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Abstract

Analyzing a task into Goals, Operators, Methods, and Selection rules (GOMS) is an established method 
for characterizing a user's procedural knowledge. When combined with additional theoretical 
mechanisms, the resulting GOMS model provides a way to quantitatively predict human learning and 
performance for an interface design, in addition to serving as a useful qualitative description of how the 
user will use a computer system to perform a task. This chapter focusses on GOMS models as a task-
analytic notation and how to construct them. 



Introduction

The purpose of task analysis is to understand the user's activity in the context of the whole human-
machine system, for either an existing or a future system. While understanding human activity 
scientifically is the goal of psychology and the social sciences, the constraints on system design activity 
preclude the lengthy and precise analysis and experimentation involved in scientific work. Thus a task 
analysis for system design must be rather more informal, and primarily heuristic in flavor compared to 
scientific research. The task analyst must do his or her best to understand the user's task situation well 
enough to influence the system design given the limited time and resources available. 

Despite the fundamentally informal character of task analysis, many formal and quasi-formal systems 
for task analysis have been proposed. However, these systems do not in themselves analyze the task or 
produce an understanding of the task. Rather, they are ways to help the analyst observe and think 
carefully about the user's actual task activity, and provide a format for recording and communicating the 
results of the task analysis. Thus a task analysis methodology both specifies what kinds of task 
information are likely to be useful to analyze, and provides a heuristic test for whether the task has 
actually been understood. That is, a good test for understanding something is whether one can represent it 
or document it, and constructing such a representation can be a good approach to trying to understand it. 
A formal representation of a task helps by ensuring that the analyst's understanding is more reliably 
communicated. Finally, some of the more formal representations can be used as the basis for computer 
simulations or mathematical analyses to obtain quantitative predictions of task performance, but it must 
be understood that such results are no more correct than the original, and informally-obtained, 
understanding underlying the representation.

GOMS is such a formalized representation that can be used to predict task performance well enough 
that a GOMS model can be used as a substitute for much (but not all) of the empirical user testing needed 
to arrive at a system design that is both functional and usable. This predictive function is normally 
presented as the rationale for GOMS modeling (see Card, Moran, & Newell, 1983; John & Kieras, 1996a, 
b; Kieras, in press). However, GOMS models also qualify as a form of task-analytic representation, with 
properties similar to Hierarchical Task Analysis (HTA, see Annett, Duncan, Stammers, and Gray, 1971; 
Kirwan & Ainsworth, 1992), but with the special advantage of being able to generate useful predictions of 
learning and performance. 

This chapter presents GOMS modeling as a task analysis method, emphasizing the process of analysis 
and construction of a GOMS model. Information about using the GOMS model for design evaluation and 
prediction of learning and performance is not covered here. GOMS methodology is quite detailed, 
especially when GOMS is used in a computer simulation of human performance, but due to lack of space, 
the presentation has been considerably simplified, and almost all specifics related to performance 
prediction have been eliminated. The interested reader should examine the cited sources and contact the 
author for treatments that are both more complete and more up to date. Also due to the lack of space, this 
chapter contains only one complete example of a GOMS model, a simple text editor (at the end of the 
chapter). The reader might find it useful to gain a preliminary understanding of what a GOMS model is 
like by briefly examining this example before reading further.

The GOMS Model

A GOMS model is a description of the procedural knowledge that a user must have in order to carry out 
tasks on a device or system; it is a representation of the "how to do it" knowledge that is required by a 
system in order to get the intended tasks accomplished. The acronym GOMS stands for Goals, Operators, 
Methods, and Selection Rules. Briefly, a GOMS model consists of descriptions of the Methods needed to 
accomplish specified Goals. The Methods are a series of steps consisting of Operators that the user 
performs. A Method may call for sub-Goals to be accomplished, so the Methods have a hierarchical 
structure. If there is more than one Method to accomplish a Goal, then Selection Rules choose the 

2



appropriate Method depending on the context. Describing the Goals, Operators, Methods, and Selection 
Rules for a set of tasks in a formal way constitutes doing a GOMS analysis, or constructing a GOMS 
model. 

In the Card, et al. formulation, the new user of a computer system will use various problem-solving and 
learning strategies to figure out how to accomplish tasks using the computer system, and then with 
additional practice, these results of problem-solving will become methods - procedures that the user can 
routinely invoke to accomplish tasks in a smooth, skilled manner. The properties of the methods will thus 
govern both the ease of learning and ease of use of the computer system. In the research program 
stemming from the original proposal, approaches to representing GOMS models based on cognitive 
psychology theory have been developed and validated empirically, along with the corresponding 
techniques and computer-based tools for representing, analyzing, and predicting human performance in 
human-computer interaction situations.

John & Kieras (1996a, b) describe the current family of GOMS models and the associated techniques 
for predicting usability, and list many successful applications of GOMS to practical design problems. The 
simplest form of GOMS model is the Keystroke-Level Model, first described by Card, Moran, and 
Newell (1980), in which task execution time is predicted by the total of the times for the elementary 
keystroke-level actions required to perform the task. The most complex is CPM-GOMS, developed by 
Gray, John, and Atwood (1993), in which the sequential dependencies between the user's perceptual, 
cognitive, and motor processes are mapped out in a schedule chart, whose critical path predicts the 
execution time. 

In between these two methods is the method presented in Kieras(1988, 1997a), NGOMSL, in which 
learning time and execution time are predicted based on a program-like representation of the methods that 
the user must learn and execute to perform tasks with the system. NGOMSL is an acronym for Natural 
GOMS Language, which is a structured natural language used to represent the user's methods and 
selection rules. NGOMSL models thus have an explicit representation of the user's methods, which are 
assumed to be strictly sequential and hierarchical in form. NGOMSL is based on the cognitive modeling 
of human-computer interaction by Kieras and Polson (Kieras & Polson, 1985; Bovair, Kieras, & Polson, 
1990). As summarized by John and Kieras (1996a,b), NGOMSL is useful for many desktop computing 
situations in which the user's procedures are usefully approximated as being hierarchical and sequential. 
The execution time for a task is predicted by simulating the execution of the methods required to perform 
the task. Each NGOMSL statement is assumed to require a small fixed time to execute, and any operators 
in the statement, such as a keystroke, will then take additional time depending on the operator. The time 
to learn how to operate the interface can be predicted from the length of the methods, and the amount of 
transfer of training from the number of methods or method steps previously learned. In addition, 
NGOMSL models have been shown to be useful for defining the content of on-line help and 
documentation (Elkerton & Palmiter, 1991; Gong & Elkerton, 1990).

This chapter uses a newer computational form of NGOMSL, called GOMSL (GOMS Language) 
which is processed and executed by a GOMS model simulation tool, GLEAN3 (GOMS Language 
Evaluation and Analysis). GLEAN3 was inspired by the original GLEAN tool developed by Scott Wood 
(1993; see also Byrne, Wood, Sukaviriya, Foley, & Kieras, 1994) and reimplemented and elaborated in 
Kieras, Wood, Abotel, & Hornof (1995), and then again as summarized in Kieras(1999). Unlike the 
earlier versions, GLEAN3 is based on a comprehensive cognitive architecture, namely a simplified 
version of the EPIC architecture for simulating human cognition and performance (Kieras & Meyer, 
1997). GOMSL and GLEAN3 have been also been used to identifying likely sources of errors in user 
interfaces and model human error recovery (Wood, 1999, 2000) and also to model the performance of 
teams of humans who interact with speech (Santoro & Kieras, 2001).

Strengths and Limitations of GOMS Models
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It is important to be clear on what GOMS models can and cannot do; see John and Kieras (1996a, b) for 
more discussion. 

GOMS starts after a basic task analysis. In order to apply the GOMS technique, the task analyst must 
first determine what goals the user will be trying to accomplish. The analyst can then express in a GOMS 
model how the user can accomplish these goals with the system being designed. Thus, GOMS modeling 
does not replace the most critical process in designing a usable system, that of understanding the user's 
situation, working context, and overall goals. Approaches to this stage of interface design have been 
presented in sources such Gould (1988), Diaper (1989), Kirwan and Ainsworth (1992), and Beevis et al 
(1992). Once this basic level of task analysis has been conducted, constructing the GOMS model can then 
provide an elaborated account of how the user does the task. 

GOMS represents only the procedural aspects of a task. GOMS models can account for the procedural 
aspects of usability; these concern the exact steps in the procedures that the user must follow, and so 
GOMS allows the analyst to determine the amount, consistency, and efficiency of the procedures that 
users must follow. Since the usability of many systems depends heavily on the simplicity and efficiency 
of the procedures, the narrowly focused GOMS model has considerable value in guiding interface design. 
The reason why GOMS models can predict these aspects of usability is that the methods for 
accomplishing user goals tend to be tightly constrained by the design of the interface, making it possible 
to construct a GOMS model given just the interface design, prior to any prototyping or user testing. 

Clearly, there are other important aspects of usability that are not related to the procedures entailed by 
the interface design. These concern both lowest-level perceptual issues like the legibility of typefaces on 
CRTs, and also very high-level issues such as the user's conceptual knowledge of the system, e.g., 
whether the user has an appropriate "mental model," or the extent to which the system fits appropriately 
into an organization (see John & Kieras, 1996a). The lowest-level issues are dealt with well by standard 
human factors methodology, while understanding the higher-level concerns is currently a matter of 
practitioner wisdom and the higher-level task analysis techniques. Considerably more research is needed 
on the higher-level aspects of usability, and tools for dealing with the corresponding design issues are far 
off. For these reasons, great attention must still be given to the overall task analysis, and some user testing 
will still be required to ensure a high-quality user interface. 

GOMS models are practical and effective. There has been a widespread belief that constructing and 
using GOMS models is too time-consuming to be practical (e.g., Lewis & Rieman, 1994). However, the 
many cases surveyed by John & Kieras (1996a) make clear that members of the GOMS family have been 
applied in many practical situations and were often very time- and cost-effective. A possible source of 
confusion is that the development of the GOMS modeling techniques has involved validating the analysis 
against empirical data. However, once the technique has been validated and the relevant parameters 
estimated, no empirical data collection or validation should be needed to apply a GOMS analysis during 
practical system design, enabling usability evaluations to be obtained much faster than user testing 
techniques. However, the calculations required to derive the predictions are tedious and mechanical; 
GLEAN was developed to remove this obstacle, but of course, additional effort is required to express the 
GOMS model precisely enough for a computer-based tool to use it. 

General Issues in GOMS Analysis

Overview of GOMS Analysis

Carrying out a GOMS analysis involves defining and then describing in a formal notation the user's 
Goals, Operators, Methods, and Selection Rules. Most of the work seems to be in defining the Goals and 
Methods. That is, the Operators are mostly determined by the hardware and lowest-level software of the 
system, such as whether it has a mouse, for example. Thus the Operators are fairly easy to define. The 
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Selection Rules can be subtle, but usually they are involved only when there are clear multiple methods 
for the same goal. In a good design, it is clear when each method should be used, so defining the 
Selection Rules is (or should be) relatively easy as well.

Identifying and defining the user's goals is often difficult, because the analyst must examine the task 
that the user is trying to accomplish in some detail, often going beyond just the specific system to the 
context in which the system is being used. This is especially important in designing a new system, 
because a good design is one that fits not just the task considered in isolation, but also how the system 
will be used in the user's job context. As mentioned above, GOMS modeling starts with the results of a 
task analysis that identifies the user's top-level goals. Once a goal is defined, the corresponding method 
can be simple to describe because it is simply the answer to the question "how do you do it on this 
system?" The system design itself largely determines what the methods are. 

One critical process involved in doing a GOMS analysis is deciding what and what not to describe. The 
mental processes of the user are incredibly complex; trying to describe all of them would be hopeless. 
However, the details of many of these complex processes have nothing to do with the design of the 
interface, and so do not need to be worked out for the analysis to be useful. For example, the process of 
reading is extraordinarily complex; but usually, design choices for a user interface can be made without 
any detailed consideration of how the reading process works. We can treat the user's reading mechanisms 
as a "black box" during the interface design. We may want to know how much reading has to be done, but 
rarely do we need to know how it is done. So, we will need to describe when something is read, and why 
it is read, but we will not need to describe the actual processes involved. A way to handle this in a GOMS 
analysis is to "bypass" the reading process by representing it with a "dummy" or "place holder" operator. 
This is discussed more below. But making the choices of what to bypass is an important, and sometimes 
difficult, part of the analysis.

Judgment Calls

In constructing a GOMS model, the analyst is relying on a task analysis that involves judgments about 
how users view the task in terms of their natural goals, how they decompose the task into subtasks, and 
what the natural steps are in the user's methods. These are standard problems in task analysis (see Kieras, 
1997b, Kirwan & Ainsworth, 1992; Annett, et al., 1971). It is possible to collect extensive behavioral data 
on how users view and decompose tasks, but often it is not practical to do so because of time and cost 
constraints on the interface design process. Instead, the analyst must often make judgment calls on these 
issues. These are decisions based on the analyst's judgment, rather than on systematically collected 
behavioral data. In making judgment calls, the analyst is actually speculating on a psychological theory or 
model for how people do the task, and so will have to make hypothetical claims and assumptions about 
how users think about the task. Because the analyst does not normally have the time or opportunities to 
collect the data required to test alternative models, these decisions may be wrong, but making them is 
better than not doing the analysis at all. By documenting these judgment calls, the analyst can explore 
more than one way of decomposing the task, and consider whether there are serious implications to how 
these decisions are made. If so, collecting behavioral data might then be required. But notice that once the 
basic decisions are made for a task, the methods are determined by the design of the system, and no 
longer by judgments on the part of the analyst.

For example, in the example below for moving text in MacWrite, the main judgment call is that due to 
the command structure, the user views moving text as first cutting, then pasting, rather than as a single 
unitary move operation. Given this judgment, the actual methods are determined by the possible 
sequences of actions that MacWrite permits to do cutting and pasting. 

In contrast, on the IBM DisplayWriter, the design did not include separate cut and paste operations. So 
here, the decomposition of moving into "cut then paste" would be a weak judgment call. The most 
reasonable guess is that a DisplayWriter user thinks of the text movement task not in terms of cut and 
paste subgoals, but in terms of the subgoals of first selecting the text, then issuing the Move command, 
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and then designating the target location. So what is superficially the same text editing task may have 
different decompositions into subgoals, depending on how the system design encourages the user to think 
about it.

It could be argued that it is inappropriate for the analyst to be making assumptions about how humans 
view a system. However, notice that any designer of a system has de facto made many such assumptions. 
The usability problems in many software products are a result of the designer making assumptions, often 
unconsciously, with little or no thoughtful consideration of the implications for users. So, if the analyst's 
assumptions are based on a careful consideration from the user's point of view, they can not do any more 
harm than that typically resulting from the designer's assumptions, and should lead to better results. 

How do Users do the Task?

If the system already exists and has users, the analyst can learn a lot about how users view the task by 
talking to the users to get ideas about how they decompose the task in to subtasks and what methods and 
selection rules they use. However, a basic lesson from the painful history of cognitive psychology is that 
people have only a very limited awareness of their own goals, strategies, and mental processes in general. 
Thus the analyst can not simply collect this information from interviews or having people "think out 
loud." What users actually do can differ a lot from what they think they do. The analyst will have to 
combine information from talking to users with considerations of how the task constrains the user's 
behavior, and most importantly, observations of actual user behavior. So, rather than asking people to 
describe verbally what they do, a better approach is having users demonstrate on the system what they do, 
or better yet, observing what they normally do in an unobtrusive way. 

In addition, what users actually do with a system may not in fact be what they should be doing with it. 
The user, even a very experienced one, is not necessarily a source of "truth" about the system or the tasks 
(cf. Annett, et al., 1971). As a result of poor design, bad documentation, or inadequate training, users may 
not in fact be taking advantage of features of the system that allow them to be more productive (see 
Bhavnani & John 1996). The analyst should try to understand why this is happening, because a good 
design will only be good if it is used in the intended way. But for purposes of a GOMS analysis, the 
analyst will have to decide whether to assume a sub-optimal use of the system, or a fully informed one.

This situation deserves further discussion. In many task-analysis or modeling situations, especially with 
complex systems, the human user can perform the task in a variety of different ways, following different 
task strategies - the external structure of the task does not strongly constrain what the user must do, 
leaving them free to devise and follow different strategies that arrive at the same end result. In such a 
case, it will be difficult to determine the goal structure and the methods. One approach, of course, is to 
rely on empirical data and observation about what users actually do in the task. This is certainly the 
desired approach, but it can be extremely difficult to identify the strategy people use in a task, even a very 
simple one (Kieras & Meyer, 2000). Furthermore, empirical results cannot be used if the system in 
question is under design and so has no users to observe, or if an existing system has not been, or cannot 
be, studied in the required detail because of the severe practical difficulties involved in collecting usage 
data for complex systems.

In such cases, the analyst is tempted to speculate on how users might do the task, and as noted above, 
such speculation by the task analyst and interface designer is likely to be better than than haphazard 
decisions made by whoever writes the interface code. However, if the task is indeed a complex one, trying 
to guess or speculate how the user does the task can result in an endless guessing-game. A better approach 
is to consider whether the system designers have a concept of how the system is supposed to be used, and 
if so, construct a GOMS model for how the user should do the task. This is much less speculative, and is 
thus relatively well-defined. It represents a sort of best-case analysis in which the system designer's 
intentions are assumed to be fully communicated to the user, so that the user takes full advantage of the 
system features. If the resulting GOMS analysis and the performance predictions for it reveal serious 
problems, the actual case will certainly be much worse. 
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An additional elaboration of this approach is to use bracketing logic (Kieras & Meyer, 2000) to gain 
information about the possible actual performance using the system. Construct two models of the task, 
one representing using the system as cleverly as possible, producing the the fastest-possible performance, 
and another that represents the nominal or unenterprising use of the system, resulting in a slowest-
reasonable model. When performance predictions are computed, these two models will bracket what 
actual users can be expected to do. By comparing how the two models respond to e.g. changes in 
workload, and analyzing their performance bottlenecks, the analyst can derive useful conclusions about a 
system design, or especially about the relative merits of two designs, without having to make detailed 
unsupported assumptions about the user's actual task strategies (e.g. Kieras, Meyer, & Ballas, 2000). 

Bypassing Complex Processes

Many cognitive processes are too difficult to analyze in a practical context. Examples of such processes 
are reading, problem-solving, figuring out the best wording for a sentence, finding a bug in a computer 
program, and so forth. One approach is to bypass the analysis of a complex process by simply 
representing it with a "dummy" or "placeholder" operator, such as the Think_of operator in GOMSL (see 
below). In this way the analyst documents the presence of the process, and can consider what influence it 
might have on the user's performance with a design. A more flexible approach is the "yellow pad" 
heuristic: suppose the user has already done the complex processing and has written the results down on a 
yellow note pad and simply refers to them along with the rest of the information about the task instance.

For example, in MacWrite, the user may use tabs to control the layout of a table. How does the user 
know, or figure out, where to put them? The analyst might assume that the difficulties of doing this have 
nothing to do with the design of MacWrite (which may or not be true). The analyst can bypass the process 
of how the user figures out tab locations by assuming that user has figured them out already, and includes 
the tab settings as part of the task instance description supplied to the methods. (cf. the discussion in 
Bennett, Lorch, Kieras, & Polson, 1987). The analyst uses the GOMSL Get_task_item operator to 
represent when this information is accessed.

As a second example, consider a word-processor user who is making changes in a document from a 
marked-up hardcopy. How does the user know that a particular scribble on the paper means "delete this 
word?" The analyst can bypass this problem by putting in the task description the information that the 
goal is to Delete and that the target text is at such-and-such a location (see example task descriptions 
below), and then using the Get_task_item operator to access the task information. The methods will 
invoke this operator at the places where the user is assumed to have to look at the document to find out 
what to do. This way, the contents of the task description show the results of the complex reading process 
that was bypassed, and the places in the methods where the operator appears mark where the user is 
engaging in the complex reading process.

The analyst should only bypass processes for which a full analysis would be irrelevant to the design. 
But sometimes the complexity of the bypassed process is related to the design. For example, a text editor 
user must be able to read the paper marked-up form of a document, regardless of the design of the text 
editor, meaning that the reading process can be bypassed because it does not need to be analyzed in order 
to choose between two different text editor designs. On the other hand, the POET editor (see Card, 
Moran, & Newell, 1983) requires heavy use of find-strings which the user has to devise as needed. This 
process can still be bypassed, and the actual find strings specified in the task description. But suppose we 
are comparing POET to an editor that does not require such heavy use of find strings. Any conclusions 
about the difficulty of POET compared to the other editor will depend critically how hard it is to think up 
good find-strings. In this case, bypassing a process might produce seriously misleading results. 

Generative Models, Rather than Models of Specific Task Instances

Often, user interface designers will work with task scenarios, which are essentially descriptions in 
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ordinary language of task instances and what the user would do in each one. The list of specific actions 
that the user would perform for a specific task can be called a trace, analogous to the specific sequence of 
results one obtains when "tracing" a computer program. Assembling a set of scenarios and traces is often 
useful as an informal way of characterizing a proposed user interface and its impact on the user.

If one has collected a set of task scenarios and traces, the natural temptation is to construct a description 
of the user's methods for executing these specific task instances. This temptation must be resisted; the 
goal of GOMS analysis is a description of the general methods for accomplishing a set of tasks, not just 
the method for executing a specific instance of a task.

If the analyst falls into the trap of writing methods for specific task instances, the resulting methods will 
probably be "flat," containing little in the way of method and submethod hierarchies, and also may 
contain only the specific Keystroke-Level operations appearing in the trace. E.g., if the task scenario is 
that the user deletes the file FOOBAR, such a method will generate the keystroke sequence of "DELETE 
FOOBAR <CR>." But the fatal problem is that a tiny change in the task instance, such as a different file 
name, means that the method will not work. This corresponds to a user who has memorized by rote how 
to do an exact task, but who can't execute variations of the task.

On the other hand, a set of general methods will have the property that the information in a specific task 
instance acts like "parameters" for a general program, and the general methods will thus generate the 
specific actions required to carry out that task instance. Any task instance of the general type will be 
successfully executed by the general method. For example, a general method for deleting the file 
specified by <filename> will generate the keystroke sequence of "DELETE " followed by the string 
designated <filename> by followed by <CR>. This corresponds to a user who knows how to use the 
system in the general way normally intended. Such GOMS models are generative - rather than being 
limited to specific snippets of behavior, they can generate all possible traces from a single set of methods. 
This is a critical advantage of GOMS models and other cognitive-architecture models (for more 
discussion, see John & Kieras, 1996b; Kieras, in press; Kieras, Wood, & Meyer, 1997).

So, if the analyst has a collection of task scenarios or traces, he or she should study them to discover the 
range of things that the user has to do. They should then be set aside and a generative GOMS model 
written that contains a set of general methods that can correctly perform any specific task within the 
classes defined by the methods (e.g., delete any file whose name is specified in the task description). The 
methods can be checked to ensure that they will generate the correct trace for each task scenario, but they 
should also work for any scenario of the same type. 

When Can a GOMS Analysis be Done?

After Implementation - Existing Systems

Constructing a GOMS model for a system that already exists is the easiest case for the analyst because 
much of the information needed for the GOMS analysis can be obtained from the system itself, its 
documentation, its designers, and the present users. The user's goals can be determined by considering the 
actual and intended use of the system; the methods are determined by what actual steps have to be carried 
out. The analyst's main problem will be to determine whether what users actually do is what the designers 
intended them to do, and then go on to decide what the users' actual goals and methods are. For example, 
the documentation for a sophisticated document preparation system gave no clue to the fact that most 
users dealt with the complex control language by keeping "template" files on hand which they just 
modified as needed for specific documents. Likewise, this mode of use was apparently not intended by 
the designers. So the first task for the analyst is to determine how an existing system is actually used in 
terms of the goals that actual users are trying to accomplish. Talking to, and observing, users can help the 
analyst with these basic decisions (but remember the pitfalls discussed above). 

Since in this case the system exists, it is possible to collect data on the user's learning and performance 
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with the system, so using a GOMS model to predict this data would only be of interest if the analyst 
wanted to verify that the model was accurate, perhaps in conjunction with evaluating the effect of 
proposed changes to the system. However, notice that collecting systematic learning and performance 
data for a complex piece of software can be an extremely expensive undertaking; if one is confident of the 
model, it could be used as a substitute for empirical data in activities such as comparing two competing 
existing products.

After Design Specification - Evaluation During Development

There is no need for the system to be already implemented or in use for a GOMS analysis to be carried 
out. It is only necessary that the analyst can specify the components of the GOMS model. If the design 
has been specified in adequate detail, then the analyst can identify the intended user's goals and describe 
the corresponding methods just as in the case of an existing system. 

Of course, the analyst can not get the user's perspective since there are as yet no users to talk to. 
However, the analyst can talk to the designers to determine the designer's intentions and assumptions 
about the user's goals and methods, and then construct the corresponding GOMS model as a way to make 
these assumptions explicit and to explore their implications. Predictions can then be made of learning and 
performance characteristics, and then used to help correct and revise the design. The analyst thus plays 
the role of the future user's advocate, by systematically assessing how the design will affect future users. 
Since the analysis can be done before the system is implemented, it should be possible to identify and put 
into place an improved design without wasting coding effort.

However, the analyst can often be in a difficult position. Even fairly detailed design specifications often 
omit many specific details that directly affect the methods that users will have to learn. For example, the 
design specifications for a system may define the general pattern of interaction by specifying pop-up 
menus, but not the specific menu choices available, or which choices users will have to make to 
accomplish actual tasks. Often these detailed design decisions are left up to whoever happens to write the 
relevant code. The analyst may not be able to provide many predictions until the design is more fully 
fleshed out, and may have to urge the designers to do more complete specification than they normally 
would. 

During Design - GOMS Analysis Guiding the Design

Rather than analyze an existing or specified design, the interface could be designed concurrently with 
describing the GOMS model. That is, by starting with listing the user's top-level goals, then defining the 
top-level methods for these goals, and then going on to the subgoals and submethods, one is in a position 
to make decisions about the design of the user interface directly in the context of what the impact is on the 
user. For example, bad design choices may be immediately revealed as spawning inconsistent, complex 
methods, leading the designer quickly into considering better alternatives. See Kieras (1997b) for more 
discussion of this approach. Clearly, the designer and analyst must closely cooperate, or be the same 
person.

Perhaps counter to intuition, there is little difference in the approach to GOMS analysis between doing 
it during the design process and doing it after. Doing the analysis during the design means that the analyst 
and designer are making design decisions about what the goals and methods should be, and then 
immediately describing them in the GOMS model. Doing the analysis after the system is designed means 
that the analyst is trying to determine the design decisions that were made sometime in the past, and then 
describing them in a GOMS model. For example, instead of determining and describing how the user 
does a cut-and-paste with an existing text editor, the designer-analyst decides and describes how the user 
will do it. It seems clear that the reliability of the analysis would be better if it is done during the design 
process, but the overall logic is the same in both cases.
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GOMSL: A Notation for GOMS Models

This section presents the GOMSL (GOMS Language) notation system which is a computer-executable 
version of the earlier NGOMSL (Kieras, 1988, 1997a). GOMSL is an attempt to define a language that 
will allow GOMS models to be executed with a computer-based tool, but at the same time be easy to read. 
An analyst can use GOMSL in an informal fashion; if performance predictions are needed, he or she can 
compute the results by hand, or alternatively, tighten up the GOMSL and then use a computational tool 
such as GLEAN3 to run the model or generate performance predictions. 

GOMSL is not supposed to be an ordinary programming language for computers, but rather to have 
properties that are directly related to the underlying production rule models described by Kieras, Bovair, 
and Polson (Kieras & Polson, 1985; Polson, 1987; Kieras & Bovair, 1986; Bovair, Kieras, & Polson, 
1990). So GOMSL is supposed to represent something like "the programming language of the mind," as 
absurd as this sounds. The idea is that GOMSL programs have properties that are related in 
straightforward ways to both data on human performance and theoretical ideas in cognitive psychology. If 
GOMSL is clumsy and limited as a computer language, it is because humans have a different architecture 
than computers. Thus, for example, GOMSL does not allow complicated conditional statements, because 
there is good reason to believe that humans cannot process complex conditionals in a single cognitive 
step. If it is hard for people to do, then it should be reflected in a long and complicated GOMSL program. 
In this document, GOMSL expressions are shown in this typeface.

Task Data

Object-Property-Value Representation

The basic data representation in GOMSL consists of objects with properties and values. Each object has 
a symbolic name and a list of properties, each of which has an associated value. The object name, 
property, and value are symbols. This representation is used in several places: For example, long-term 
memory is represented as a collection of objects, or items, each of which has a symbolic name and a set of 
property-value pairs. For example, the fact that "plumber" is a skilled trade and has high income might be 
represented as follows:

LTM_Item: Plumber.
Kind is skilled_trade.
Income is high.

In this example, "Plumber" is an object in LTM that has a "Kind" property whose value is 
"skilled_trade" and an "Income" property whose value is "high." 

Another example is declarative knowledge of an interface as a collection of facts about the Cut 
command in a typical text editor:

LTM_Item: Cut_Command.
Containing_Menu is Edit.
Menu_Item_Label is Cut
Accelerator_Key is Command-X.

The "cut" command is described as an object whose properties and values specify which menu it is 
contained in, the actual label used for it in the menu, and the corresponding accelerator (short-cut) key. 
Likewise, a task instance is described as a collection of objects each of which has properties and values. 
There are operators for accessing or retrieving visual objects, task or long-term memory items, and then 
accessing their individual properties and values.

Working Memory
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Working memory in GOMSL consists of two kinds of information: one is a tag store (Kieras, Meyer, 
Mueller, & Seymour, 1999), which represents an elementary form of working memory. The other kind is 
the object store which holds information about an object that has been brought into "focus", that is, placed 
in working memory and whose property values are thus immediately available in the form of a property-
of-object construction.

The working memory tag store consists of a collection of symbolic values stored under a symbolic 
name or tag. Tags are expressed as identifiers enclosed in angle brackets. In many cases, the use of tags 
corresponds to traditional concepts of verbal working memory; syntactically, they roughly resemble 
variables in a traditional programming language. At execution time, if a tag appears in an operator 
argument, it is replaced with the value currently stored under the tag. An elementary example:

Step 1. Store "foo.txt" under <filename>.
Step 2. Type_in <filename>.

In Step 1, the Store operator is used to place the string "foo.txt" into working memory under the tag 
<filename>. In Step 2, before the Type_in operator is executed, the value stored under the tag is retrieved 
from working memory, and this becomes the parameter for the operator. So Step 2 results in the simulated 
human typing the string "foo.txt".

The object stores correspond to working memory for visual input, task information, and long-term 
memory retrievals. All three of these have the common feature that gaining access to an object or item 
will be time consuming, but once it has been located or retrieved, further details of the object or the item 
can then be immediately used by specifying the desired property of the object with a property of object 
construction. So the operation of bringing an object or item into focus is time-consuming, but then all of 
its properties are available in working memory. But if the "focus" is changed to a different object or item, 
the information is no longer available, and a time-consuming operation is required to bring it back into 
focus. This mechanism represents in a simple way the performance constraints involved in many forms of 
working memory and visual attention. This analysis is a simplification of the very complex ways in which 
working memory information is accessed and stored during a task (see Kieras, Meyer, Mueller, & 
Seymour, 1999, for more discussion). 

Goals

A goal is something that the user tries to accomplish. The analyst attempts to identify and represent the 
goals that typical users will have. A set of goals usually will have a hierarchical arrangement in which 
accomplishing a goal may require first accomplishing one or more subgoals. 

A goal description is a pair of identifiers, which by convention are chosen to be an action-object pair in 
the form: verb noun, such as delete word, or move-by-find-function cursor. Either the noun or the verb 
can be complicated if necessary to distinguish between methods (see below on selection rules). Any 
parameters involved that modify or specify a goal, such as where a to-be-deleted word is located, are 
represented in the task description, and made available when the method is invoked (see below).

Operators

Operators are actions that the user executes. There is an important difference between goals and 
operators. Both take an action-object form, such as the goal of revise document and the operator of 
Keystroke ENTER. But in a GOMS model, a goal is something to be accomplished, while an operator is 
just executed. This distinction is intuitively-based, and is also relative; it depends on the level of analysis 
chosen by the analyst (John & Kieras, 1996b). The procedure presented below for constructing a GOMS 
model is based on the idea of first describing methods using very high-level operators, and then replacing 
these operators with methods that accomplish the corresponding goal by executing a series of lower-level 
operators. This process is repeated until the operators are all primitive operators that will not be further 
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analyzed.

As explained in more detail later, based on the underlying production system model for human 
cognition, each step in a GOMS model takes a certain time to execute, estimated at 50 ms. Most of the 
built-in mental operators are all executed during this fixed step execution time, and so are termed 
intrastep operators. However, substantially longer execution times are required for external operators, 
such as pointing to the target with a mouse, or certain built-in mental operators such as searching long-
term memory. Thus, these are interstep operators because their execution time occurs between the steps, 
and so governs when the next step is started.

External Operators

External operators are the observable actions through which the user exchanges information with the 
system or other humans. These include perceptual operators, which read text from a screen, scan the 
screen to locate the cursor, or input a piece of speech, and motor operators, such as pressing a key, or 
speaking a phrase. The analyst usually chooses the external operators depending on the system or tasks, 
such as whether there is there a mouse on the machine.

Listed below are the primitive motor and perceptual operators whose definitions and execution times 
are based on the physical and mental operators used in the Keystroke-Level Model(Card, Moran, & 
Newell, 1983; John & Kieras, 1996a, b). These are all interstep operators. Based on the simplifying logic 
in the Keystroke-Level Model, operators for complex mental activities are assumed to take a constant 
amount of time, approximated with the value of 1200 ms, based on results in Olson & Olson (1990). Each 
operator keyword in the list below is shown in this typeface; parameters for operators are shown in 
this typeface. Unless otherwise stated, an operator parameter can be either a symbol, a tag, or a property 
of object construction. An identifier enclosed in angle-brackets, as in <tag>, is a tag name parameter. A 
description of the operator and its execution time for each operator is given.

Keystroke key_name
Strike a key on a keyboard. If the keyname is a string, only the first character is used. Execution time 
is 280 ms.

Type_in string_of_characters 
Do a series of Keystrokes, one for each character in the supplied string. Execution time is 280 
ms/character.

Click mouse_button 
The designated mouse button is pressed and released. Execution time is 200 ms.

Double_click mouse_button
Two Clicks are executed. Execution time is 400 ms.

Hold_down mouse button 
Press and continue to press the mouse button. Execution time is 100 ms.

Release mouse_button
Release the mouse button. Execution time is 100 ms.

Point_to target_object 
The mouse cursor is moved to the target object on the screen. Execution time is determined by the 
Welford form of Fitts' Law with a minimum of 100 ms if object location and sizes are specified; it is 
1100 ms if not.

Home_to destination
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Move the right hand to the destination. The initial location of the right and left hands is the keyboard.
Possible destinations are keyboard and mouse. Execution time is 400 ms. All of the manual operators 
automatically execute a Home_to operator if necessary to simulate the hand being moved between 
the mouse and keyboard.

Look_for_object_whose property is value, ... and_store_under <tag>
This mental operator searches visual working memory, (essentially the visual space) for an object 
whose specified properties have the specified values, and stores its symbolic name in working 
memory under the label <tag> where it is now in focus. If no object matching the specification is 
present, the result is the symbol absent, which may be tested for subsequently. Time required is 1200 
ms, after which additional information about the object is available immediately. Putting a different 
object in focus will result in the previous object's properties being no longer available. If the visual 
object disappears (e.g. it is taken off of the display screen), then it will be removed from visual 
working memory, and the object information is no longer available. Static visual objects and their 
properties can be defined as part of the GOMS model.

Get_task_item_whose property is value, ... and_store_under <tag> 
This mental operator is used to represent that the user has a source of information available 
containing the specifics of the tasks to be executed, but the analyst does not wish to specify this 
source, but is assuming that it requires mental activity to produce the required task information. For 
example, the user could be "thinking up" the tasks as he or she works, recalling it from memory, or 
reading the task information from a marked-up manuscript or a set of notes (see the "yellow pad" 
heuristic below). The task information would be specified in a set of Task-items, presented below, 
that together define a collection of objects and properties, the task description. This operator searches 
the task description for a task item object whose specified properties have the specified values, and 
stores its symbolic name in working memory under the label <tag>. It is now in focus, and additional 
properties are now available. Time required is 1200 ms. Putting a different task item in focus will 
result in the previous item's properties being no longer available. If the specified object is not found in 
the task description, then the resulting symbol is absent, and this value can be subsequently tested 
for.

Mental operators

 Mental operators are the internal actions performed by the user; they are non-observed and 
hypothetical, inferred by the theorist or analyst. In the notation system presented here, some mental 
operators are "built in;" these are primitive operators that correspond to the basic mechanisms of the 
cognitive processor, the cognitive architecture. These are based on the production rule models described 
by Bovair, Kieras, and Polson 1990). These operators include actions like making a basic decision, 
storing an item in Working Memory (WM), retrieving information from Long-Term Memory (LTM), 
determining details of the next task to be performed, or setting up a goal to be accomplished. 

Other mental operators are defined by the analyst to represent complex mental activities (see below), 
normally as a placeholder for a complex activity that cannot be analyzed further. A common such analyst-
defined mental operator is verifying that a typed-in command is correct before hitting the ENTER key; 
another example would be a stand-in for an activity that will not be analyzed, such as LOG-INTO-SYSTEM.

Below is a brief description of the GOMSL primitive mental operators.These are all intrastep operators.

Flow of control. Only one flow of control operator can appear in a step. A submethod is invoked by 
asserting that its goal should be accomplished:

Accomplish_goal: goal
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AG: goal (abbreviation)
Accomplish_goal: goal using pseudoargument tag list

This is analogous to an ordinary CALL statement; control passes to the method for the goal, and returns 
here when the goal has been accomplished. The pseudoargument tag list is described in a later section 
below. The operator:

Return_with_goal_accomplished
RGA (abbreviation)

 is analogous to an ordinary RETURN statement. A method normally must contain at least one of these.

There is a branching operator:

Goto step_label

As in structured programming, a Goto is used sparingly; normally it used only with Decide operators to 
implement loops or complicated branching structures.

A decision is represented by a step containing a Decide operator; a step may contain only one Decide 
operator and no other operators. The Decide operator contains one or more IF-THEN conditionals and at 
most one ELSE form. The conditionals are separated by semicolons:

Decide: conditional
Decide: conditional; conditional; ... else-form

The IF part of a conditional can have one or more predicates. The THEN part or an else-form has one or 
more operators:

If predicates Then operators
Else operators

The predicates consist of one or more predicates, separated by commas or comma-and. If all of the 
predicates are true, then the operators are executed, and no further conditionals are evaluated. An else-
form may appear only at the end; its operators are executed only if all of the preceding IF conditions have 
all failed to be satisfied. Normally, Decide operators are written so that the if-else combinations are 
mutually exclusive. Note that nesting of conditionals is not allowed. Here are three examples of Decide 
operators:

Step 3. Decide: If <id_letter> is "A" Then Goto 4.

Step 8. Decide: 
If appearance of <current_thing> is "super duper", and 

size of <current_person> is large,
 Then Type_in string of <current_task>; 
If appearance of <current_thing thing> is absent, Then RGA; 
Else Goto 2.

Step 5. Decide:
If <button_label> is ACCEPT Then Keystroke K1;
If <button_label> is REJECT, Then Keystroke K2;
Else Keystroke K3.

If there are multiple IF-THEN conditionals, as in the second and third example above, the conditions 
must be mutually exclusive, so that only one condition can match, and the order in which the If-Thens are 
listed is supposed to be irrelevant. However, the conditionals are evaluated in order, and evaluation stops 
at the first conditional whose condition is true.

The Decide operator is used for making a simple decision that governs the flow of control within a 
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method. It is not supposed to be used to implement GOMS selection rules, which have their own 
construct (see below). The IF clause typically contains predicates that test some state of the environment 
or contents of WM. Notice that the complexity of a Decide operator is strictly limited; only one simple 
Else clause is allowed, and multiple conditionals must be mutually exclusive and independent of order. 
More complex conditional situations must be handled by separate decision-making methods that have 
multiple steps, decisions, and branching.

The following predicates are currently defined:

is is_equal_to (synonyms)
is_not is_not_equal_to (synonyms)
is_greater_than
is_greater_than_or_equal_to 
is_less_than
is_less_than_or_equal_to

These predicates are valid for either numeric or symbol values. If the compared values are both 
numeric, then a comparison between the numeric values is performed. Otherwise both values are treated 
as symbolic, and the character string representations of the two are compared in lexicographic order - if 
necessary, a number is converted to a standard string representation for this purpose.

Memory storage and retrieval. The memory operators reflect the distinction between long-term 
memory (LTM) and working memory (WM) (often termed short-term memory) as they are typically used 
in computer operation tasks. WM contents are normally stored and retrieved using their tags, the 
symbolic name for the value being stored in working memory. These tags are used in a way that is 
somewhat analogous to variables in a conventional programming language.

Store value under <tag>
The value is stored in working memory under the label <tag>. 

Delete <tag>
The value stored under the label <tag> is deleted from working memory. 

Recall_LTM_item_whose property is value, ... and_store_under <tag> 
Searches long-term memory for an item whose specified properties have the specified values, and 
stores its symbolic name in working memory under the label <tag> where it is now in focus. Time 
required is 1200 ms, after which additional information is available immediately. Putting a different 
task item in focus will result in the previous item's properties being no longer available. 

Consistent with the theoretical concept that working memory is a fast scratchpad sort of system, and 
how it is used in the production system models, the execution time for the Store and Delete operators is 
bundled into the time to execute the step; thus they are intrastep operators. The Store operator is used to 
load a value into working memory. The Delete operator is more frequently used to eliminate working 
memory items that are no longer needed. Although this deliberate forgetting might seem counter-intuitive, 
it is a real phenomenon; see Bjork (1972). For simplicity, working memory information does not "decay" 
and so there is no built-in limit to how much information can be stored in working memory. This reflects 
the fact that despite the considerable research on working memory, there is not a theoretical consensus on 
what working memory limits apply during the execution of procedural tasks (see Kieras, Meyer, Mueller, 
& Seymour, 1999). So rather than set an arbitrary limit on when working memory overload would occur, 
the analyst can identify memory overload problems examining how many items are required in WM 
during task execution; GLEAN can provide this information. 

There is only a recall operator for LTM, because in the tasks typically modeled with GOMS, long-term 
learning and forgetting are not involved. The Recall_LTM_item operator is an interstep operator that takes 
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a standard mental operator execution time, but once the information has been placed in focus in WM, 
additional information about the item can be used immediately with the x_of_y argument form. 

Analyst-Defined Mental Operators. As discussed in some detail below, the analyst will often encounter 
psychological processes that are too complex to be practical to represent as methods in the GOMS model 
and that often have little to do with the specifics of the system design. The analyst can bypass these 
processes by defining operators that act as place holders for the mental activities that will not be further 
analyzed. Depending on the specific situation, such operators may correspond to Keystroke-Level Model 
Mental operators, and so can be approximated with as standard interstep mental operators that require 1.2 
sec. The Verify and Think_of operators are intended for this situation; the analyst simply documents the 
assumed mental process in the description argument of the operator. 

Verify description 
Think_of description
These operators simply introduce a time delay to represent when the user must pause and think of 
something about the task; the actual results of this thinking are specified elsewhere, such as the task 
description. The description string serves as documentation, nothing more. Each operator requires 
1200 ms.

Methods

A method is a sequence of steps that accomplishes a goal. A step in a method typically consists of an 
external operator, such a pressing a key, or a set of mental operators involved with setting up and 
accomplishing a subgoal. Much of the work in analyzing a user interface consists of specifying the actual 
steps that users carry out in order to accomplish goals, so describing the methods is the focus of the 
analysis. 

The form for a method is as follows:

Method_for_goal: goal
Step 1. operators.
Step 2. operators.
...

Abbreviations and pseudoparameters are allowed:

MFG: goal (abbreviation)
Method_for_goal: goal using pseudoparameter tag list

Steps

More than one operator can appear in a step, and at least one step in a method must contain the operator 
Return_with_goal_accomplished. A step starts with the keyword Step, contains an optional label, 
followed by a period, and one or more operators separated by semicolons, with a final period:

Step. operator.
Step label. operator.
Step. operator; operator; operator.
Step label. operator; operator; operator.

The label is either a number or an identifier. The labels are ignored by GLEAN except for the Goto 
operator, which searches the method from the beginning for the first matching label; this designates the 
next step to be executed. Thus the labels do not have to be unique or in order. However, a run-time error 
occurs if a Goto operator does not find a matching label. Using numeric labels throughout highlights the 
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step-by-step procedure concept of GOMS methods, but plan on renumbering the steps and altering Gotos 
to maintain a neat appearance. 

Method Hierarchy

Methods often call sub-methods to accomplish goals that are subgoals. This method hierarchy takes the 
following form:

Method_for_goal: goal
Step 1. operators.
Step 2. <operators>
...
Step i. Accomplish_goal: subgoal.
...
Step m. Return_with_goal_accomplished.

Method_for_goal: subgoal
Step 1. operators.
Step 2. <operators>
...
Step j. Accomplish_goal: sub-subgoal.
...
Step n. Return_with_goal_accomplished.
...

Method Pseudoparameters

The simple tagged-value model of working memory results in WM tags being used something like 
variables in traditional programming languages, but because there is only one WM system containing 
only one set of tagged values, these "variables" are effectively global in scope. This makes it syntactically 
difficult to write "library" methods that represent reusable "subroutines" with "parameters." To alleviate 
this problem, a method can be called with pseudoarguments in the Accomplish_goal operator and the 
corresponding pseudoparameters can be defined for a method or selection rule set. These are 
automatically deleted when the method completed. For example:

Step 8. Accomplish_goal: Enter Data using "Name",
and name of <current_person>.

Method_for_goal: Enter Data using <field_name>, and <data>
Step 1. Look_for_object_whose label is <field_name>

and_store_under <field>.
Step 2. Point_to <field>.
Step 3. Click <button>.
Step 4. Type_in <data>.
Step 5. Delete <field>; Return_with_goal_accomplished.

The "pseudo" prefix makes clear that these "variables" do not follow the normal scoping rules used in 
actual programming languages - the human does not have a run-time function-call stack for argument 
passing.

Selection Rules

The purpose of a selection rule is to route control to the appropriate method to accomplish a goal. 
Clearly, if there is more than one method for a goal, then a selection rule is logically required.

There are many possible ways to represent selection rules. In the approach presented here, a selection 
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rule responds to the combination of a general goal and a specific context by setting up a specific goal of 
executing one of the methods that will accomplish the general goal. Selection rules are If-Then rules that 
are grouped into sets that are governed by a general goal. If the general goal is present, the conditions of 
the rules in the set are tested in parallel to choose the specific goal to be accomplished. The relationship 
with the underlying production rule models is very direct (see Bovair, Kieras, & Polson, 1990). The form 
for a selection rule set is:

Selection_rules_for_goal: general goal
If predicates Then Accomplish_goal: specific goal.
If predicates Then Accomplish_goal: specific goal.
...
Return_with_goal_accomplished.

A common and natural confusion is when a selection rule set should be used and when a Decide 
operator should be used. A selection rule set is used exclusively to route control to the suitable method for 
a goal, and so can only have Accomplish_goal operators in the Then clause, while a Decide operator 
controls flow of control within a method, and can have any type of operator in the Then clause. Thus, if 
there is more than one method to accomplish a goal, use that goal as a general goal, and define separate 
methods to accomplish the more specific goals; use a selection rule set to dispatch control to the specific 
method. To control which operators in what sequence are executed within a method, use a Decide. 

Auxiliary Information

In order to execute successfully, the methods in a GOMS model often require additional information; 
this information is auxiliary to the step-by-step procedural knowledge represented directly in the GOMS 
methods and selection rules, but is logically required for actual tasks to be executed. For example, if the 
user is supposed to type in an exact string from memory, this string must be specified somehow.

The syntax for specifying auxiliary information is based on describing object-like entities with 
properties and values; these descriptions can appear along with methods and selection rule sets. They 
must not be placed inside methods and selection rule sets, but can appear in any order with them and each 
other.

Visual Object Description

Visual objects are described outside of any methods as follows:

Visual_object: object_name
property_name is value.
...

For example, a red button labeled "Start" would be described as:

Visual_object: start_button
Type is Button.
Label is Start.
Color is Red.

A step like the following will result in start_button being stored in WM under the tag <button>:
Step. Look_for_visual_object_whose Type is Button, and Label is Start 

and_store_under <button>.

Subsequently, the following step will point to the button if its color is red:
Step. Decide: If Color of <button> is Red, 

Then Point_to <button>.
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Note that the names for visual objects are chosen by the analyst. GLEAN3 reserves two property 
names, Location and Size, for use by the Visual and Manual processors. All other property names and 
values can be chosen by the analyst. 

Long-Term Memory Contents

The contents of Long-Term Memory can be specified as a set of concepts (objects) with properties and 
values. Note the since the value of a property can be the name of another object, complicated information 
structures are possible. The syntax:

LTM_item: LTM_concept
property_name is property_value.
...

...

For example, information about the "Cut" command in a simple text editor could be specified as:

LTM_item: Cut_Command
Name is CUT.
Containing_Menu is Edit.
Menu_Item_Label is Cut.
Accelerator_Key is Command-X.

Task Instances

A task description describes a generic task in terms of the goal to be accomplished, the situation 
information required to specify the goal, and the auxiliary information required to accomplish the goal 
that might be involved in bypassing descriptions of complex processes (see below). Thus, the task 
description is essentially the "parameter list" for the methods that perform the task. A task instance is a 
description of a specific task. It consists of specific values for all of the “parameters” in a task description. 
A set of task instances can be specified as task item objects whose property values can refer to other 
objects to form a linked-list sort of structure. The syntax is similar to the above:

Task_item: task_item_name
property_name is property_value.
...

...

A Procedure for Constructing a GOMS Model 

A GOMS analysis of a task follows the familiar top-down decomposition approach. The model is 
developed top-down from the most general user goal to more specific subgoals, with primitive operators 
finally at the bottom. The methods for the goals at each level are dealt with before going down to a lower 
level. The recipe presented here thus follows a top-down, breadth-first expansion of methods.

In overview, start by describing a method for accomplishing a top-level goal in terms of high-level 
operators. Then choose one of the high-level operators, replace it with an Accomplish_goal operator for 
the corresponding goal, and then write a method for accomplishing that goal in terms of lower-level 
operators. Repeat with the other level operators. Then descend a level of analysis, and repeat the process 
for the lower-level operators. Continue until the methods have arrived at enough detail to suit the design 
needs, or until the methods are expressed in terms of primitive operators. So, as the analysis proceeds, 
high-level operators are replaced by goals to be accomplished by methods that involve lower-level 
operators. 

19



It is important to perform the analysis breadth-first, rather than depth-first. By considering all of the 
methods that are at the same level of the hierarchy before getting more specific, similar methods are more 
likely to be noticed, which is critical to capturing the procedural consistency of the user interface.

Step 1: Choose the top-level user's goals

The top-level user's goals are the first goals that will be expanded in the top-down decomposition. It is 
worthwhile to make the topmost goal, and the first level of subgoals, very high-level to capture any 
important relationships within the set of tasks that the system is supposed to address. An example for a 
text editor is revise document, while a lower-level one would be delete text. Starting with a set of goals 
at too low a level entails a risk of missing the methods involved in going from one type of task to another. 

As an example of very high-level goals, consider the goal of produce document in the sense of 
”publishing” - getting a document actually distributed to other people. This will involve first creating it, 
then revising it, and then getting the final printed version of it. In an environment that includes a mixture 
of ordinary and desktop publishing facilities, there may be some important subtasks that have to be done 
in going from one to the other of the major tasks, such as taking a document out of an ordinary text editor 
and loading it into a page-layout editor, or combining the results of a text and a graphics editor. If only 
one of these applications is under design, say the page-layout editor, and the analysis start only with goals 
that correspond to page-layout functions, the analysis may miss what the user has to do to integrate the 
use of the page-layout editor in the rest of the environment.

As a lower-level example, many Macintosh applications combine deleting and inserting text in an 
especially convenient way. The goal of change word has a method of its own; i.e., double click on the 
word and then type the new word. If the analysis starts with revise document it is possible to see that one 
kind of revision is changing a piece of text to another, and so this especially handy method might well be 
noticed in the analysis. But if the analysis starts with goals like insert text and delete text the 
decision has already been made about how revisions will be done, and so it is more likely to miss a case 
where a natural goal for the user has been well-mapped onto the software directly, instead of going 
through the usual functions.

Step 2. Write the Top-Level Method Assuming a Unit-Task Control Structure

Unless there is reason to believe otherwise, assume that the overall task has a unit-task type of control 
structure. This means that the user will accomplish the topmost goal (the overall task) by doing a series of 
smaller tasks one after the other. The smaller tasks correspond to the set of top-level goals chosen in Step 
1. For a system such as a text editor, this means that the topmost goal of edit document will be 
accomplished by a unit-task method similar to that described by Card, Moran, and Newell, (1983). One 
way to describe this type of method in GOMSL is as follows:

Method_for_goal: Edit Document
Step. Store First under <current_task_name>.
Step Check_for_done. 
Decide: If <current_task_name> is None, Then 

Delete <current_task>; Delete <current_task_name>;
Return_with_goal_accomplished.

Step. Get_task_item_whose Name is <current_task_name> 
and_store_under <current_task>.

Step. Accomplish_goal: Perform Unit_task.
Step. Store Next of <current_task> under <current_task_name>;

Goto Check_for_done.

The goal of performing the unit task typically is accomplished via a selection rule set, which dispatches 
control to the appropriate method for the unit task type, such as:
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Selection_rules_for_goal: Perform Unit_task
If Type of <current_task> is move, 
 Then Accomplish_goal: Move Text.
If Type of <current_task> is delete, 
 Then Accomplish_goal: Erase Text.
If Type of <current_task> is copy, 
 Then Accomplish_goal: Copy Text.
//... etc. ...
Return_with_goal_accomplished.

This type of control structure is common enough that the above method and selection rule set can be 
used as a template for getting the GOMS model started. The remaining methods in the analysis will then 
consist of the specific methods for these subgoals, similar to those described in the extended example 
below. 

In this example the task type maps directly to a goal whose name is a near-synonym of the type, but this 
is not always the case. A good exercise is to consider the typical VCR, which has at least three modes for 
recording a broadcast program; the selection rule for choosing the recording method consists not of tests 
for a simple task types like "one button recording", but rather the conditions under which each mode can 
or should be applied. For example, if the user is present at the beginning of the program, but will not be 
present at the end, and the length of the program is known, then the one-button recording method should 
be used. 

Step 3. Recursively Expand the Method Hierarchy

This step consists of writing a method for each goal in terms of high-level operators, and then replacing 
the high-level operators with another goal/method set, until the analysis has worked down to the finest 
grain size desired. First, draft a method to accomplish each of the current goals. Simply list the series of 
steps the user has to do. Each step should be a single natural unit of activity; heuristically, this is just an 
answer to the question "how would a user describe how to do this?" Make the steps as general and high-
level as possible for the current level of analysis. A heuristic is to consider how a user would describe it in 
response to the instruction "don't tell me the details yet." Define new high-level operators, and bypass 
complex psychological processes as needed. Make a note of the analyst-defined operators and task 
description information as it is developed. Make simplifying assumptions as needed, such as deferring the 
consideration of possible shortcuts that experienced users might use. Make a note of these assumptions in 
comments in the method. 

If there is more than one method for accomplishing the goal, draft each method and then draft the 
selection rule set for the goal. A recommendation: defer consideration of minor alternative methods until 
later; especially for alternative "shortcut" methods.

After drafting all of the methods at the current level, examine them one at time. If all of the operators in 
a method are primitives, then this is the final level of analysis of the method, and nothing further needs to 
be done with this method. If some of the operators are high-level, non-primitive operators, examine each 
one and decide whether to provide a method for performing it. The basis for the decision is whether 
additional detail is needed for design purposes. For example, early in the design of a specialized text-entry 
device, it might not be decided whether the system will have a mouse or cursor keys. Thus it will not be 
possible to describe cursor movement and object selection below the level of high-level operators. In 
general, it is a good idea to expand as many high-level operators as possible into primitives at the level of 
keystrokes, because many important design problems, such as a lack of consistent methods, will show up 
mainly at this level of detail. Also, the time estimates are clearest and most meaningful at this level. For 
each operator to be expanded, rewrite that step in the method (and in all other methods using the operator) 
to replace the operator with an Accomplish_goal operator for the corresponding goal. 
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For example, suppose the current method for copying selected text is:

Method_for_goal: Copy Selection
Step 1. Select Text.
Step 2. Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

To descend a level of analysis for the Step 1 operator Select Text, rewrite the method as:

Method_for_goal: Copy Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

Then provide a method for the goal of selecting the text. This process should be repeated until all of the 
methods consist only of operators that are either primitive operators, or higher-level operators that will 
not be expanded.

Step 4. Document and Check the Analysis

After the methods and auxiliary information has been written out to produce the complete GOMSL 
model, list the any analyst-defined operators used, along with a brief description of each one, and the 
assumptions and judgment calls made during the analysis. Then, choose some representative task 
instances, and check on the accuracy of the model either by hand or with the GLEAN tool, to verify that 
the methods generate the correct sequence of overt actions, and correct and recheck if necessary. 

Examine the judgment calls and assumptions made during the analysis to determine whether the 
conclusions about design quality and the performance estimates would change radically if the judgments 
or assumptions were made differently. This sensitivity analysis will be very important if two designs are 
being compared that involved different judgments or assumptions; less important if these were the same 
in the two designs. It may be desirable to develop alternate GOMS models to capture the effects of 
different judgment calls to systematically evaluate whether they have important impacts on the design.

Example in the Appendix

The Appendix contains a complete example GOMS model and a summary of how it was constructed 
with the above procedure.  A more complete description of the construction procedure can be found in 
Kieras (1988, 1997a, 1999).

Conclusion and New Directions

GOMS was originally intended as an analytic approach to evaluating a user interface: a way to obtain 
some usability information early enough in the design process to avoid the expense of prototype 
development and user testing (see John & Kieras, 1996a,b; Kieras, in press). However, as GOMS was 
developed, it incorporated some of the developing ideas about computational modeling of human 
cognition and performance, and has thus become a framework for constructing computer simulations of 
the subset of human activity that is especially relevant to much of user interface design.  Thus, as 
presented  here, GOMS can be defined as a task-analytic notation for procedural knowledge that (1) has a 
syntax and semantics similar to a traditional programming language; (2) assumes a simplified cognitive 
architecture based on the scientific literature that can be implemented as a computer simulation; (3) can 
be executed in a simulation to yield a simulated human that can interact with an actual or simulated 
device; (4) the static and run-time properties of the resulting simulation model predict aspects of usability 
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such as time to learn or task execution time.

The advantage of GOMS modeling of human activity over the several alternatives (see Kieras, in press) 
is its relative simplicity and conceptual familiarity to software designers and developers.  The key part of 
such simulations is, of course, the representation of how the simulated human understands the task 
structure and the requirements; GOMS models provide a convenient and relatively intelligible way to 
describe the procedural aspects of tasks.  The fact that these task-analytic models have both a direct 
scientific tie to human psychology and also can be used in running computer simulations means that the 
GOMS task-analytic notation has well-grounded claims to rigor and utility beyond more informal 
approaches.  Of course, formality has a price: constructing a formal representation is always more work 
than an informal one. However, GOMS models can be "sketched" in an informal manner that preserves 
the intuitive concepts of how the task is done, and these informal models can then be tightened up if 
necessary.  Thus there would appear to be no disadvantages to using GOMS for representing procedural 
tasks: the level of formality of the notation can be adjusted to the requirements of the analysis situation.

Although GOMS as it currently stands is a useful and practical approach, it is by no means "finished." 
There are many unresolved issues and new directions to explore within the general approach that GOMS 
represents, and the specifics of GOMS as presented in this chapter.  The remainder of this concluding 
discussion will deal with three topics undergoing development in GOMS; these are human error; 
interruptions, and modeling of teams.

Modeling Error Behavior

The GOMS models originally presented in Card, Moran, and Newell (1983) and subsequently dealt 
only with error-free behavior, although Card et al (1983, p. 184ff) did sketch out what would be required 
to apply GOMS to errors. Historically, it has been a daunting problem to model human error and how to 
deal with it in design more precisely and specifically than the usual high-level general advice. However, 
as presented at length in Wood (2000), if attention is restricted to errors in procedural tasks, and GOMS is 
used to represent procedural knowledge, substantial progress can be made. That is, a remarkable thing 
about the extant theoretical work on human error is that it does not have at its core a well-worked out and 
useful theory of normal, or error-free, behavior in procedural tasks; it is hard to see how one could 
account for errors unless one can also account for correct performance! GOMS, in the architectural sense 
presented here, is such a theory of correct performance, and thus provides  good starting point for usefully 
representing human error behavior. 

Wood (2000) follows up on this insight and the original Card et al. proposal in three general ways: 
First, once the human detects an error, recovering from it becomes simply another goal; a well-designed 
system will have simple, efficient, and consistent methods for recovering from errors. Thus the error-
recovery support provided by a user interface can be designed and evaluated with GOMS just like the 
"normal" methods supported by the interface.  Second, the way in which an error recovery method should 
be invoked turns out to be a difficult notational problem, and has a direct analogy to how error handling is 
done in computer programming. The modern solution for computer programming is exceptions, which 
provide an alternate flow of control to be used just for error handling, leaving the main body of the code 
uncluttered to represent only the normal activity of the program. Wood suggests that a similar approach 
would be the desirable extension to GOMS models: when an error is detected, an exception-like 
mechanism invokes the appropriate error-recovery method and then allows the original method to resume. 
However, exception handling is subtle even in computer programming, and humans may or may not work 
in the same way; more theoretical and empirical work is needed. Third, the ways in which humans detect 
that they have committed an error is currently rather mysterious, and we lack a good theoretical proposal 
that could be used easily in design situations. To finesse this problem, Wood (1999, 2000) proposed using 
a set of heuristics for examining a GOMS model and identifying what type of error was likely to occur at 
each method step, when the error would become visible, and what method the user would have to use to 
recover from it. This information in turn suggests how one might modify the interface to reduce the 
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likelihood of the error or make it easier to detect and recover from it. For example, suppose the GOMS 
model includes a mental operation to compute a value from two numbers on the screen that is 
subsequently used in a decide operator that invokes one of two submethods to complete a task. A possible 
error is to miscompute the value, but the error might not be manifested until the decide operator had taken 
the user through a series of other steps to the wrong display, for which no further steps could be executed. 
Such an interface, with its error-prone requirements and delayed-detection properties, might compound its 
poor design by forcing the user to start from the beginning to correct the error.  The interface could be 
redesigned to make the computation unnecessary if possible, make an error obvious sooner, or provide an 
efficient recovery procedure. Wood (2000) demonstrated the value of this heuristic analysis for error-
tolerant design using a realistic e-commerce application.

Interruptions

The normal flow of control in a GOMS model as presented here is the hierarchical-sequential flow of 
control used in traditional programming languages: a method executes steps in sequence; if a step invokes 
a submethod, the steps in that submethod are executed in sequence until the submethod is complete, 
whereupon the next step in the calling method is executed in sequence. This simple control regime is why 
GOMS models are relatively easy to construct compared to other cognitive modeling approaches (see 
Kieras, in press). However, in realistic situations, humans often have to respond to interrupts of various 
kinds; an everyday example is responding to a telephone call, then resuming work after handling the call. 
Trying to account for interruptability within the confines of hierarchical-sequential flow of control is 
technically possible, but it is also clumsy and counter-intuitive: statements that check for interrupting 
events must be distributed liberally into the normal flow of processing. Computer technology rejected 
such an approach many decades ago with the introduction of specialized hardware in which an 
interrupting signal automatically forces the computer to suspend execution of whatever it is doing and 
start executing interrupt-handling code instead; once the interruption is dealt this, the interrupted process 
can be resumed. 

GOMS models for many computer applications do not seem to require such interrupt processing 
because (1) the analyzed task is limited to the human interacting with the computer; other devices, such as 
the telephone, are not included; and (2) the activity with the computer is all user-initiated; the computer 
responds only to the user's activity, and in such a way that the user always waits for the computer to finish 
its response before continuing. The typical text-editor task fits this description, along with many ordinary 
computer-usage situations. However, in other tasks, the machine can present events that are asynchronous 
with the user's activity, and the task requirements can be such that the user must respond to these 
asynchronous events promptly, or at least not ignore them. An example of such a task situation appears in 
the military task modeled by Santoro, Kieras, and Campbell (2000). Here the user is supposed to monitor 
a radar display showing the movements of aircraft in the vicinity of a warship and perform various tasks 
in response to what the aircraft do. For example, if an aircraft exhibits suspicious behavior, the user is 
supposed to establish radio contact with the aircraft and ask for identification and clarification. Such 
activity can take several minutes to complete; but in the meantime, other events must be noted, even if no 
overt activity is performed in response. For example, another aircraft could suddenly appear on the 
display, and the user must note that it should be given priority for inspection and decision-making once 
the current activity is done. In analogy with  computer programming, such checking could be done with 
many statements throughout the GOMS methods, but both practicality and intuition requires some kind of 
interrupt mechanism analogous to those used in computers.  Some of the production-rule cognitive 
architectures (see Byrne, in press) provide a natural approach: GOMS can be extended to include a set of 
If-Then statements whose conditions are evaluated whenever the relevant psychological state of the user 
changes; these rules specify what goal to accomplish if a specific interrupting condition is present. Thus 
for the radar operator's task, one interrupt rule was that if a new "blip" with a red color-code appears on 
the display, add it to a list of high-priority blips.  As part of its process for choosing the next task, the top-
level method in the model checks this list and activates a goal based on what it finds there. 
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The interrupt-rule concept provides a natural mechanism for giving a GOMS model the ability to 
respond to asynchronous events while preserving the simplicity of the hierachical-sequential control 
structure for the bulk of the task. It also provides a potential way to represent error detection; an interrupt 
rule could be checking for evidence of an error, and then invoke the appropriate error-handling method.  
Working out the details of such an approach is a matter for future research.  But in the meantime, it 
appears that GOMS models can successfully combine a simple program-like representation with an 
intuitive form of interruptability.

Modeling teams of users

Many design situations involve teams of humans that cooperate to perform a complex task. Doing more 
than simply acknowledging the possible incredible complexity of human interactions involved in a team 
is well beyond the scope of this chapter.  However, there is a subset of team activity that can be 
encompassed with GOMS modeling: the case where the team is following a procedure consisting of 
specified interactions between the team members, each of whom is likewise following a set of specified 
procedures. Such situations are common in many military team situations, such as the combat information 
center teams analyzed by Santoro and Kieras (2001). For example, each human in the team sits at a 
workstation that incorporates a radar display, and has certain assigned tasks, such as making the radio 
contacts described above. The team members are supposed to communicate with each other, using speech 
over an intercom, to coordinate their activity, such as ensuring that high-priority blips get examined. In 
this case, a model for the team can be constructed simply as a team of models: Each team member's taks 
is represented by a GOMS model; part of the member's task is to speak certain messages to other team 
members, and respond to certain messages from other team members. The structure of the team 
procedures determines which messages are produced by what member, and how another member is 
supposed to respond to them. The interrupt capability described above is especially useful because it 
simplifies handling of asynchronous speech input. Once the individual GOMS models have been 
developed, the activity of a team can be simulated simply by running the whole set of interacting 
individual models simultaneously.  The simulation can then show whether the team procedures result in 
good performance by the team as a whole. Thus the rigor and strengths of GOMS modeling and task 
analysis can be extended from the domain of individual user interfaces to the domain of team structure 
and team procedures. 
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Appendix: An Example

Below is shown a complete example GOMS model for a simplified subset of the MacWrite text editor 
that describes how to move, delete, or copy text selections. The model contains methods that start at the 
topmost level and finish at the keystroke level, along with the necessary auxiliary information for the 
methods to be executed (by hand or by GLEAN), and a set of four benchmark tasks to be performed. The 
GOMSL starts with the auxiliary information for a set of tasks, visual items, and items assumed to be in 
LTM. The methods themselves start with the Top-Level Unit Task method. One should be able to get at 
least of rough idea of the methods simply by reading them, even without detailed knowledge of the syntax 
of GOMSL; this is one of the goals of the NGOMSL and GOMSL notations. 

The process of constructing the model will be summarized. A more complete step-by-step construction 
of a similar example can be found in Kieras (1988, 1997a, 1999). Due to the top-down expansion of 
methods, the methods were constructed in roughly the same order as they appear in the example. The 
construction started with the topmost user's goal of editing the document. Taking the above 
recommendation, the first piece of the model is simply a version of the unit-task method and the selection 
rule set that dispatches control to the appropriate method. This assumes an ad-hoc task representation that 
was refined as the construction continued.

The unit task method and its selection rule specify a set of second-level user goals. This example 
focusses on the methods for the goal of moving text. A first judgment call was that users view moving 
text as first cutting, then pasting. The method for this goal was written accordingly, initially with two high 
level operators: Cut Selection, then Paste Selection, followed by a Verify that the cut and paste has 
been done correctly.

Descending a level, the high-level operators were then rewritten into Accomplish_goal operators and 
methods for cutting and pasting selected text were provided. Another judgment call is that users are aware 
of the general-purpose idea of text selection, so the method for cutting a selection starts not with 
keystroke-level actions for selecting text that would be specific to the cutting goal, but rather with another 
high-level operator for selecting text which then was rewritten into an Accomplish_goal operator. Since 
there are a variety of ways to select text, a selection rule specifies three different specific contexts in 
which text selection is needed. It thus maps the general goal of selecting text to three different specific 
goals, each of which has its own method. The paste method similarly has a subgoal of selecting the 
insertion point, but there is only one way to do it, and so only a single method was provided. Notice how 
this set of judgements effectively state that the user has some general-purpose "subroutines" for cutting, 
pasting, selecting text, and selecting an insertion point. Expressing this conclusion as goals and methods 
asserts some key properties of the interface (e.g. selection can be done in the same way for all relevant 
tasks in the text-editing application) and that the user makes use of them, or should make use of them.

Descending another level, note that the cutting and pasting methods involve picking a command from a 
menu (for simplicity, assume that users do not make use of the command-key shortcuts). An important 
property of well-designed menu systems is that the procedure for picking a command is uniform across 
the menu system. Thus, the operators of Invoke_cut_command and Invoke_paste_command were replaced 
with a single Issue Command method that is given the "name" or "concept" of the desired command as a 
pseudoargument and makes the proper menu accesses. Thus the Issue Command method first retrieves 
from LTM which menu to open, finds it on the screen, opens it, and then finds and selects the actual menu 
item.

To make this example more complete, the methods for deleting and duplicating text were added. Often, 
writing the methods for additional goals is quite easy once the first set of methods have been written – the 
lower-level submethods are simply reused in different combinations or with different commands; this is 
one symptom of a good design. After drafting the methods the analyst collected the task information that 
the methods require, and reconciled and revised the task representation as necessary. In addition, the 
auxiliary information was collected and specified, such as the LTM items required by the Issue Command 
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method. For the GLEAN tool to execute these methods, there needs to be some visual objects for the 
methods to look for and point at. In this case, these objects need only be minimal or "dummy" objects. 
The example also includes as auxiliary information a set of four editing tasks specified in a "linked list" 
form that is accessed by the top-level unit task method.

Define_model: "MacWrite Example"
Starting_goal is Edit Document.

Task_item: T1 
Name is First.
Type is copy.
Text_size is Word.
Text_selection is "foobar".
Text_insertion_point is "*".
Next is T2.

Task_item: T2
Name is T2.
Type is copy.
Text_size is Arbitrary.
Text_selection_start is "Now".
Text_selection_end is "country".
Next is T3.

Task_item: T3
Name is T3.
Type is delete.
Text_size is Word.
Text_selection is "foobar".
Text_insertion_point is "*".
Next is T4.

Task_item: T4
Name is T4.
Type is move.
Text_size is Arbitrary.
Text_selection_start is "Now".
Text_selection_end is "country".
Next is None.

// Dummy visual objects - targets for Look_for and Point_to
Visual_object: Dummy_text_word

Content is "foobar".
Visual_object: Dummy_text_selection_start

Content is "Now".
Visual_object: Dummy_text_selection_end

Content is "country".
Visual_object: Dummy_text_insertion_point

Content is "*".

// Minimal description of the visual objects in the editor interface
Visual_object: Edit_menu

Label is Edit.
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Visual_object: Cut_menu_item
Label is Cut.

Visual_object: Copy_menu_item
Label is Copy.

Visual_object: Paste_menu_item
Label is Paste.

// Long-Term Memory contents about which items are in which menu
LTM_item: Cut_Command

Name is Cut.
Containing_Menu is Edit.
Menu_Item_Label is Cut.
Accelerator_Key is COMMAND-X.

LTM_item: Copy_Command
Name is Copy.
Containing_Menu is Edit.
Menu_Item_Label is Copy.
Accelerator_Key is COMMAND-C.

LTM_item: Paste_Command
Name is Paste.
Containing_Menu is Edit.
Menu_Item_Label is Paste.
Accelerator_Key is COMMAND-V.

// Top-Level Unit Task Method
Method_for_goal: Edit Document

Step. Store First under <current_task_name>.
Step Check_for_done. 
Decide: If <current_task_name> is None, Then 

Delete <current_task>; Delete <current_task_name>;
Return_with_goal_accomplished.

Step. Get_task_item_whose Name is <current_task_name> 
and_store_under <current_task>.

Step. Accomplish_goal: Perform Unit_task.
Step. Store Next of <current_task> under <current_task_name>;

Goto Check_for_done.

Selection_rules_for_goal: Perform Unit_task
If Type of <current_task> is move, 
 Then Accomplish_goal: Move Text.
If Type of <current_task> is delete, 
 Then Accomplish_goal: Erase Text.
If Type of <current_task> is copy, 
 Then Accomplish_goal: Copy Text.
//... etc. ...
Return_with_goal_accomplished.

Method_for_goal: Erase Text
Step 1. Accomplish_goal: Select Text.
Step 2. Keystroke DELETE.
Step 3. Verify "correct text deleted".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Move Text
Step 1. Accomplish_goal: Cut Selection.
Step 2. Accomplish_goal: Paste Selection.
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Step 3. Verify "correct text moved".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Copy Text
Step 1. Accomplish_goal: Copy Selection.
Step 2. Accomplish_goal: Paste Selection.
Step 3. Verify "correct text moved".
Step 4. Return_with_goal_accomplished.

Method_for_goal: Cut Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Accomplish_goal: Issue Command using Cut.
Step 3. Return_with_goal_accomplished.

Method_for_goal: Copy Selection
Step 1. Accomplish_goal: Select Text.
Step 2. Accomplish_goal: Issue Command using Copy.
Step 3. Return_with_goal_accomplished.

Method_for_goal: Paste Selection
Step 1. Accomplish_goal: Select Insertion_point.
Step 2. Accomplish_goal: Issue Command using Paste.
Step 3. Return_with_goal_accomplished.

// Each task specifies the "size" of the text involved
Selection_rules_for_goal: Select Text

If Text_size of <current_task> is Word, 
 Then Accomplish_goal: Select Word.
If Text_size of <current_task> is Arbitrary,
 Then Accomplish_goal: Select Arbitrary_text.
Return_with_goal_accomplished.

// The task specifies the to-be-selected word
Method_for_goal: Select Word

Step 1. Look_for_object_whose Content is Text_selection of <current_task>
and_store_under <target>.

Step 2. Point_to <target>; Delete <target>.
Step 3. Double_click mouse_button.
Step 4. Verify "correct text is selected".
Step 5. Return_with_goal_accomplished.

// The task specifies the beginning and ending word of the text
Method_for_goal: Select Arbitrary_text

Step 1. Look_for_object_whose
Content is Text_selection_start of <current_task>
and_store_under <target>.

Step 2. Point_to <target>.
Step 3. Hold_down mouse_button.
Step 4. Look_for_object_whose Content is

Text_selection_end of <current_task>
and_store_under <target>.

Step 5. Point_to <target>; Delete <target>.
Step 6. Release mouse_button.
Step 7. Verify "correct text is selected".
Step 8. Return_with_goal_accomplished.
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Method_for_goal: Select Insertion_point
Step 1. Look_for_object_whose

Content is Text_insertion_point of <current_task>
and_store_under <target>.

Step 2. Point_to <target>; Delete <target>.
Step 3. Click mouse_button.
Step 4. Verify "insertion cursor is at correct place".
Step 5. Return_with_goal_accomplished.

// Assumes that user does not use command-key shortcuts

Method_for_goal: Issue Command using <command_name>
// Recall which menu the command is on, find it, and open it

Step 1. Recall_LTM_item_whose
Name is <command_name>
and_store_under <command>.

Step 2. Look_for_object_whose 
Label is Containing_Menu of <command>
and_store_under <target>.

Step 3. Point_to <target>.
Step 4. Hold_down mouse_button.
Step 5. Verify "correct menu appears".

// Now select the menu item for the command
Step 6. Look_for_object_whose 

Label is Menu_Item_Label of <command>
and_store_under <target>.

Step 7. Point_to <target>.
Step 8. Verify "correct menu command is highlighted".
Step 9. Release mouse_button.
Step 10.Delete <command>; Delete <target>;

Return_with_goal_accomplished.
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