-computer interaction situations.

John & Kieras (1996a, b) describe the current family of GOMS models and the associated techniques
for predicting usability, and list many successful applications of GOMS to practical design problems. The
simplest form of GOMS model is the Keystroke-Level Model, first described by Card, Moran, and
Newell (1980), in which task execution time is predicted by the total of the times for the elementary
keystroke-level actions required to perform the task. The most complex is CPM-GOMS, developed by
Gray, John, and Atwood (1993), in which the sequential dependencies between the user's perceptual,
cognitive, and motor processes are mapped out in a schedule chart, whose critical path predicts the
execution time.

In between these two methods is the method presented in Kieras(1988, 1997a), NGOMSL, in which
learning time and execution time are predicted based on a program-like representation of the methods that
the user must learn and execute to perform tasks with the system. NGOMSL is an acronym for Natural
GOMS Language, which is a structured natural language used to represent the user's methods and
selection rules. NGOMSL models thus have an explicit representation of the user's methods, which are
assumed to be strictly sequential and hierarchical in form. NGOMSL is based on the cognitive modeling
of human-computer interaction by Kieras and Polson (Kieras & Polson, 1985; Bovair, Kieras, & Polson,
1990). As summarized by John and Kieras (1996a,b), NGOMSL is useful for many desktop computing
situations in which the user's procedures are usefully approximated as being hierarchical and sequential.
The execution time for a task is predicted by simulating the execution of the methods required to perform
the task. Each NGOMSL statement is assumed to require a small fixed time to execute, and any operators
in the statement, such as a keystroke, will then take additional time depending on the operator. The time
to learn how to operate the interface can be predicted from the length of the methods, and the amount of
transfer of training from the number of methods or method steps previously learned. In addition,
NGOMSL models have been shown to be useful for defining the content of on-line help and
documentation (Elkerton & Palmiter, 1991; Gong & Elkerton, 1990).

This chapter uses a newer computational form of NGOMSL, called GOMSL (GOMS Language)
which is processed and executed by a GOMS model simulation tool, GLEAN3 (GOMS Language
Evaluation and Analysis). GLEAN3 was inspired by the original GLEAN tool developed by Scott Wood
(1993; see also Byrne, Wood, Sukaviriya, Foley, & Kieras, 1994) and reimplemented and elaborated in
Kieras, Wood, Abotel, & Hornof (1995), and then again as summarized in Kieras(1999). Unlike the
earlier versions, GLEAN3 is based on a comprehensive cognitive architecture, namely a simplified
version of the EPIC architecture for simulating human cognition and performance (Kieras & Meyer,
1997). GOMSL and GLEAN3 have been also been used to identifying likely sources of errors in user
interfaces and model human error recovery (Wood, 1999, 2000) and also to model the performance of
teams of humans who interact with speech (Santoro & Kieras, 2001).

Strengths and Limitations of GOMS Models

3

It is important to be clear on what GOMS models can and cannot do; see John and Kieras (1996a, b) for
more discussion.

GOMS starts after a basic task analysis. In order to apply the GOMS technique, the task analyst must
first determine what goals the user will be trying to accomplish. The analyst can then express in a GOMS
model how the user can accomplish these goals with the system being designed. Thus, GOMS modeling
does not replace the most critical process in designing a usable system, that of understanding the user's
situation, working context, and overall goals. Approaches to this stage of interface design have been
presented in sources such Gould (1988), Diaper (1989), Kirwan and Ainsworth (1992), and Beevis et al
(1992). Once this basic level of task analysis has been conducted, constructing the GOMS model can then
provide an elaborated account of how the user does the task.

GOMS represents only the procedural aspects of a task. GOMS models can account for the procedural
aspects of usability; these concern the exact steps in the procedures that the user must follow, and so
GOMS allows the analyst to determine the amount, consistency, and efficiency of the procedures that
users must follow. Since the usability of many systems depends heavily on the simplicity and efficiency
of the procedures, the narrowly focused GOMS model has considerable value in guiding interface design.
The reason why GOMS models can predict these aspects of usability is that the methods for
accomplishing user goals tend to be tightly constrained by the design of the interface, making it possible
to construct a GOMS model given just the interface design, prior to any prototyping or user testing.

Clearly, there are other important aspects of usability that are not related to the procedures entailed by
the interface design. These concern both lowest-level perceptual issues like the legibility of typefaces on
CRTs, and also very high-level issues such as the user's conceptual knowledge of the system, e.g.,
whether the user has an appropriate "mental model," or the extent to which the system fits appropriately
into an organization (see John & Kieras, 1996a). The lowest-level issues are dealt with well by standard
human factors methodology, while understanding the higher-level concerns is currently a matter of
practitioner wisdom and the higher-level task analysis techniques. Considerably more research is needed
on the higher-level aspects of usability, and tools for dealing with the corresponding design issues are far
off. For these reasons, great attention must still be given to the overall task analysis, and some user testing
will still be required to ensure a high-quality user interface.

GOMS models are practical and effective. There has been a widespread belief that constructing and
using GOMS models is too time-consuming to be practical (e.g., Lewis & Rieman, 1994). However, the
many cases surveyed by John & Kieras (1996a) make clear that members of the GOMS family have been
applied in many practical situations and were often very time- and cost-effective. A possible source of
confusion is that the development of the GOMS modeling techniques has involved validating the analysis
against empirical data. However, once the technique has been validated and the relevant parameters
estimated, no empirical data collection or validation should be needed to apply a GOMS analysis during
practical system design, enabling usability evaluations to be obtained much faster than user testing
techniques. However, the calculations required to derive the predictions are tedious and mechanical;
GLEAN was developed to remove this obstacle, but of course, additional effort is required to express the
GOMS model precisely enough for a computer-based tool to use it.

General Issues in GOMS Analysis

Overview of GOMS Analysis

Carrying out a GOMS analysis involves defining and then describing in a formal notation the user's
Goals, Operators, Methods, and Selection Rules. Most of the work seems to be in defining the Goals and
Methods. That is, the Operators are mostly determined by the hardware and lowest-level software of the
system, such as whether it has a mouse, for example. Thus the Operators are fairly easy to define. The

4

Selection Rules can be subtle, but usually they are involved only when there are clear multiple methods
for the same goal. In a good design, it is clear when each method should be used, so defining the
Selection Rules is (or should be) relatively easy as well.

Identifying and defining the user's goals is often difficult, because the analyst must examine the task
that the user is trying to accomplish in some detail, often going beyond just the specific system to the
context in which the system is being used. This is especially important in designing a new system,
because a good design is one that fits not just the task considered in isolation, but also how the system
will be used in the user's job context. As mentioned above, GOMS modeling starts with the results of a
task analysis that identifies the user's top-level goals. Once a goal is defined, the corresponding method
can be simple to describe because it is simply the answer to the question "how do you do it on this
system?" The system design itself largely determines what the methods are.

One critical process involved in doing a GOMS analysis is deciding what and what not to describe. The
mental processes of the user are incredibly complex; trying to describe all of them would be hopeless.
However, the details of many of these complex processes have nothing to do with the design of the
interface, and so do not need to be worked out for the analysis to be useful. For example, the process of
reading is extraordinarily complex; but usually, design choices for a user interface can be made without
any detailed consideration of how the reading process works. We can treat the user's reading mechanisms
as a "black box" during the interface design. We may want to know how much reading has to be done, but
rarely do we need to know how it is done. So, we will need to describe when something is read, and why
it is read, but we will not need to describe the actual processes involved. A way to handle this in a GOMS
analysis is to "bypass" the reading process by representing it with a "dummy" or "place holder" operator.
This is discussed more below. But making the choices of what to bypass is an important, and sometimes
difficult, part of the analysis.

Judgment Calls

In constructing a GOMS model, the analyst is relying on a task analysis that involves judgments about
how users view the task in terms of their natural goals, how they decompose the task into subtasks, and
what the natural steps are in the user's methods. These are standard problems in task analysis (see Kieras,
1997b, Kirwan & Ainsworth, 1992; Annett, et al., 1971). It is possible to collect extensive behavioral data
on how users view and decompose tasks, but often it is not practical to do so because of time and cost
constraints on the interface design process. Instead, the analyst must often make judgment calls on these
issues. These are decisions based on the analyst's judgment, rather than on systematically collected
behavioral data. In making judgment calls, the analyst is actually speculating on a psychological theory or
model for how people do the task, and so will have to make hypothetical claims and assumptions about
how users think about the task. Because the analyst does not normally have the time or opportunities to
collect the data required to test alternative models, these decisions may be wrong, but making them is
better than not doing the analysis at all. By documenting these judgment calls, the analyst can explore
more than one way of decomposing the task, and consider whether there are serious implications to how
these decisions are made. If so, collecting behavioral data might then be required. But notice that once the
basic decisions are made for a task, the methods are determined by the design of the system, and no
longer by judgments on the part of the analyst.

For example, in the example below for moving text in MacWrite, the main judgment call is that due to
the command structure, the user views moving text as first cutting, then pasting, rather than as a single
unitary move operation. Given this judgment, the actual methods are determined by the possible
sequences of actions that MacWrite permits to do cutting and pasting.

In contrast, on the IBM DisplayWriter, the design did not include separate cut and paste operations. So
here, the decomposition of moving into "cut then paste" would be a weak judgment call. The most
reasonable guess is that a DisplayWriter user thinks of the text movement task not in terms of cut and
paste subgoals, but in terms of the subgoals of first selecting the text, then issuing the Move command,

5

and then designating the target location. So what is superficially the same text editing task may have
different decompositions into subgoals, depending on how the system design encourages the user to think
about it.

It could be argued that it is inappropriate for the analyst to be making assumptions about how humans
view a system. However, notice that any designer of a system has de facto made many such assumptions.
The usability problems in many software products are a result of the designer making assumptions, often
unconsciously, with little or no thoughtful consideration of the implications for users. So, if the analyst's
assumptions are based on a careful consideration from the user's point of view, they can not do any more
harm than that typically resulting from the designer's assumptions, and should lead to better results.

How do Users do the Task?

If the system already exists and has users, the analyst can learn a lot about how users view the task by
talking to the users to get ideas about how they decompose the task in to subtasks and what methods and
selection rules they use. However, a basic lesson from the painful history of cognitive psychology is that
people have only a very limited awareness of their own goals, strategies, and mental processes in general.
Thus the analyst can not simply collect this information from interviews or having people "think out
loud." What users actually do can differ a lot from what they think they do. The analyst will have to
combine information from talking to users with considerations of how the task constrains the user's
behavior, and most importantly, observations of actual user behavior. So, rather than asking people to
describe verbally what they do, a better approach is having users demonstrate on the system what they do,
or better yet, observing what they normally do in an unobtrusive way.

In addition, what users actually do with a system may not in fact be what they should be doing with it.
The user, even a very experienced one, is not necessarily a source of "truth" about the system or the tasks
(cf. Annett, et al., 1971). As a result of poor design, bad documentation, or inadequate training, users may
not in fact be taking advantage of features of the system that allow them to be more productive (see
Bhavnani & John 1996). The analyst should try to understand why this is happening, because a good
design will only be good if it is used in the intended way. But for purposes of a GOMS analysis, the
analyst will have to decide whether to assume a sub-optimal use of the system, or a fully informed one.

This situation deserves further discussion. In many task-analysis or modeling situations, especially with
complex systems, the human user can perform the task in a variety of different ways, following different
task strategies - the external structure of the task does not strongly constrain what the user must do,
leaving them free to devise and follow different strategies that arrive at the same end result. In such a
case, it will be difficult to determine the goal structure and the methods. One approach, of course, is to
rely on empirical data and observation about what users actually do in the task. This is certainly the
desired approach, but it can be extremely difficult to identify the strategy people use in a task, even a very
simple one (Kieras & Meyer, 2000). Furthermore, empirical results cannot be used if the system in
question is under design and so has no users to observe, or if an existing system has not been, or cannot
be, studied in the required detail because of the severe practical difficulties involved in collecting usage
data for complex systems.

In such cases, the analyst is tempted to speculate on how users might do the task, and as noted above,
such speculation by the task analyst and interface designer is likely to be better than than haphazard
decisions made by whoever writes the interface code. However, if the task is indeed a complex one, trying
to guess or speculate how the user does the task can result in an endless guessing-game. A better approach
is to consider whether the system designers have a concept of how the system is supposed to be used, and
if so, construct a GOMS model for how the user should do the task. This is much less speculative, and is
thus relatively well-defined. It represents a sort of best-case analysis in which the system designer's
intentions are assumed to be fully communicated to the user, so that the user takes full advantage of the
system features. If the resulting GOMS analysis and the performance predictions for it reveal serious
problems, the actual case will certainly be much worse.

6

An additional elaboration of this approach is to use bracketing logic (Kieras & Meyer, 2000) to gain
information about the possible actual performance using the system. Construct two models of the task,
one representing using the system as cleverly as possible, producing the the fastest-possible performance,
and another that represents the nominal or unenterprising use of the system, resulting in a slowest-
reasonable model. When performance predictions are computed, these two models will bracket what
actual users can be expected to do. By comparing how the two models respond to e.g. changes in
workload, and analyzing their performance bottlenecks, the analyst can derive useful conclusions about a
system design, or especially about the relative merits of two designs, without having to make detailed
unsupported assumptions about the user's actual task strategies (e.g. Kieras, Meyer, & Ballas, 2000).

Bypassing Complex Processes

Many cognitive processes are too difficult to analyze in a practical context. Examples of such processes
are reading, problem-solving, figuring out the best wording for a sentence, finding a bug in a computer
program, and so forth. One approach is to bypass the analysis of a complex process by simply
representing it with a "dummy" or "placeholder" operator, such as the Think_of operator in GOMSL (see
below). In this way the analyst documents the presence of the process, and can consider what influence it
might have on the user's performance with a design. A more flexible approach is the "yellow pad"
heuristic: suppose the user has already done the complex processing and has written the results down on a
yellow note pad and simply refers to them along with the rest of the information about the task instance.

For example, in MacWrite, the user may use tabs to control the layout of a table. How does the user
know, or figure out, where to put them? The analyst might assume that the difficulties of doing this have
nothing to do with the design of MacWrite (which may or not be true). The analyst can bypass the process
of how the user figures out tab locations by assuming that user has figured them out already, and includes
the tab settings as part of the task instance description supplied to the methods. (cf. the discussion in
Bennett, Lorch, Kieras, & Polson, 1987). The analyst uses the GOMSL Get_task_item operator to
represent when this information is accessed.

As a second example, consider a word-processor user who is making changes in a document from a
marked-up hardcopy. How does the user know that a particular scribble on the paper means "delete this
word?" The analyst can bypass this problem by putting in the task description the information that the
goal is to Delete and that the target text is at such-and-such a location (see example task descriptions
below), and then using the Get_task_item operator to access the task information. The methods will
invoke this operator at the places where the user is assumed to have to look at the document to find out
what to do. This way, the contents of the task description show the results of the complex reading process
that was bypassed, and the places in the methods where the operator appears mark where the user is
engaging in the complex reading process.

The analyst should only bypass processes for which a full analysis would be irrelevant to the design.
But sometimes the complexity of the bypassed process is related to the design. For example, a text editor
user must be able to read the paper marked-up form of a document, regardless of the design of the text
editor, meaning that the reading process can be bypassed because it does not need to be analyzed in order
to choose between two different text editor designs. On the other hand, the POET editor (see Card,
Moran, & Newell, 1983) requires heavy use of find-strings which the user has to devise as needed. This
process can still be bypassed, and the actual find strings specified in the task description. But suppose we
are comparing POET to an editor that does not require such heavy use of find strings. Any conclusions
about the difficulty of POET compared to the other editor will depend critically how hard it is to think up
good find-strings. In this case, bypassing a process might produce seriously misleading results.

Generative Models, Rather than Models of Specific Task Instances

Often, user interface designers will work with task scenarios, which are essentially descriptions in

7

ordinary language of task instances and what the user would do in each one. The list of specific actions
that the user would perform for a specific task can be called a trace, analogous to the specific sequence of
results one obtains when "tracing" a computer program. Assembling a set of scenarios and traces is often
useful as an informal way of characterizing a proposed user interface and its impact on the user.

If one has collected a set of task scenarios and traces, the natural temptation is to construct a description
of the user's methods for executing these specific task instances. This temptation must be resisted; the
goal of GOMS analysis is a description of the general methods for accomplishing a set of tasks, not just
the method for executing a specific instance of a task.

If the analyst falls into the trap of writing methods for specific task instances, the resulting methods will
probably be "flat," containing little in the way of method and submethod hierarchies, and also may
contain only the specific Keystroke-Level operations appearing in the trace. E.g., if the task scenario is
that the user deletes the file FOOBAR, such a method will generate the keystroke sequence of "DELETE
FOOBAR <CR>." But the fatal problem is that a tiny change in the task instance, such as a different file
name, means that the method will not work. This corresponds to a user who has memorized by rote how
to do an exact task, but who can't execute variations of the task.

On the other hand, a set of general methods will have the property that the information in a specific task
instance acts like "parameters" for a general program, and the general methods will thus generate the
specific actions required to carry out that task instance. Any task instance of the general type will be
successfully executed by the general method. For example, a general method for deleting the file
specified by <filename> will generate the keystroke sequence of "DELETE " followed by the string
designated <filename> by followed by <CR>. This corresponds to a user who knows how to use the
system in the general way normally intended. Such GOMS models are generative - rather than being
limited to specific snippets of behavior, they can generate all possible traces from a single set of methods.
This is a critical advantage of GOMS models and other cognitive-architecture models (for more
discussion, see John & Kieras, 1996b; Kieras, in press; Kieras, Wood, & Meyer, 1997).

So, if the analyst has a collection of task scenarios or traces, he or she should study them to discover the
range of things that the user has to do. They should then be set aside and a generative GOMS model
written that contains a set of general methods that can correctly perform any specific task within the
classes defined by the methods (e.g., delete any file whose name is specified in the task description). The
methods can be checked to ensure that they will generate the correct trace for each task scenario, but they
should also work for any scenario of the same type.

When Can a GOMS Analysis be Done?

After Implementation - Existing Systems

Constructing a GOMS model for a system that already exists is the easiest case for the analyst because
much of the information needed for the GOMS analysis can be obtained from the system itself, its
documentation, its designers, and the present users. The user's goals can be determined by considering the
actual and intended use of the system; the methods are determined by what actual steps have to be carried
out. The analyst's main problem will be to determine whether what users actually do is what the designers
intended them to do, and then go on to decide what the users' actual goals and methods are. For example,
the documentation for a sophisticated document preparation system gave no clue to the fact that most
users dealt with the complex control language by keeping "template" files on hand which they just
modified as needed for specific documents. Likewise, this mode of use was apparently not intended by
the designers. So the first task for the analyst is to determine how an existing system is actually used in
terms of the goals that actual users are trying to accomplish. Talking to, and observing, users can help the
analyst with these basic decisions (but remember the pitfalls discussed above).

Since in this case the system exists, it is possible to collect data on the user's learning and performance

8

with the system, so using a GOMS model to predict this data would only be of interest if the analyst
wanted to verify that the model was accurate, perhaps in conjunction with evaluating the effect of
proposed changes to the system. However, notice that collecting systematic learning and performance
data for a complex piece of software can be an extremely expensive undertaking; if one is confident of the
model, it could be used as a substitute for empirical data in activities such as comparing two competing
existing products.

After Design Specification - Evaluation During Development

There is no need for the system to be already implemented or in use for a GOMS analysis to be carried
out. It is only necessary that the analyst can specify the components of the GOMS model. If the design
has been specified in adequate detail, then the analyst can identify the intended user's goals and describe
the corresponding methods just as in the case of an existing system.

Of course, the analyst can not get the user's perspective since there are as yet no users to talk to.
However, the analyst can talk to the designers to determine the designer's intentions and assumptions
about the user's goals and methods, and then construct the corresponding GOMS model as a way to make
these assumptions explicit and to explore their implications. Predictions can then be made of learning and
performance characteristics, and then used to help correct and revise the design. The analyst thus plays
the role of the future user's advocate, by systematically assessing how the design will affect future users.
Since the analysis can be done before the system is implemented, it should be possible to identify and put
into place an improved design without wasting coding effort.

However, the analyst can often be in a difficult position. Even fairly detailed design specifications often
omit many specific details that directly affect the methods that users will have to learn. For example, the
design specifications for a system may define the general pattern of interaction by specifying pop-up
menus, but not the specific menu choices available, or which choices users will have to make to
accomplish actual tasks. Often these detailed design decisions are left up to whoever happens to write the
relevant code. The analyst may not be able to provide many predictions until the design is more fully
fleshed out, and may have to urge the designers to do more complete specification than they normally
would.

During Design - GOMS Analysis Guiding the Design

Rather than analyze an existing or specified design, the interface could be designed concurrently with
describing the GOMS model. That is, by starting with listing the user's top-level goals, then defining the
top-level methods for these goals, and then going on to the subgoals and submethods, one is in a position
to make decisions about the design of the user interface directly in the context of what the impact is on the
user. For example, bad design choices may be immediately revealed as spawning inconsistent, complex
methods, leading the designer quickly into considering better alternatives. See Kieras (1997b) for more
discussion of this approach. Clearly, the designer and analyst must closely cooperate, or be the same
person.

Perhaps counter to intuition, there is little difference in the approach to GOMS analysis between doing
it during the design process and doing it after. Doing the analysis during the design means that the analyst
and designer are making design decisions about what the goals and methods should be, and then
immediately describing them in the GOMS model. Doing the analysis after the system is designed means
that the analyst is trying to determine the design decisions that were made sometime in the past, and then
describing them in a GOMS model. For example, instead of determining and describing how the user
does a cut-and-paste with an existing text editor, the designer-analyst decides and describes how the user
will do it. It seems clear that the reliability of the analysis would be better if it is done during the design
process, but the overall logic is the same in both cases.

9

GOMSL: A Notation for GOMS Models

This section presents the GOMSL (GOMS Language) notation system which is a computer-executable
version of the earlier NGOMSL (Kieras, 1988, 1997a). GOMSL is an attempt to define a language that
will allow GOMS models to be executed with a computer-based tool, but at the same time be easy to read.
An analyst can use GOMSL in an informal fashion; if performance predictions are needed, he or she can
compute the results by hand, or alternatively, tighten up the GOMSL and then use a computational tool
such as GLEAN3 to run the model or generate performance predictions.

GOMSL is not supposed to be an ordinary programming language for computers, but rather to have
properties that are directly related to the underlying production rule models described by Kieras, Bovair,
and Polson (Kieras & Polson, 1985; Polson, 1987; Kieras & Bovair, 1986; Bovair, Kieras, & Polson,
1990). So GOMSL is supposed to represent something like "the programming language of the mind," as
absurd as this sounds. The idea is that GOMSL programs have properties that are related in
straightforward ways to both data on human performance and theoretical ideas in cognitive psychology. If
GOMSL is clumsy and limited as a computer language, it is because humans have a different architecture
than computers. Thus, for example, GOMSL does not allow complicated conditional statements, because
there is good reason to believe that humans cannot process complex conditionals in a single cognitive
step. If it is hard for people to do, then it should be reflected in a long and complicated GOMSL program.
In this document, GOMSL expressions are shown in this typeface.

Task Data

Object-Property-Value Representation

The basic data representation in GOMSL consists of objects with properties and values. Each object has
a symbolic name and a list of properties, each of which has an associated value. The object name,
property, and value are symbols. This representation is used in several places: For example, long-term
memory is represented as a collection of objects, or items, each of which has a symbolic name and a set of
property-value pairs. For example, the fact that "plumber" is a skilled trade and has high income might be
represented as follows:

LTM_Item: Plumber.
Kind is skilled_trade.
Income is high.

In this example, "Plumber" is an object in LTM that has a "Kind" property whose value is
"skilled_trade" and an "Income" property whose value is "high."

Another example is declarative knowledge of an interface as a collection of facts about the Cut
command in a typical text editor:

LTM_Item: Cut_Command.
Containing_Menu is Edit.
Menu_Item_Label is Cut
Accelerator_Key is Command-X.

The "cut" command is described as an object whose properties and values specify which menu it is
contained in, the actual label used for it in the menu, and the corresponding accelerator (short-cut) key.
Likewise, a task instance is described as a collection of objects each of which has properties and values.
There are operators for accessing or retrieving visual objects, task or long-term memory items, and then
accessing their individual properties and values.

Working Memory

10

Working memory in GOMSL consists of two kinds of information: one is a tag store (Kieras, Meyer,
Mueller, & Seymour, 1999), which represents an elementary form of working memory. The other kind is
the object store which holds information about an object that has been brought into "focus", that is, placed
in working memory and whose property values are thus immediately available in the form of a property-
of-object construction.

The working memory tag store consists of a collection of symbolic values stored under a symbolic
name or tag. Tags are expressed as identifiers enclosed in angle brackets. In many cases, the use of tags
corresponds to traditional concepts of verbal working memory; syntactically, they roughly resemble
variables in a traditional programming language. At execution time, if a tag appears in an operator
argument, it is replaced with the value currently stored under the tag. An elementary example:

Step 1. Store "foo.txt" under <filename>.
Step 2. Type_in <filename>.

In Step 1, the Store operator is used to place the string "foo.txt" into working memory under the tag
<filename>. In Step 2, before the Type_in operator is executed, the value stored under the tag is retrieved
from working memory, and this becomes the parameter for the operator. So Step 2 results in the simulated
human typing the string "foo.txt".

The object stores correspond to working memory for visual input, task information, and long-term
memory retrievals. All three of these have the common feature that gaining access to an object or item
will be time consuming, but once it has been located or retrieved, further details of the object or the item
can then be immediately used by specifying the desired property of the object with a property of object
construction. So the operation of bringing an object or item into focus is time-consuming, but then all of
its properties are available in working memory. But if the "focus" is changed to a different object or item,
the information is no longer available, and a time-consuming operation is required to bring it back into
focus. This mechanism represents in a simple way the performance constraints involved in many forms of
working memory and visual attention. This analysis is a simplification of the very complex ways in which
working memory information is accessed and stored during a task (see Kieras, Meyer, Mueller, &
Seymour, 1999, for more discussion).

Goals

A goal is something that the user tries to accomplish. The analyst attempts to identify and represent the
goals that typical users will have. A set of goals usually will have a hierarchical arrangement in which
accomplishing a goal may require first accomplishing one or more subgoals.

A goal description is a pair of identifiers, which by convention are chosen to be an action-object pair in
the form: verb noun, such as delete word, or move-by-find-function cursor. Either the noun or the verb
can be complicated if necessary to distinguish between methods (see below on selection rules). Any
parameters involved that modify or specify a goal, such as where a to-be-deleted word is located, are
represented in the task description, and made available when the method is invoked (see below).

Operators

Operators are actions that the user executes. There is an important difference between goals and
operators. Both take an action-object form, such as the goal of revise document and the operator of
Keystroke ENTER. But in a GOMS model, a goal is something to be accomplished, while an operator is
just executed. This distinction is intuitively-based, and is also relative; it depends on the level of analysis
chosen by the analyst (John & Kieras, 1996b). The procedure presented below for constructing a GOMS
model is based on the idea of first describing methods using very high-level operators, and then replacing
these operators with methods that accomplish the corresponding goal by executing a series of lower-level
operators. This process is repeated until the operators are all primitive operators that will not be further

11

analyzed.

As explained in more detail later, based on the underlying production system model for human
cognition, each step in a GOMS model takes a certain time to execute, estimated at 50 ms. Most of the
built-in mental operators are all executed during this fixed step execution time, and so are termed
intrastep operators. However, substantially longer execution times are required for external operators,
such as pointing to the target with a mouse, or certain built-in mental operators such as searching long-
term memory. Thus, these are interstep operators because their execution time occurs between the steps,
and so governs when the next step is started.

External Operators

External operators are the observable actions through which the user exchanges information with the
system or other humans. These include perceptual operators, which read text from a screen, scan the
screen to locate the cursor, or input a piece of speech, and motor operators, such as pressing a key, or
speaking a phrase. The analyst usually chooses the external operators depending on the system or tasks,
such as whether there is there a mouse on the machine.

Listed below are the primitive motor and perceptual operators whose definitions and execution times
are based on the physical and mental operators used in the Keystroke-Level Model(Card, Moran, &
Newell, 1983; John & Kieras, 1996a, b). These are all interstep operators. Based on the simplifying logic
in the Keystroke-Level Model, operators for complex mental activities are assumed to take a constant
amount of time, approximated with the value of 1200 ms, based on results in Olson & Olson (1990). Each
operator keyword in the list below is shown in this typeface; parameters for operators are shown in
this typeface. Unless otherwise stated, an operator parameter can be either a symbol, a tag, or a property
of object construction. An identifier enclosed in angle-brackets, as in <tag>, is a tag name parameter. A
description of the operator and its execution time for each operator is given.

Keystroke key_name
Strike a key on a keyboard. If the keyname is a string, only the first character is used. Execution time
is 280 ms.

Type_in string_of_characters
Do a series of Keystrokes, one for each character in the supplied string. Execution time is 280
ms/character.

Click mouse_button
The designated mouse button is pressed and released. Execution time is 200 ms.

Double_click mouse_button
Two Clicks are executed. Execution time is 400 ms.

Hold_down mouse button
Press and continue to press the mouse button. Execution time is 100 ms.

Release mouse_button
Release the mouse button. Execution time is 100 ms.

Point_to target_object
The mouse cursor is moved to the target object on the screen. Execution time is determined by the
Welford form of Fitts' Law with a minimum of 100 ms if object location and sizes are specified; it is
1100 ms if not.

Home_to destination

12

Move the right hand to the destination. The initial location of the right and left hands is the keyboard.
Possible destinations are keyboard and mouse. Execution time is 400 ms. All of the manual operators
automatically execute a Home_to operator if necessary to simulate the hand being moved between
the mouse and keyboard.

Look_for_object_whose property is value, ... and_store_under <tag>
This mental operator searches visual working memory, (essentially the visual space) for an object
whose specified properties have the specified values, and stores its symbolic name in working
memory under the label <tag> where it is now in focus. If no object matching the specification is
present, the result is the symbol absent, which may be tested for subsequently. Time required is 1200
ms, after which additional information about the object is available immediately. Putting a different
object in focus will result in the previous object's properties being no longer available. If the visual
object disappears (e.g. it is taken off of the display screen), then it will be removed from visual
working memory, and the object information is no longer available. Static visual objects and their
properties can be defined as part of the GOMS model.

Get_task_item_whose property is value, ... and_store_under <tag>
This mental operator is used to represent that the user has a source of information available
containing the specifics of the tasks to be executed, but the analyst does not wish to specify this
source, but is assuming that it requires mental activity to produce the required task information. For
example, the user could be "thinking up" the tasks as he or she works, recalling it from memory, or
reading the task information from a marked-up manuscript or a set of notes (see the "yellow pad"
heuristic below). The task information would be specified in a set of Task-items, presented below,
that together define a collection of objects and properties, the task description. This operator searches
the task description for a task item object whose specified properties have the specified values, and
stores its symbolic name in working memory under the label <tag>. It is now in focus, and additional
properties are now available. Time required is 1200 ms. Putting a different task item in focus will
result in the previous item's properties being no longer available. If the specified object is not found in
the task description, then the resulting symbol is absent, and this value can be subsequently tested
for.

Mental operators

 Mental operators are the internal actions performed by the user; they are non-observed and
hypothetical, inferred by the theorist or analyst. In the notation system presented here, some mental
operators are "built in;" these are primitive operators that correspond to the basic mechanisms of the
cognitive processor, the cognitive architecture. These are based on the production rule models described
by Bovair, Kieras, and Polson 1990). These operators include actions like making a basic decision,
storing an item in Working Memory (WM), retrieving information from Long-Term Memory (LTM),
determining details of the next task to be performed, or setting up a goal to be accomplished.

Other mental operators are defined by the analyst to represent complex mental activities (see below),
normally as a placeholder for a complex activity that cannot be analyzed further. A common such analyst-
defined mental operator is verifying that a typed-in command is correct before hitting the ENTER key;
another example would be a stand-in for an activity that will not be analyzed, such as LOG-INTO-SYSTEM.

Below is a brief description of the GOMSL primitive mental operators.These are all intrastep operators.

Flow of control. Only one flow of control operator can appear in a step. A submethod is invoked by
asserting that its goal should be accomplished:

Accomplish_goal: goal

13

AG: goal (abbreviation)
Accomplish_goal: goal using pseudoargument tag list

This is analogous to an ordinary CALL statement; control passes to the method for the goal, and returns
here when the goal has been accomplished. The pseudoargument tag list is described in a later section
below. The operator:

Return_with_goal_accomplished
RGA (abbreviation)

 is analogous to an ordinary RETURN statement. A method normally must contain at least one of these.

There is a branching operator:

Goto step_label

As in structured programming, a Goto is used sparingly; normally it used only with Decide operators to
implement loops or complicated branching structures.

A decision is represented by a step containing a Decide operator; a step may contain only one Decide
operator and no other operators. The Decide operator contains one or more IF-THEN conditionals and at
most one ELSE form. The conditionals are separated by semicolons:

Decide: conditional
Decide: conditional; conditional; ... else-form

The IF part of a conditional can have one or more predicates. The THEN part or an else-form has one or
more operators:

If predicates Then operators
Else operators

The predicates consist of one or more predicates, separated by commas or comma-and. If all of the
predicates are true, then the operators are executed, and no further conditionals are evaluated. An else-
form may appear only at the end; its operators are executed only if all of the preceding IF conditions have
all failed to be satisfied. Normally, Decide operators are written so that the if-else combinations are
mutually exclusive. Note that nesting of conditionals is not allowed. Here are three examples of Decide
operators:

Step 3. Decide: If <id_letter> is "A" Then Goto 4.

Step 8. Decide:
If appearance of <current_thing> is "super duper", and

size of <current_person> is large,
 Then Type_in string of <current_task>;
If appearance of <current_thing thing> is absent, Then RGA;
Else Goto 2.

Step 5. Decide:
If <button_label> is ACCEPT Then Keystroke K1;
If <button_label> is REJECT, Then Keystroke K2;
Else Keystroke K3.

If there are multiple IF-THEN conditionals, as in the second and third example above, the conditions
must be mutually exclusive, so that only one condition can match, and the order in which the If-Thens are
listed is supposed to be irrelevant. However, the conditionals are evaluated in order, and evaluation stops
at the first conditional whose condition is true.

The Decide operator is used for making a simple decision that governs the flow of control within a

14

method. It is not supposed to be used to implement GOMS selection rules, which have their own
construct (see below). The IF clause typically contains predicates that test some state of the environment
or contents of WM. Notice that the complexity of a Decide operator is strictly limited; only one simple
Else clause is allowed, and multiple conditionals must be mutually exclusive and independent of order.
More complex conditional situations must be handled by separate decision-making methods that have
multiple steps, decisions, and branching.

The following predicates are currently defined:

is is_equal_to (synonyms)
is_not is_not_equal_to (synonyms)
is_greater_than
is_greater_than_or_equal_to
is_less_than
is_less_than_or_equal_to

These predicates are valid for either numeric or symbol values. If the compared values are both
numeric, then a comparison between the numeric values is performed. Otherwise both values are treated
as symbolic, and the character string representations of the two are compared in lexicographic order - if
necessary, a number is converted to a standard string representation for this purpose.

Memory storage and retrieval. The memory operators reflect the distinction between long-term
memory (LTM) and working memory (WM) (often termed short-term memory) as they are typically used
in computer operation tasks. WM contents are normally stored and retrieved using their tags, the
symbolic name for the value being stored in working memory. These tags are used in a way that is
somewhat analogous to variables in a conventional programming language.

Store value under <tag>
The value is stored in working memory under the label <tag>.

Delete <tag>
The value stored under the label <tag> is deleted from working memory.

Recall_LTM_item_whose property is value, ... and_store_under <tag>
Searches long-term memory for an item whose specified properties have the specified values, and
stores its symbolic name in working memory under the label <tag> where it is now in focus. Time
required is 1200 ms, after which additional information is available immediately. Putting a different
task item in focus will result in the previous item's properties being no longer available.

Consistent with the theoretical concept that working memory is a fast scratchpad sort of system, and
how it is used in the production system models, the execution time for the Store and Delete operators is
bundled into the time to execute the step; thus they are intrastep operators. The Store operator is used to
load a value into working memory. The Delete operator is more frequently used to eliminate working
memory items that are no longer needed. Although this deliberate forgetting might seem counter-intuitive,
it is a real phenomenon; see Bjork (1972). For simplicity, working memory information does not "decay"
and so there is no built-in limit to how much information can be stored in working memory. This reflects
the fact that despite the considerable research on working memory, there is not a theoretical consensus on
what working memory limits apply during the execution of procedural tasks (see Kieras, Meyer, Mueller,
& Seymour, 1999). So rather than set an arbitrary limit on when working memory overload would occur,
the analyst can identify memory overload problems examining how many items are required in WM
during task execution; GLEAN can provide this information.

There is only a recall operator for LTM, because in the tasks typically modeled with GOMS, long-term
learning and forgetting are not involved. The Recall_LTM_item operator is an interstep operator that takes

15

a standard mental operator execution time, but once the information has been placed in focus in WM,
additional information about the item can be used immediately with the x_of_y argument form.

Analyst-Defined Mental Operators. As discussed in some detail below, the analyst will often encounter
psychological processes that are too complex to be practical to represent as methods in the GOMS model
and that often have little to do with the specifics of the system design. The analyst can bypass these
processes by defining operators that act as place holders for the mental activities that will not be further
analyzed. Depending on the specific situation, such operators may correspond to Keystroke-Level Model
Mental operators, and so can be approximated with as standard interstep mental operators that require 1.2
sec. The Verify and Think_of operators are intended for this situation; the analyst simply documents the
assumed mental process in the description argument of the operator.

Verify description
Think_of description
These operators simply introduce a time delay to represent when the user must pause and think of
something about the task; the actual results of this thinking are specified elsewhere, such as the task
description. The description string serves as documentation, nothing more. Each operator requires
1200 ms.

Methods

A method is a sequence of steps that accomplishes a goal. A step in a method typically consists of an
external operator, such a pressing a key, or a set of mental operators involved with setting up and
accomplishing a subgoal. Much of the work in analyzing a user interface consists of specifying the actual
steps that users carry out in order to accomplish goals, so describing the methods is the focus of the
analysis.

The form for a method is as follows:

Method_for_goal: goal
Step 1. operators.
Step 2. operators.
...

Abbreviations and pseudoparameters are allowed:

MFG: goal (abbreviation)
Method_for_goal: goal using pseudoparameter tag list

Steps

More than one operator can appear in a step, and at least one step in a method must contain the operator
Return_with_goal_accomplished. A step starts with the keyword Step, contains an optional label,
followed by a period, and one or more operators separated by semicolons, with a final period:

Step. operator.
Step label. operator.
Step. operator; operator; operator.
Step label. operator; operator; operator.

The label is either a number or an identifier. The labels are ignored by GLEAN except for the Goto
operator, which searches the method from the beginning for the first matching label; this designates the
next step to be executed. Thus the labels do not have to be unique or in order. However, a run-time error
occurs if a Goto operator does not find a matching label. Using numeric labels throughout highlights the

16

step-by-step procedure concept of GOMS methods, but plan on renumbering the steps and altering Gotos
to maintain a neat appearance.

Method Hierarchy

Methods often call sub-methods to accomplish goals that are subgoals. This method hierarchy takes the
following form:

Method_for_goal: goal
Step 1. operators.
Step 2. <operators>
...
Step i. Accomplish_goal: subgoal.
...
Step m. Return_with_goal_accomplished.

Method_for_goal: subgoal
Step 1. operators.
Step 2. <operators>
...
Step j. Accomplish_goal: sub-subgoal.
...
Step n. Return_with_goal_accomplished.
...

Method Pseudoparameters

The simple tagged-value model of working memory results in WM tags being used something like
variables in traditional programming languages, but because there is only one WM system containing
only one set of tagged values, these "variables" are effectively global in scope. This makes it syntactically
difficult to write "library" methods that represent reusable "subroutines" with "parameters." To alleviate
this problem, a method can be called with pseudoarguments in the Accomplish_goal operator and the
corresponding pseudoparameters can be defined for a method or selection rule set. These are
automatically deleted when the method completed. For example:

Step 8. Accomplish_goal: Enter Data using "Name",
and name of <current_person>.

Method_for_goal: Enter Data using <field_name>, and <data>
Step 1. Look_for_object_whose label is <field_name>

and_store_under <field>.
Step 2. Point_to <field>.
Step 3. Click <button>.
Step 4. Type_in <data>.
Step 5. Delete <field>; Return_with_goal_accomplished.

The "pseudo" prefix makes clear that these "variables" do not follow the normal scoping rules used in
actual programming languages - the human does not have a run-time function-call stack for argument
passing.

Selection Rules

The purpose of a selection rule is to route control to the appropriate method to accomplish a goal.
Clearly, if there is more than one method for a goal, then a selection rule is logically required.

There are many possible ways to represent selection rules. In the approach presented here, a selection

17

rule responds to the combination of a general goal and a specific context by setting up a specific goal of
executing one of the methods that will accomplish the general goal. Selection rules are If-Then rules that
are grouped into sets that are governed by a general goal. If the general goal is present, the conditions of
the rules in the set are tested in parallel to choose the specific goal to be accomplished. The relationship
with the underlying production rule models is very direct (see Bovair, Kieras, & Polson, 1990). The form
for a selection rule set is:

Selection_rules_for_goal: general goal
If predicates Then Accomplish_goal: specific goal.
If predicates Then Accomplish_goal: specific goal.
...
Return_with_goal_accomplished.

A common and natural confusion is when a selection rule set should be used and when a Decide
operator should be used. A selection rule set is used exclusively to route control to the suitable method for
a goal, and so can only have Accomplish_goal operators in the Then clause, while a Decide operator
controls flow of control within a method, and can have any type of operator in the Then clause. Thus, if
there is more than one method to accomplish a goal, use that goal as a general goal, and define separate
methods to accomplish the more specific goals; use a selection rule set to dispatch control to the specific
method. To control which operators in what sequence are executed within a method, use a Decide.

Auxiliary Information

In order to execute successfully, the methods in a GOMS model often require additional information;
this information is auxiliary to the step-by-step procedural knowledge represented directly in the GOMS
methods and selection rules, but is logically required for actual tasks to be executed. For example, if the
user is supposed to type in an exact string from memory, this string must be specified somehow.

The syntax for specifying auxiliary information is based on describing object-like entities with
properties and values; these descriptions can appear along with methods and selection rule sets. They
must not be placed inside methods and selection rule sets, but can appear in any order with them and each
other.

Visual Object Description

Visual objects are described outside of any methods as follows:

Visual_object: object_name
property_name is value.
...

For example, a red button labeled "Start" would be described as:

Visual_object: start_button
Type is Button.
Label is Start.
Color is Red.

A step like the following will result in start_button being stored in WM under the tag <button>:
Step. Look_for_visual_object_whose Type is Button, and Label is Start

and_store_under <button>.

Subsequently, the following step will point to the button if its color is red:
Step. Decide: If Color of <button> is Red,

Then Point_to <button>.

18

Note that the names for visual objects are chosen by the analyst. GLEAN3 reserves two property
names, Location and Size, for use by the Visual and Manual processors. All other property names and
values can be chosen by the analyst.

Long-Term Memory Contents

The contents of Long-Term Memory can be specified as a set of concepts (objects) with properties and
values. Note the since the value of a property can be the name of another object, complicated information
structures are possible. The syntax:

LTM_item: LTM_concept
property_name is property_value.
...

...

For example, information about the "Cut" command in a simple text editor could be specified as:

LTM_item: Cut_Command
Name is CUT.
Containing_Menu is Edit.
Menu_Item_Label is Cut.
Accelerator_Key is Command-X.

Task Instances

A task description describes a generic task in terms of the goal to be accomplished, the situation
information required to specify the goal, and the auxiliary information required to accomplish the goal
that might be involved in bypassing descriptions of complex processes (see below). Thus, the task
description is essentially the "parameter list" for the methods that perform the task. A task instance is a
description of a specific task. It consists of specific values for all of the “parameters” in a task description.
A set of task instances can be specified as task item objects whose property values can refer to other
objects to form a linked-list sort of structure. The syntax is similar to the above:

Task_item: task_item_name
property_name is property_value.
...

...

A Procedure for Constructing a GOMS Model

A GOMS analysis of a task follows the familiar top-down decomposition approach. The model is
developed top-down from the most general user goal to more specific subgoals, with primitive operators
finally at the bottom. The methods for the goals at each level are dealt with before going down to a lower
level. The recipe presented here thus follows a top-down, breadth-first expansion of methods.

In overview, start by describing a method for accomplishing a top-level goal in terms of high-level
operators. Then choose one of the high-level operators, replace it with an Accomplish_goal operator for
the corresponding goal, and then write a method for accomplishing that goal in terms of lower-level
operators. Repeat with the other level operators. Then descend a level of analysis, and repeat the process
for the lower-level operators. Continue until the methods have arrived at enough detail to suit the design
needs, or until the methods are expressed in terms of primitive operators. So, as the analysis proceeds,
high-level operators are replaced by goals to be accomplished by methods that involve lower-level
operators.

19

It is important to perform the analysis breadth-first, rather than depth-first. By considering all of the
methods that are at the same level of the hierarchy before getting more specific, similar methods are more
likely to be noticed, which is critical to capturing the procedural consistency of the user interface.

Step 1: Choose the top-level user's goals

The top-level user's goals are the first goals that will be expanded in the top-down decomposition. It is
worthwhile to make the topmost goal, and the first level of subgoals, very high-level to capture any
important relationships within the set of tasks that the system is supposed to address. An example for a
text editor is revise document, while a lower-level one would be delete text. Starting with a set of goals
at too low a level entails a risk of missing the methods involved in going from one type of task to another.

As an example of very high-level goals, consider the goal of produce document in the sense of
”publishing” - getting a document actually distributed to other people. This will involve first creating it,
then revising it, and then getting the final printed version of it. In an environment that includes a mixture
of ordinary and desktop publishing facilities, there may be some important subtasks that have to be done
in going from one to the other of the major tasks, such as taking a document out of an ordinary text editor
and loading it into a page-layout editor, or combining the results of a text and a graphics editor. If only
one of these applications is under design, say the page-layout editor, and the analysis start only with goals
that correspond to page-layout functions, the analysis may miss what the user has to do to integrate the
use of the page-layout editor in the rest of the environment.

As a lower-level example, many Macintosh applications combine deleting and inserting text in an
especially convenient way. The goal of change word has a method of its own; i.e., double click on the
word and then type the new word. If the analysis starts with revise document it is possible to see that one
kind of revision is changing a piece of text to another, and so this especially handy method might well be
noticed in the analysis. But if the analysis starts with goals like insert text and delete text the
decision has already been made about how revisions will be done, and so it is more likely to miss a case
where a natural goal for the user has been well-mapped onto the software directly, instead of going
through the usual functions.

Step 2. Write the Top-Level Method Assuming a Unit-Task Control Structure

Unless there is reason to believe otherwise, assume that the overall task has a unit-task type of control
structure. This means that the user will accomplish the topmost goal (the overall task) by doing a series of
smaller tasks one after the other. The smaller tasks correspond to the set of top-level goals chosen in Step
1. For a system such as a text editor, this means that the topmost goal of edit document will be
accomplished by a unit-task method similar to that described by Card, Moran, and Newell, (1983). One
way to describe this type of method in GOMSL is as follows:

Method_for_goal: Edit Document
Step. Store First under <current_task_name>.
Step Check_for_done.
Decide: If <current_task_name> is None, Then

Delete <current_task>; Delete <current_task_name>;
Return_with_goal_accomplished.

Step. Get_task_item_whose Name is <current_task_name>
and_store_under <current_task>.

Step. Accomplish_goal: Perform Unit_task.
Step. Store Next of <current_task> under <current_task_name>;

Goto Check_for_done.

The goal of performing the unit task typically is accomplished via a selection rule set, which dispatches
control to the appropriate method for the unit task type, such as:

20

Selection_rules_for_goal: Perform Unit_task
If Type of <current_task> is move,
 Then Accomplish_goal: Move Text.
If Type of <current_task> is delete,
 Then Accomplish_goal: Erase Text.
If Type of <current_task> is copy,
 Then Accomplish_goal: Copy Text.
//... etc. ...
Return_with_goal_accomplished.

This type of control structure is common enough that the above method and selection rule set can be
used as a template for getting the GOMS model started. The remaining methods in the analysis will then
consist of the specific methods for these subgoals, similar to those described in the extended example
below.

In this example the task type maps directly to a goal whose name is a near-synonym of the type, but this
is not always the case. A good exercise is to consider the typical VCR, which has at least three modes for
recording a broadcast program; the selection rule for choosing the recording method consists not of tests
for a simple task types like "one button recording", but rather the conditions under which each mode can
or should be applied. For example, if the user is present at the beginning of the program, but will not be
present at the end, and the length of the program is known, then the one-button recording method should
be used.

Step 3. Recursively Expand the Method Hierarchy

This step consists of writing a method for each goal in terms of high-level operators, and then replacing
the high-level operators with another goal/method set, until the analysis has worked down to the finest
grain size desired. First, draft a method to accomplish each of the current goals. Simply list the series of
steps the user has to do. Each step should be a single natural unit of activity; heuristically, this is just an
answer to the question "how would a user describe how to do this?" Make the steps as general and high-
level as possible for the current level of analysis. A heuristic is to consider how a user would describe it in
response to the instruction "don't tell me the details yet." Define new high-level operators, and bypass
complex psychological processes as needed. Make a note of the analyst-defined operators and task
description information as it is developed. Make simplifying assumptions as needed, such as deferring the
consideration of possible shortcuts that experienced users might use. Make a note of these assumptions in
comments in the method.

If there is more than one method for accomplishing the goal, draft each method and then draft the
selection rule set for the goal. A recommendation: defer consideration of minor alternative methods until
later; especially for alternative "shortcut" methods.

After drafting all of the methods at the current level, examine them one at time. If all of the operators in
a method are primitives, then this is the final level of analysis of the method, and nothing further needs to
be done with this method. If some of the operators are high-level, non-primitive operators, examine each
one and decide whether to provide a method for performing it. The basis for the decision is whether
additional detail is needed for design purposes. For example, early in the design of a specialized text-entry
device, it might not be decided whether the system will have a mouse or cursor keys. Thus it will not be
possible to describe cursor movement and object selection below the level of high-level operators. In
general, it is a good idea to expand as many high-level operators as possible into primitives at the level of
keystrokes, because many important design problems, such as a lack of consistent methods, will show up
mainly at this level of detail. Also, the time estimates are clearest and most meaningful at this level. For
each operator to be expanded, rewrite that step in the method (and in all other methods using the operator)
to replace the operator with an Accomplish_goal operator for the corresponding goal.

21

For example, suppose the current method for copying selected text is:

Method_for_goal: Copy Selection
Step 1. Select Text.
Step 2. Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

To descend a level of analysis for the Step 1 operator Select Text, rewrite the method as:

Method_for_goal: Copy Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

Then provide a method for the goal of selecting the text. This process should be repeated until all of the
methods consist only of operators that are either primitive operators, or higher-level operators that will
not be expanded.

Step 4. Document and Check the Analysis

After the methods and auxiliary information has been written out to produce the complete GOMSL
model, list the any analyst-defined operators used, along with a brief description of each one, and the
assumptions and judgment calls made during the analysis. Then, choose some representative task
instances, and check on the accuracy of the model either by hand or with the GLEAN tool, to verify that
the methods generate the correct sequence of overt actions, and correct and recheck if necessary.

Examine the judgment calls and assumptions made during the analysis to determine whether the
conclusions about design quality and the performance estimates would change radically if the judgments
or assumptions were made differently. This sensitivity analysis will be very important if two designs are
being compared that involved different judgments or assumptions; less important if these were the same
in the two designs. It may be desirable to develop alternate GOMS models to capture the effects of
different judgment calls to systematically evaluate whether they have important impacts on the design.

Example in the Appendix

The Appendix contains a complete example GOMS model and a summary of how it was constructed
with the above procedure. A more complete description of the construction procedure can be found in
Kieras (1988, 1997a, 1999).

Conclusion and New Directions

GOMS was originally intended as an analytic approach to evaluating a user interface: a way to obtain
some usability information early enough in the design process to avoid the expense of prototype
development and user testing (see John & Kieras, 1996a,b; Kieras, in press). However, as GOMS was
developed, it incorporated some of the developing ideas about computational modeling of human
cognition and performance, and has thus become a framework for constructing computer simulations of
the subset of human activity that is especially relevant to much of user interface design. Thus, as
presented here, GOMS can be defined as a task-analytic notation for procedural knowledge that (1) has a
syntax and semantics similar to a traditional programming language; (2) assumes a simplified cognitive
architecture based on the scientific literature that can be implemented as a computer simulation; (3) can
be executed in a simulation to yield a simulated human that can interact with an actual or simulated
device; (4) the static and run-time properties of the resulting simulation model predict aspects of usability

22

such as time to learn or task execution time.

The advantage of GOMS modeling of human activity over the several alternatives (see Kieras, in press)
is its relative simplicity and conceptual familiarity to software designers and developers. The key part of
such simulations is, of course, the representation of how the simulated human understands the task
structure and the requirements; GOMS models provide a convenient and relatively intelligible way to
describe the procedural aspects of tasks. The fact that these task-analytic models have both a direct
scientific tie to human psychology and also can be used in running computer simulations means that the
GOMS task-analytic notation has well-grounded claims to rigor and utility beyond more informal
approaches. Of course, formality has a price: constructing a formal representation is always more work
than an informal one. However, GOMS models can be "sketched" in an informal manner that preserves
the intuitive concepts of how the task is done, and these informal models can then be tightened up if
necessary. Thus there would appear to be no disadvantages to using GOMS for representing procedural
tasks: the level of formality of the notation can be adjusted to the requirements of the analysis situation.

Although GOMS as it currently stands is a useful and practical approach, it is by no means "finished."
There are many unresolved issues and new directions to explore within the general approach that GOMS
represents, and the specifics of GOMS as presented in this chapter. The remainder of this concluding
discussion will deal with three topics undergoing development in GOMS; these are human error;
interruptions, and modeling of teams.

Modeling Error Behavior

The GOMS models originally presented in Card, Moran, and Newell (1983) and subsequently dealt
only with error-free behavior, although Card et al (1983, p. 184ff) did sketch out what would be required
to apply GOMS to errors. Historically, it has been a daunting problem to model human error and how to
deal with it in design more precisely and specifically than the usual high-level general advice. However,
as presented at length in Wood (2000), if attention is restricted to errors in procedural tasks, and GOMS is
used to represent procedural knowledge, substantial progress can be made. That is, a remarkable thing
about the extant theoretical work on human error is that it does not have at its core a well-worked out and
useful theory of normal, or error-free, behavior in procedural tasks; it is hard to see how one could
account for errors unless one can also account for correct performance! GOMS, in the architectural sense
presented here, is such a theory of correct performance, and thus provides good starting point for usefully
representing human error behavior.

Wood (2000) follows up on this insight and the original Card et al. proposal in three general ways:
First, once the human detects an error, recovering from it becomes simply another goal; a well-designed
system will have simple, efficient, and consistent methods for recovering from errors. Thus the error-
recovery support provided by a user interface can be designed and evaluated with GOMS just like the
"normal" methods supported by the interface. Second, the way in which an error recovery method should
be invoked turns out to be a difficult notational problem, and has a direct analogy to how error handling is
done in computer programming. The modern solution for computer programming is exceptions, which
provide an alternate flow of control to be used just for error handling, leaving the main body of the code
uncluttered to represent only the normal activity of the program. Wood suggests that a similar approach
would be the desirable extension to GOMS models: when an error is detected, an exception-like
mechanism invokes the appropriate error-recovery method and then allows the original method to resume.
However, exception handling is subtle even in computer programming, and humans may or may not work
in the same way; more theoretical and empirical work is needed. Third, the ways in which humans detect
that they have committed an error is currently rather mysterious, and we lack a good theoretical proposal
that could be used easily in design situations. To finesse this problem, Wood (1999, 2000) proposed using
a set of heuristics for examining a GOMS model and identifying what type of error was likely to occur at
each method step, when the error would become visible, and what method the user would have to use to
recover from it. This information in turn suggests how one might modify the interface to reduce the

23

likelihood of the error or make it easier to detect and recover from it. For example, suppose the GOMS
model includes a mental operation to compute a value from two numbers on the screen that is
subsequently used in a decide operator that invokes one of two submethods to complete a task. A possible
error is to miscompute the value, but the error might not be manifested until the decide operator had taken
the user through a series of other steps to the wrong display, for which no further steps could be executed.
Such an interface, with its error-prone requirements and delayed-detection properties, might compound its
poor design by forcing the user to start from the beginning to correct the error. The interface could be
redesigned to make the computation unnecessary if possible, make an error obvious sooner, or provide an
efficient recovery procedure. Wood (2000) demonstrated the value of this heuristic analysis for error-
tolerant design using a realistic e-commerce application.

Interruptions

The normal flow of control in a GOMS model as presented here is the hierarchical-sequential flow of
control used in traditional programming languages: a method executes steps in sequence; if a step invokes
a submethod, the steps in that submethod are executed in sequence until the submethod is complete,
whereupon the next step in the calling method is executed in sequence. This simple control regime is why
GOMS models are relatively easy to construct compared to other cognitive modeling approaches (see
Kieras, in press). However, in realistic situations, humans often have to respond to interrupts of various
kinds; an everyday example is responding to a telephone call, then resuming work after handling the call.
Trying to account for interruptability within the confines of hierarchical-sequential flow of control is
technically possible, but it is also clumsy and counter-intuitive: statements that check for interrupting
events must be distributed liberally into the normal flow of processing. Computer technology rejected
such an approach many decades ago with the introduction of specialized hardware in which an
interrupting signal automatically forces the computer to suspend execution of whatever it is doing and
start executing interrupt-handling code instead; once the interruption is dealt this, the interrupted process
can be resumed.

GOMS models for many computer applications do not seem to require such interrupt processing
because (1) the analyzed task is limited to the human interacting with the computer; other devices, such as
the telephone, are not included; and (2) the activity with the computer is all user-initiated; the computer
responds only to the user's activity, and in such a way that the user always waits for the computer to finish
its response before continuing. The typical text-editor task fits this description, along with many ordinary
computer-usage situations. However, in other tasks, the machine can present events that are asynchronous
with the user's activity, and the task requirements can be such that the user must respond to these
asynchronous events promptly, or at least not ignore them. An example of such a task situation appears in
the military task modeled by Santoro, Kieras, and Campbell (2000). Here the user is supposed to monitor
a radar display showing the movements of aircraft in the vicinity of a warship and perform various tasks
in response to what the aircraft do. For example, if an aircraft exhibits suspicious behavior, the user is
supposed to establish radio contact with the aircraft and ask for identification and clarification. Such
activity can take several minutes to complete; but in the meantime, other events must be noted, even if no
overt activity is performed in response. For example, another aircraft could suddenly appear on the
display, and the user must note that it should be given priority for inspection and decision-making once
the current activity is done. In analogy with computer programming, such checking could be done with
many statements throughout the GOMS methods, but both practicality and intuition requires some kind of
interrupt mechanism analogous to those used in computers. Some of the production-rule cognitive
architectures (see Byrne, in press) provide a natural approach: GOMS can be extended to include a set of
If-Then statements whose conditions are evaluated whenever the relevant psychological state of the user
changes; these rules specify what goal to accomplish if a specific interrupting condition is present. Thus
for the radar operator's task, one interrupt rule was that if a new "blip" with a red color-code appears on
the display, add it to a list of high-priority blips. As part of its process for choosing the next task, the top-
level method in the model checks this list and activates a goal based on what it finds there.

24

The interrupt-rule concept provides a natural mechanism for giving a GOMS model the ability to
respond to asynchronous events while preserving the simplicity of the hierachical-sequential control
structure for the bulk of the task. It also provides a potential way to represent error detection; an interrupt
rule could be checking for evidence of an error, and then invoke the appropriate error-handling method.
Working out the details of such an approach is a matter for future research. But in the meantime, it
appears that GOMS models can successfully combine a simple program-like representation with an
intuitive form of interruptability.

Modeling teams of users

Many design situations involve teams of humans that cooperate to perform a complex task. Doing more
than simply acknowledging the possible incredible complexity of human interactions involved in a team
is well beyond the scope of this chapter. However, there is a subset of team activity that can be
encompassed with GOMS modeling: the case where the team is following a procedure consisting of
specified interactions between the team members, each of whom is likewise following a set of specified
procedures. Such situations are common in many military team situations, such as the combat information
center teams analyzed by Santoro and Kieras (2001). For example, each human in the team sits at a
workstation that incorporates a radar display, and has certain assigned tasks, such as making the radio
contacts described above. The team members are supposed to communicate with each other, using speech
over an intercom, to coordinate their activity, such as ensuring that high-priority blips get examined. In
this case, a model for the team can be constructed simply as a team of models: Each team member's taks
is represented by a GOMS model; part of the member's task is to speak certain messages to other team
members, and respond to certain messages from other team members. The structure of the team
procedures determines which messages are produced by what member, and how another member is
supposed to respond to them. The interrupt capability described above is especially useful because it
simplifies handling of asynchronous speech input. Once the individual GOMS models have been
developed, the activity of a team can be simulated simply by running the whole set of interacting
individual models simultaneously. The simulation can then show whether the team procedures result in
good performance by the team as a whole. Thus the rigor and strengths of GOMS modeling and task
analysis can be extended from the domain of individual user interfaces to the domain of team structure
and team procedures.

25

Appendix: An Example

Below is shown a complete example GOMS model for a simplified subset of the MacWrite text editor
that describes how to move, delete, or copy text selections. The model contains methods that start at the
topmost level and finish at the keystroke level, along with the necessary auxiliary information for the
methods to be executed (by hand or by GLEAN), and a set of four benchmark tasks to be performed. The
GOMSL starts with the auxiliary information for a set of tasks, visual items, and items assumed to be in
LTM. The methods themselves start with the Top-Level Unit Task method. One should be able to get at
least of rough idea of the methods simply by reading them, even without detailed knowledge of the syntax
of GOMSL; this is one of the goals of the NGOMSL and GOMSL notations.

The process of constructing the model will be summarized. A more complete step-by-step construction
of a similar example can be found in Kieras (1988, 1997a, 1999). Due to the top-down expansion of
methods, the methods were constructed in roughly the same order as they appear in the example. The
construction started with the topmost user's goal of editing the document. Taking the above
recommendation, the first piece of the model is simply a version of the unit-task method and the selection
rule set that dispatches control to the appropriate method. This assumes an ad-hoc task representation that
was refined as the construction continued.

The unit task method and its selection rule specify a set of second-level user goals. This example
focusses on the methods for the goal of moving text. A first judgment call was that users view moving
text as first cutting, then pasting. The method for this goal was written accordingly, initially with two high
level operators: Cut Selection, then Paste Selection, followed by a Verify that the cut and paste has
been done correctly.

Descending a level, the high-level operators were then rewritten into Accomplish_goal operators and
methods for cutting and pasting selected text were provided. Another judgment call is that users are aware
of the general-purpose idea of text selection, so the method for cutting a selection starts not with
keystroke-level actions for selecting text that would be specific to the cutting goal, but rather with another
high-level operator for selecting text which then was rewritten into an Accomplish_goal operator. Since
there are a variety of ways to select text, a selection rule specifies three different specific contexts in
which text selection is needed. It thus maps the general goal of selecting text to three different specific
goals, each of which has its own method. The paste method similarly has a subgoal of selecting the
insertion point, but there is only one way to do it, and so only a single method was provided. Notice how
this set of judgements effectively state that the user has some general-purpose "subroutines" for cutting,
pasting, selecting text, and selecting an insertion point. Expressing this conclusion as goals and methods
asserts some key properties of the interface (e.g. selection can be done in the same way for all relevant
tasks in the text-editing application) and that the user makes use of them, or should make use of them.

Descending another level, note that the cutting and pasting methods involve picking a command from a
menu (for simplicity, assume that users do not make use of the command-key shortcuts). An important
property of well-designed menu systems is that the procedure for picking a command is uniform across
the menu system. Thus, the operators of Invoke_cut_command and Invoke_paste_command were replaced
with a single Issue Command method that is given the "name" or "concept" of the desired command as a
pseudoargument and makes the proper menu accesses. Thus the Issue Command method first retrieves
from LTM which menu to open, finds it on the screen, opens it, and then finds and selects the actual menu
item.

To make this example more complete, the methods for deleting and duplicating text were added. Often,
writing the methods for additional goals is quite easy once the first set of methods have been written – the
lower-level submethods are simply reused in different combinations or with different commands; this is
one symptom of a good design. After drafting the methods the analyst collected the task information that
the methods require, and reconciled and revised the task representation as necessary. In addition, the
auxiliary information was collected and specified, such as the LTM items required by the Issue Command

26

method. For the GLEAN tool to execute these methods, there needs to be some visual objects for the
methods to look for and point at. In this case, these objects need only be minimal or "dummy" objects.
The example also includes as auxiliary information a set of four editing tasks specified in a "linked list"
form that is accessed by the top-level unit task method.

Define_model: "MacWrite Example"
Starting_goal is Edit Document.

Task_item: T1
Name is First.
Type is copy.
Text_size is Word.
Text_selection is "foobar".
Text_insertion_point is "*".
Next is T2.

Task_item: T2
Name is T2.
Type is copy.
Text_size is Arbitrary.
Text_selection_start is "Now".
Text_selection_end is "country".
Next is T3.

Task_item: T3
Name is T3.
Type is delete.
Text_size is Word.
Text_selection is "foobar".
Text_insertion_point is "*".
Next is T4.

Task_item: T4
Name is T4.
Type is move.
Text_size is Arbitrary.
Text_selection_start is "Now".
Text_selection_end is "country".
Next is None.

// Dummy visual objects - targets for Look_for and Point_to
Visual_object: Dummy_text_word

Content is "foobar".
Visual_object: Dummy_text_selection_start

Content is "Now".
Visual_object: Dummy_text_selection_end

Content is "country".
Visual_object: Dummy_text_insertion_point

Content is "*".

// Minimal description of the visual objects in the editor interface
Visual_object: Edit_menu

Label is Edit.

27

Visual_object: Cut_menu_item
Label is Cut.

Visual_object: Copy_menu_item
Label is Copy.

Visual_object: Paste_menu_item
Label is Paste.

// Long-Term Memory contents about which items are in which menu
LTM_item: Cut_Command

Name is Cut.
Containing_Menu is Edit.
Menu_Item_Label is Cut.
Accelerator_Key is COMMAND-X.

LTM_item: Copy_Command
Name is Copy.
Containing_Menu is Edit.
Menu_Item_Label is Copy.
Accelerator_Key is COMMAND-C.

LTM_item: Paste_Command
Name is Paste.
Containing_Menu is Edit.
Menu_Item_Label is Paste.
Accelerator_Key is COMMAND-V.

// Top-Level Unit Task Method
Method_for_goal: Edit Document

Step. Store First under <current_task_name>.
Step Check_for_done.
Decide: If <current_task_name> is None, Then

Delete <current_task>; Delete <current_task_name>;
Return_with_goal_accomplished.

Step. Get_task_item_whose Name is <current_task_name>
and_store_under <current_task>.

Step. Accomplish_goal: Perform Unit_task.
Step. Store Next of <current_task> under <current_task_name>;

Goto Check_for_done.

Selection_rules_for_goal: Perform Unit_task
If Type of <current_task> is move,
 Then Accomplish_goal: Move Text.
If Type of <current_task> is delete,
 Then Accomplish_goal: Erase Text.
If Type of <current_task> is copy,
 Then Accomplish_goal: Copy Text.
//... etc. ...
Return_with_goal_accomplished.

Method_for_goal: Erase Text
Step 1. Accomplish_goal: Select Text.
Step 2. Keystroke DELETE.
Step 3. Verify "correct text deleted".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Move Text
Step 1. Accomplish_goal: Cut Selection.
Step 2. Accomplish_goal: Paste Selection.

28

Step 3. Verify "correct text moved".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Copy Text
Step 1. Accomplish_goal: Copy Selection.
Step 2. Accomplish_goal: Paste Selection.
Step 3. Verify "correct text moved".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Cut Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Accomplish_goal: Issue Command using Cut.
Step 3. Return_with_goal_accomplished.

Method_for_goal: Copy Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Accomplish_goal: Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

Method_for_goal: Paste Selection
Step 1. Accomplish_goal: Select Insertion_point.
Step 2. Accomplish_goal: Issue Command using Paste.
Step 3. Return_with_goal_accomplished.

// Each task specifies the "size" of the text involved
Selection_rules_for_goal: Select Text

If Text_size of <current_task> is Word,
 Then Accomplish_goal: Select Word.
If Text_size of <current_task> is Arbitrary,
 Then Accomplish_goal: Select Arbitrary_text.
Return_with_goal_accomplished.

// The task specifies the to-be-selected word
Method_for_goal: Select Word

Step 1. Look_for_object_whose Content is Text_selection of <current_task>
and_store_under <target>.

Step 2. Point_to <target>; Delete <target>.
Step 3. Double_click mouse_button.
Step 4. Verify "correct text is selected".
Step 5. Return_with_goal_accomplished.

// The task specifies the beginning and ending word of the text
Method_for_goal: Select Arbitrary_text

Step 1. Look_for_object_whose
Content is Text_selection_start of <current_task>
and_store_under <target>.

Step 2. Point_to <target>.
Step 3. Hold_down mouse_button.
Step 4. Look_for_object_whose Content is

Text_selection_end of <current_task>
and_store_under <target>.

Step 5. Point_to <target>; Delete <target>.
Step 6. Release mouse_button.
Step 7. Verify "correct text is selected".
Step 8. Return_with_goal_accomplished.

29

Method_for_goal: Select Insertion_point
Step 1. Look_for_object_whose

Content is Text_insertion_point of <current_task>
and_store_under <target>.

Step 2. Point_to <target>; Delete <target>.
Step 3. Click mouse_button.
Step 4. Verify "insertion cursor is at correct place".
Step 5. Return_with_goal_accomplished.

// Assumes that user does not use command-key shortcuts

Method_for_goal: Issue Command using <command_name>
// Recall which menu the command is on, find it, and open it

Step 1. Recall_LTM_item_whose
Name is <command_name>
and_store_under <command>.

Step 2. Look_for_object_whose
Label is Containing_Menu of <command>
and_store_under <target>.

Step 3. Point_to <target>.
Step 4. Hold_down mouse_button.
Step 5. Verify "correct menu appears".

// Now select the menu item for the command
Step 6. Look_for_object_whose

Label is Menu_Item_Label of <command>
and_store_under <target>.

Step 7. Point_to <target>.
Step 8. Verify "correct menu command is highlighted".
Step 9. Release mouse_button.
Step 10.Delete <command>; Delete <target>;

Return_with_goal_accomplished.

30

References

Annett, J., Duncan, K.D., Stammers, R.B., & Gray, M.J. (1971). Task analysis. London: Her Majesty's
Stationery Office.

Bennett, J.L., Lorch, D.J., Kieras, D.E., & Polson, P.G. (1987). Developing a user interface technology
for use in industry. In Bullinger, H.J., & Shackel, B. (Eds.), Proceedings of the Second IFIP Conference
on Human-Computer Interaction, Human-Computer Interaction - INTERACT '87. (Stuttgart, Federal
Republic of Germany, Sept. 1-4). Elsevier Science Publishers B.V., North-Holland, 21-26.

Beevis, D., Bost, R., Doering, B., Nordo, E., Oberman, F., Papin, J-P., I., H. Schuffel, & Streets, D.
1992. Analysis techniques for man-machine system design. (Report AC/243(P8)TR/7). Brussels,
Belgium: Defense Research Group, NATO HQ.

Bhavnani, S. K., & John, B. E. (1996). Exploring the unrealized potential of computer-aided drafting.
In Proceedings of the CHI'96 Conference on Human Factors in Computing Systems, ACM, New York,
1996.

Bjork, R.A. (1972). Theoretical implications of directed forgetting. In A.W. Melton and E. Martin
(Eds.), Coding Processes in Human Memory. Washington, D.C.: Winston, 217-236.

Bovair, S., Kieras, D.E., & Polson, P.G. (1990). The acquisition and performance of text editing skill: A
cognitive complexity analysis. Human-Computer Interaction, 5, 1-48.

Byrne, M. D. (in press). Cognitive architecture. In J. Jacko & A. Sears (Eds), Human-Computer
Interaction Handbook. Mahwah, N.J.: Lawrence Erlbaum Associates

Byrne, M.D., Wood, S.D, Sukaviriya, P., Foley, J.D, and Kieras, D.E. (1994). Automating Interface
Evaluation. In Proceedings of CHI, 1994, Boston, MA, USA, April 24-28, 1994). New York: ACM, pp.
232-237.

Card, S.K., Moran, T.P., & Newell, A. (1980a). The keystroke-level model for user performance time
with interactive systems. Communications of the ACM , 23(7), 396-410.

Card, S., Moran, T. & Newell, A. (1983). The Psychology of Human-Computer Interaction. Hillsdale,
New Jersey: Erlbaum.

Diaper, D. (Ed.) (1989). Task analysis for human-computer interaction. Chicester, U.K.: Ellis
Horwood.

Elkerton, J., & Palmiter, S. (1991). Designing help using the GOMS model: An information retrieval
evaluation. Human Factors, 33, 185-204.

Gong, R. & Elkerton, J. (1990). Designing minimal documentation using a GOMS model: A usability
evaluation of an engineering approach. In Proceedings of CHI'90, Human Factors in Computer Systems
(pp. 99-106). New York: ACM.

Gould, J. D. (1988). How to design usable systems. In M. Helander (Ed.), Handbook of human-
computer interaction. Amsterdam: North-Holland. 757-789.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: A validation of GOMS for
prediction and explanation of real-world task performance. Human-Computer Interaction, 8, 3, pp. 237-
209.

John, B. E., & Kieras, D. E. (1996a). Using GOMS for user interface design and evaluation: Which
technique? ACM Transactions on Computer-Human Interaction, 3, 287-319.

John, B. E., & Kieras, D. E. (1996b). The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3, 320-351.

Kieras, D.E. (1988). Towards a practical GOMS model methodology for user interface design. In M.
Helander (Ed.), Handbook of Human-Computer Interaction (pp. 135-158). Amsterdam: North-Holland

31

Elsevier.

Kieras, D. E. (1997a). A Guide to GOMS model usability evaluation using NGOMSL. In M. Helander,
T. Landauer, and P. Prabhu (Eds.), Handbook of human-computer interaction. (Second Edition).
Amsterdam: North-Holland. 733-766.

Kieras, D. E. (1997b). Task analysis and the design of functionality. In A. Tucker (Ed.) The Computer
Science and Engineering Handbook. Boca Raton, CRC Inc. 1401-1423.

Kieras, D.E. (1999). A Guide to GOMS Model Usability Evaluation using GOMSL and GLEAN3.
Document available via anonymous ftp at ftp://www.eecs.umich.edu/people/kieras

Kieras, D. E. (in press). Model-based evaluation. In J. Jacko & A. Sears (Eds), Human-Computer
Interaction Handbook. Mahwah, N.J.: Lawrence Erlbaum Associates

Kieras, D.E., & Bovair, S. (1986). The acquisition of procedures from text: A production-system
analysis of transfer of training. Journal of Memory and Language, 25, 507-524.

Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC architecture for cognition and performance
with application to human-computer interaction. Human-Computer Interaction., 12, 391-438.

Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive task analysis in the application of predictive
models of human performance. In J. M. C. Schraagen, S. E. Chipman, & V. L. Shalin (Eds.), Cognitive
task analysis. Mahwah, NJ: Lawrence Erlbaum, 2000.

Kieras, D., Meyer, D., & Ballas, J. (2001). Towards demystification of direct manipulation: Cognitive
modeling charts the gulf of execution. Proceedings of the CHI 2001 Conference on Human Factors in
Computing Systems. New York, ACM. Pp. 128 – 135.

Kieras, D.E., Meyer, D.E., Mueller, S., & Seymour, T. (1999). Insights into working memory from the
perspective of the EPIC architecture for modeling skilled perceptual-motor and cognitive human
performance. In A. Miyake and P. Shah (Eds.), Models of Working Memory: Mechanisms of Active
Maintenance and Executive Control. New York: Cambridge University Press. 183-223.

Kieras, D.E. & Polson, P.G. (1985). An approach to the formal analysis of user complexity.
International Journal of Man-Machine Studies, 22, 365-394.

Kieras, D.E., Wood, S.D., Abotel, K., & Hornof, A. (1995). GLEAN: A Computer-Based Tool for
Rapid GOMS Model Usability Evaluation of User Interface Designs. In Proceeding of UIST, 1995,
Pittsburgh, PA, USA, November 14-17, 1995. New York: ACM. pp. 91-100.

Kieras, D.E., Wood, S.D., & Meyer, D.E. (1997). Predictive engineering models based on the EPIC
architecture for a multimodal high-performance human-computer interaction task. ACM Transactions on
Computer-Human Interaction. 4, 230-275.

Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. London: Taylor and Francis.

Lewis, C. & Rieman, J. (1994) Task-centered user interface design: A practical introduction.
Shareware book available at ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book

Olson, J. R., & Olson, G. M. (1990). The growth of cognitive modeling in human-computer interaction
since GOMS. Human-Computer Interaction, 5, 221-265.

Polson, P.G. (1987). A quantitative model of human-computer interaction. In J.M. Carroll (Ed.),
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. Cambridge, MA: Bradford,
MIT Press.

Santoro, T.P., Kieras, D.E., and Campbell, G.E. (2000). GOMS modeling application to watchstation
design using the GLEAN tool. Proceedings of the Interservice/Industry Training, Simulation, and
Education Conference, pp. 964-973, Orlando, FL. November, 2000.

Santoro, T., & Kieras, D. (2001). GOMS models for team performance. In J.Pharmer and J. Freeman

32

(Organizers), Complementary methods of modeling team performance. Panel presented at The 45th
Annual Meeting of the Human Factors and Ergonomics Society, Minneapolis/St. Paul.

Wood, S. (1993). Issues in the Implementation of a GOMS-model design tool. Unpublished report,
University of Michigan.

Wood, S. D. (1999). The Application of GOMS to Error-Tolerant Design. Paper presented at the 17th
International System Safety Conference, Orlando, FL.

Wood, S. D. (2000). Extending GOMS to Human Error and Applying it to Error-Tolerant Design.
Doctoral dissertation, University of Michigan.

33

