
The Role of Cognitive Task Analysis in the
Application of Predictive Models of

Human Performance

David E. Kieras

and

David E. Meyer

University of Michigan

EPIC Report No. 11 (TR-98/ONR-EPIC-11)

March 5, 1998

This research was supported by the Office of Naval Research, Cognitive Science Program, under Grant
Numbers N00014-92-J-1173 & N00014-96-1-0467. Reproduction in whole or part is permitted for any
purpose of the United States Government. Requests for reprints should be sent to: David E. Kieras,
Artificial Intelligence LaboratoryElectrical Engineering & Computer Science Department, University of
Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109-2110, kieras@eecs.umich.edu, or David E. Meyer,
Department of Psychology, University of Michigan, 525 East University, Ann Arbor, MI 48109-1109,
demeyer@umich.edu

Approved for Public Release; Distribution Unlimited

1

The Role of Cognitive Task Analysis in the
Application of Predictive Models of Human Performance

David E. Kieras and David E. Meyer

University of Michigan

Abstract

Predictive modeling of human performance as long been applied in human factors engineering.
In the meantime, computational cognitive architecture models have developed a theoretically
coherent and sophisticated basis for advanced predictive modeling of human performance. Key is a
distinction between fixed task-independent architectural mechanisms and task-specific strategies
that control the architecture. Applying the new cognitive modeling approaches to system design
problems requires a method for identifying the task strategy, but new results suggest that humans
choose task strategies that incorporate optional features that are not based on either architectural
constraints or task demands. These optional features strongly influence performance, but cannot be
identified by conventional task analysis methods. A heuristic is presented for obtained useful task
performance predictions based on characterizing the fast-possible and slowest-reasonable
combinations of optional task strategy aspects. The heuristic is illustrated with results from a
somewhat complex laboratory task.

Introduction

Two Traditions in Human Performance Modeling

Two communities have been interested in modeling and predicting human performance. The
Human Factors Engineering community has long applied methods for predicting human
performance for the purpose of arriving at better designs of systems. For example, past
applications have been based on methods and modeling tools such as SAINT and HOS (McMillan,
Beevis, Salas, Strub, Sutton, & Van Breda, 1989; Elkind, Card, Hochberg, & Huey, 1989).
These approaches are based on analyzing the task that the system operator performs, using
systematic task analysis methods that have developed over many years of practical experience in
system analysis and design (Kirwan & Ainsworth 1992, Beevis, Bost, Doering, Nordo, Oberman,
Pain, Schuffel, & Streets, 1992). In addition, modeling tools use well-established theoretical
concepts from human information-processing to generate performance predictions. Overall, this
approach has been successful enough that considerable effort has been expended to implement
computer-based tools for constructing and using models of human performance in system design.

Concomitantly, the Cognitive Psychology Research community has developed a new generation
of concepts for modeling human cognition and performance, which show promise of enabling the
modeling of human performance to be done with considerably more detail and precision, and also
in a more theoretically unified and coherent framework than traditional human information-
processing theory. These more advanced approaches are based on computational modeling
packages that implement an overall structure for human cognition, a cognitive architecture,
analogous to the hardware architecture of a computer. Within such a framework, models for a
specific task, or type of task, can be implemented. Since the focus has been on developing the
scientific basis of the architectures, rather than practical application, the tasks chosen for study

2

have not typically involved actual systems, and systematic methods of task analysis have not been
applied.

Practical Value of Predictive Modeling

The further development of predictive modeling methodology in Human Factors work should
have a strong impact on system design because it will enable the design of systems that will
perform well with considerably less cost and greater success than the current standard
methodology that centers on empirical user testing. User testing is necessarily slow and expensive,
and to be most accurate, requires a fairly complete prototype or mockup of the system under
design. In contrast, predictive models can produce results on human performance while a future
system is still in the earliest design phase, as when SAINT-family models are applied during
functional analysis and function allocation. To use the models at their greatest level of precision
requires only a detailed design specification; no mockups, prototypes, or human testing are
necessary in order to evaluate a design early enough to get the system design in the right ballpark
before the necessary and costly next steps of actual user testing. Current experience with newer
approaches to performance modeling such as MIDAS (Hoecker, Roth, Corker, Lipner, & Bunzo,
1994; Smith & Tyler, 1997), and GOMS (John & Kieras, 1996a,b) is especially encouraging. It
would seem that applying the new cognitive architectures from the Cognitive Psychology Reseach
community to the work of Human Factors Engineering would be an obvious and direct step.
However, the two communities have been severely compartmentalized; despite the shared interest
in human performance modeling, there is a huge gap in both theory and practice between the
researchers building sophisticated cognitive models and the human factors designers of large-scale
systems.

Purpose of this Chapter

This chapter is an effort to begin bridging the gap. We will focus on certain problems that arise in
applying a modern cognitive modeling approach to predicting performance in somewhat
complicated tasks. Our cognitive modeling work has revealed a deficiency in both task analysis
methodology and cognitive modeling methodology, and we propose an initial solution to the
problem, and point to how the more general issues could be addressed.

The remainder of this chapter first describes the general approach for using cognitive architecture
in system design, including what is required in order to apply a cognitive architectures to predict
human performance in a system design setting. Then is presented the critical problem of identifying
the task strategy to be used in the model, which is complicated by the presence of optional aspects
of how the task is performed. We then present a solution to the problem of strategy options, the
bracketing heuristic, and a test of its application. We conclude with remarks about how the
bracketing heuristic can be applied, the requirements it places on task analysis, and the relation of
cognitive modeling and task analysis in general.

Using Cognitive Architectures in System Design

Task-Independent Architecture and Task-Specific Procedures

Currently, the three most important cognitive architectures relevant to this chapter are ACT-R
(Anderson, 1993), SOAR (Laird, Newell, & Rosenbloom, 1987), and EPIC (Kieras & Meyer, in
press; Kieras, Wood, & Meyer 1997, Meyer & Kieras, 1997a, b, in press). All of these involve
representing the "how to do it" knowledge (procedural knowledge) for a task with a set of
production rules, a simple and elegant formalism. A production rule representation is a set of IF-
THEN rules which the architecture mechanisms "run" in order to perform the task. Thus, the

3

structures and mechanisms postulated in the architecture represent the fixed or constant
mechanisms of human cognition and performance, while the production rules represent the task-
specific "programming," analogous to the distinction between computer hardware and software. In
contrast to earlier information-processing models of human performance, the theoretical
significance of these architectures is that they make a clear distinction between the fixed versus the
task-specific aspects of behavior, and so provide a software-reuse capability in constructing
models of human performance — if the architecture is accurate, then only the new task-specific
components need to be specified to generate performance predictions for a new system.

Current proposed architectures differ in their detailed assumptions about the components of
human cognition and performance. However such differences are not relevant for the purposes of
this chapter. Thus, this chapter makes use of only the EPIC architecture. Nevertheless, the main
points herein apply equally to models constructed with any other architecture for modeling human
performance in detail and predictively.

Requirements for Architecture-Based Predictive Modeling

More specifically, in order to construct and apply an architectural model of human performance,
three elements are necessary:

• A specified architecture. There must be a specified architecture that represents
the fixed, constant, human abilities that generalize across tasks. The architecture can be
extremely simple, as in those underlying GOMS methodology (see John & Kieras,
1996b), or very complex, as in ACT-R (Anderson, 1993) or SOAR (Laird, Newell, &
Rosenbloom, 1987). In addition, the architecture must include some way to represent
task-specific parameters of architectural components in addition to task-specific
procedural knowledge. For example, a specific task might involve specialized symbols
on a display that will take some amount of time to recognize. These recognition times
will need to be represented in the architecture by numerical values of parameters chosen
for the task domain, even if the recognition is assumed to be handled by standard
components of the architecture.

• A representation of task strategy. There must be some representational scheme,
such as production rules, through which the assumed procedural knowledge for
performing a task, here called a task strategy, can be stated and used along with the
architecture to generate predictions about task activities and performance. This
representation is essentially the "programming language" for the architecture; it is the
major mechanism that adapts the fixed architecture to deal with specific tasks.

• A strategy-identification methodology. Third, there must be a methodology
for identifying what strategy will be used to perform the task. This strategy can then be
expressed in the representational scheme. The strategy-identification methodology, and
the problems in developing it, are one major focus of this chapter.

If all three of these elements can be developed and fielded appropriately, cognitive architecture
models could be used routinely in system design to predict human performance for a particular
system design. The steps in this routine application would be: (1) Determine and represent the task-
specific processes and their parameters; (2) Identify a strategy for performing the task, and then
program the architecture to follow the task strategy. (3) Run the resulting model through a selected
set of representative task situations to obtain predicted human performance. (4) Evaluate a
proposed system design by comparing the predicted performance against either performance
requirements, or the performance predicted for alternative system designs. (5) If necessary, revise

4

the system design, and repeat the assessment.

The Strategy-Identification Problem

This proposed process for routine application of cognitive modeling sounds straightforward, and
simply echoes conventional wisdom in the application of simpler models (e.g. Card, Moran, &
Newell, 1983, John & Kieras, 1996a; McMillan et al., 1989; Elkind, Card, Hochberg, & Huey,
1989). However, identifying the task strategy is the stumbling block. Even in putatively simple
laboratory tasks, the task strategy can be very non-obvious, and the difficulties of understanding
expert performance in the real world are legion. The extreme detail and precision of modern
cognitive architectures exacerbates the problem because it is even harder to identify a detailed
strategy than a coarse-grained one. Finally, we know from certain long-standing formal results in
computation theory that veridical identification of task strategy is in principle impossible (Moore,
1956), so strategy identification is at best only a heuristic process. What heuristic knowledge can
be brought to bear on strategy identification from cognitive modeling and human factors?

Cognitive Modeling Practice

In most academic cognitive modeling research, the methodology for identifying the task strategy
is intuitive, informal, and normally unstated. Typically, the researcher makes an intuitive guess
about what the task strategy is, and then sees if the predictions generated from the assumed
strategy and architecture fit the data. If not, the researcher modifies the strategy or the architecture
and repeats until a good fit is obtained between the data and the predictions.

During the data-fitting process, the researcher tinkers with a model until its predictions fit the
data. The model "predicts" only in the statistical sense of the term; conceptually, the process is
fundamentally post-hoc. The scientific lessons learned from this heuristic exercise are based on the
vicissitudes experienced in achieving the fit. For example, if the model can be made to fit only with
implausible assumptions, the plausibility of the proposed architecture is seriously weakened. If
modifications to the architecture are required for a good fit, then the question becomes whether
these changes are general and lead to a more accurate architecture, or whether they are purely ad-
hoc. On the other hand, if applying the architecture to a variety of task domains reveals recurring
patterns of strategies, then important lessons have been learned about the "software" of human
performance as well as the "hardware" (see Meyer & Kieras, in press). Ultimately, the research
endeavor is deemed successful if the lessons learned from the data-fitting exercise are generalizable
and useful.

Application Requires True Prediction

However, in trying to predict performance of a human-machine system during system design,
the truth is unknown; there are no data to be fit because the system has not yet been constructed.
The modeler must construct a model that truly predicts the human-machine performance of a
system that does not exist - real prediction is required, not a statistical account of existing data.
Granted, some basic parameters may require empirical measurement, such as how long it takes to
interpret symbols on a display screen. Nonetheless, the predictive model must produce results
similar to what full-scale measurement of an actual system would yield, but using a simulated
system and simulated users. Consequently, the task strategy cannot be determined simply by post-
hoc data-fitting tinkering. Rather, the analyst must try to guess the task strategy in advance by
considering the user interface of the proposed system and the overall task requirements that the
user is trying to meet.

5

These need for a priori determination of the task strategy poses great problems. Practical system
design involves tasks of high complexity, and the strength of cognitive modeling supposedly stems
from its ability to deal with complex tasks. Yet it would seem unlikely that cognitive modelers can
perform seat-of-the-pants task analysis fast enough, accurately enough, or reliably enough to yield
a practically useful model in a usefully short time. Thus a crucial future objective for both the
scientific and practical application of a cognitive architecture is to develop a priori strategy-
identification methods that are powerful, accurate, and reliable enough for practical application.

Will Task Analysis Methodology help?

Given that task analysis in human factors practice has a long and successful history (Kirwan &
Ainsworth, 1992; Beevis et al., 1992), conventional task analysis methods should be applicable to
identifying task strategies for use in cognitive models. For example, task-flow models like SAINT
can be applied directly to a fairly high-level and undetailed task analysis (Laughery, 1989). More
detailed models like HOS (Harris, Iavecchia, & Dick, 1989) can be routinely applied when the
exact sequence of user actions or user procedures is specified in selected situations or scenarios.
Many of the techniques in sources like Kirwan and Ainsworth (1992) and Beevis et al. (1992)
supply methods and notation for identifying and recording task procedures and other aspects of the
task situation.

However, there is a historical gulf between cognitive modeling and human factors methodology.
The considerable experience in practical task analysis has yet to be applied in a systematic fashion
to the construction of computational cognitive models. Conversely, the modern approach to
computational cognitive architecture modeling is not at all in the mainstream of human factors
practice. In short, human factors task-analysis experts do not build architected cognitive models,
and cognitive modelers do not apply the established and principled methods of task analysis.

The Problem of Optional Aspects of Task Strategy

The thesis of this chapter is that fully exploiting modern cognitive architectural modeling requires
some innovation in how we do both task analysis and modeling. The reason is that human task
strategies can be more difficult to identify than our previous experience with simple architectures
and straightforward tasks would lead us to believe. More specifically, in our own work (Meyer &
Kieras, 1997a, b), we have seen that task performance is very heavily influenced by optional
aspects of task strategy: These are aspects of how the task is performed that are at the discretion of
the human operator, being constrained neither by the task requirements nor the cognitive
architecture. These optional aspects of task strategy can occur and cause powerful effects even in
very elementary tasks which have traditionally been assumed to depend solely on the architectural
structure of the human information-processing system (see Meyer & Kieras, in press).
Moreover,humans can be remarkably subtle, creative, and even confused in exactly how they
choose to do a task. These considerations pose the human-factors analyst with a fundamental
question: how can performance be predicted when the analyst is forced to guess about how clever
or confused the future users of a system will be?

The remainder of the chapter will help answer this question. Here we present an example of an
interesting task in which strategy options are involved when modeled with the EPIC architecture.
Our work shows how performance can be predicted by bracketing the range of performance
produced through the different strategy options. However, first a very brief introduction to the
EPIC architecture and its representation of task strategies is necessary.

6

The Bracketing Heuristic for Performance Prediction

The EPIC Architecture

Figure 1 presents the overall structure of the EPIC architecture. Many details of EPIC are
irrelevant to this chapter, and so will not be presented here; the reader is referred to Kieras, Wood,
and Meyer(1997), and Kieras and Meyer (in press) for detailed descriptions of the architecture, and
more complete information is also available from the authors. For present purposes, it will suffice
to say that EPIC postulates separate processors for perceptual, cognitive, and motor systems,

which operate in parallel with each other, and interact to produce simulated human performance.
Task strategies are represented as sets of production rules executed by the cognitive processor. The
perceptual processors rely on parameter estimates for task-specific encodings such as the time
required to recognize display symbols. The distinctive features of EPIC concern some of the
specific assumptions made about the cognitive processor, the relatively rich characterization of the
perceptual and motor mechanisms that are capable of many parallel processing activities, and the
representation of executive processes that oversee multiple-task performance and coordinate
parallel activities within a single task. An important objective of our work has been to fit human
performance data in precise quantitative detail; we have found that the quantitative properties of
data, in conjunction with quantitative constraints imposed by the architecture, serve as very
powerful constraints on the task strategies required to produce performance that matches the data.

7

Task
Environment

Cogn itive
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production
Memory

Ocular
Motor

Processor

Tactile
Processor

Manual
Motor

Processor

Simulated
Interaction
Devices

Figure 1. Overall structure of the EPIC architecture simuluation system. Task performance is simulated by having
the EPIC model for a simulated human (on the right) interact with a simulated task environment (on the left) via a
simulated interface between sensory and motor organs and interaction devices. Information flow paths are shown as
solid lines, and mechanical control or connections as dashed lines. The processors run independently and in parallel
with both each other and the Task Environment module.

EPIC's cognitive processor allows fully parallel processing, and the perceptual and motor
mechanisms permit a larger set of parallel activities than most architectures have previously
entertained. For example, recognition of a visual stimulus object can occur while the eye is being
moved to the next object. The physical execution of a movement can be overlapped with the motor
programming for the next movement. The hand might be prepared for a movement well in advance
of when the movement will be fully specified or executed. Our work has repeatedly revealed how
such extreme parallelism is required to fit task data (Meyer & Kieras, in press); if full advantage of
this parallelism is taken and task activities are overlapped as much as possible, performance will be
much faster than if more conservative strategies are followed.

Identification of Task Strategies in EPIC modeling

In Kieras, Wood, and Meyer(1997) we applied EPIC to model telephone operator task times. We
found that not only did we have to identify the required task procedures and implement them as
task strategies, but we also had to devise a set of modeling policies that specified optional strategy
features, such as which processes the task strategy would overlap. Since we could not choose a
single policy based on either the task analysis or the EPIC architecture, we explored several of the
large number of possibilities by constructing strategies according to selected combinations of
modeling policies, and then comparing the model predictions to observed task performance. We
discovered that all of the EPIC models using these strategies were usefully accurate in predicting
the data, but we also observed that some policies resulted in models that overpredicted the task
times, while others underpredicted. We were encouraged: predictions based on the different
modeling policies had fallen both above and below the target data, but were also fairly close to
them. In what follows, we will describe an extension of this approach, using a much more
strategically complex task as an example.

The Ballas Task and Results

Now that the basics of the EPIC architecture have been presented, we present an example of how
optional aspects of task strategy appear in our EPIC model for a complex task. Here we have
applied EPIC to predicting performance using data collected by James Ballas and his collaborators
at the Naval Research Laboratory (Ballas, Heitmeyer, & Perez 1992a, b). The experimental task
was a dual-task paradigm in which subjects had to track a target with a joystick, and concurrently
classify other targets presented on a radar-like display. Figure 2 shows a sketch of the dual-task
display; the tracking task is performed in the right-hand window, and the tactical classification task
(termed the tactical task hereafter) in the left-hand window. During these tasks, "blips" would
appear on the tactical display, then change color, whereupon the subject had to classify the blips as
being hostile or neutral as fast as possible according to a set of prespecified decision rules. Each
response to a blip consisted of two keystrokes, one to identify the blip by its "track number", the
second to designate whether it was hostile or neutral. Periodically, an on-board computer would
take over the tactical task and classify the blips automatically, leaving the subject free to perform
the tracking task by itself. After a time, the computer signaled the subject to resume the tactical task
and classify the blips manually.

The basic effect observed by Ballas et al. (1992a,b) appears in Figure 3, which shows the
observed reaction times of the first and second keystroke responses for each blip color-change
event following the resumption of the manual tactical task. Responses to the blips were slower for
a period of time after task resumption, compared to a matched set of blips events during later
steady-state performance. Thus there was an interesting automation deficit associated with getting
back into the tactical task when the subject had to resume performing it manually.

8

1

2

3

4

Figure 2. Sketch of the display for the graphical keypad interface in the Ballas et al. task. The tracking task is
performed in the window on the right; here the aircraft icon moves around, and the joystick is used to try to keep the
cross-hairs on it. The tactical classification task is performed in the window on the left. Here the center of the small
circle at the bottom of the display represents the "ownship" point; the "blips" appear in the display and generally
move toward the bottom. Initially they are black, but then change color and must be responded to, with red meaning
confirm as hostile, blue meaning confirm as neutral, and amber meaning classify based on the speed and direction of
the blip. Each blip is identified by a "track" number. Two keystrokes are made on the keypad, one for the
hostile/neural designation, the other for the track number.

9

0

1000

2000

3000

4000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

Figure 3. Observed reaction times in the Ballas task for each event after tactical task resumption. The lower curve,
plotted with circles, are the times for the first keystroke, the higher curve, plotted with squares, are for the second
keystroke. The automation deficit effect appears as longer times for the first few color-change events after the task is
resumed (Events 1-3) compared to a matched set of events during steady-state task performance (Events 7-9) .

Ballas Task Strategy

Required and optional aspects of the task. The details of our work on modeling the
Ballas task will be presented elsewhere. For present purposes, the main point is that getting a close
fit to the empirical data from the model requires a subtle and complex strategy which is modulated
in real time depending on the task workload. Figure 4 shows the Ballas task strategy as a hierarchy
of tasks and subtasks that we formulated intuitively by the usual cut-and-try approach practiced in
most cognitive modeling. Logically, the Ballas task requires alternating between the tracking task
and the tactical task according to some task-switching rule, and the tactical task requires choosing a
blip and making the appropriate responses to it. However, the specific task-switching criterion, the
structural relationships of the task processes, and the extent to which they can be overlapped are
constrained by neither the logical requirements of the task nor the EPIC architecture. There are a
variety of options that could be chosen by the subjects. We arrived at a specific combination of
these options that seems empirically and theoretically plausible by iteratively proposing strategies
and comparing their performance to observed data. Of course there is no guarantee that our final
inferred strategy is the actual strategy followed by the subjects, but because of how difficult it was
to fit the data quantitatively, we doubt that there are many other possibilities within the EPIC
architecture.

Strategy representation. Despite these uncertainties about the correct strategy, the
representation of possible strategies was straightforward. That is, different possible strategies were
programmed with production rules following a set of programming conventions very similar in
spirit to the customs of "structured" or "modular" programming, and similar in detail to both the
style rules presented by Bovair, Kieras, and Polson(1990) for writing production rule
implementations of GOMS models, and also the modeling policies in Kieras, Wood, and Meyer
(1997). The strategies were programmed using specified patterns, or templates, that were simply
adapted to the specific task requirements as needed. So once the basic organization of the strategies
was decided, their production rule representation was created in a very systematic and structured
fashion.

Task strategy organization. The strategy shown in Figure 4 can be described in more detail.
The dual-task executive supervises the two main subtasks, and also a third auxiliary task that can
monitor events on the tactical task display even when the tactical task is not be performed. The
dual-task executive applies alternative rules for when to switch tasks, depending on ancillary
contextual details. According to one such conservative rule, the dual-task executive waits until
some tactical-task blip changes color before suspending tracking and starting the tactical task.
Alternatively, the dual-task executive sometimes uses a more enterprising rule to anticipate the
color-change events by switching to the tactical task when a threatening blip gets close to the
"ownship" circle, and thus is likely to change color soon; the eye is placed on the threatening blip,
so the response to its color change can be made more quickly.

Performing the tactical task itself involves an executive process that coordinates three subtasks,
one to select a blip for processing, a second to select and produce the hostility designation response
for the selected blip, and a third to select and produce the target ID (track number) response for the
selected blip. Under EPIC, these three subtasks can be running simultaneously depending on the
overlapping policy implemented in the task strategy. If the task strategy overlaps the processing
heavily, then performance will be very fast; if not, performance will be substantially slower.

10

• Choose and execute
track number response
for stimulus

Target ID Response

• Choose and execute
hostility response for
stimulus

Host ili ty Response

• Choose highest priority
stimulus to process

Stimulus Selection

• Allocate eye to subprocesses
• Coordinate subprocesses
• Control subprocess overlap

Tact ical Task Execut ive

• Keep eye on target
• Keep cursor on target

Tracking Task

• Notice new targets
• Notice target color change
• Notice targets becoming close

Monitor Tactical Display

• Switch modes when signaled
• Switch tasks when tactical stimulus present
• Switch tasks when tactical stimulus close
• Monitor tactical display only in manual mode
• Monitor tactical task epoch phase

Dual Task Executive

Figure 4. Hierarchical structure of the task strategy used in the models for the Ballas task. Each box represents a
task process that performs the functions listed in the box. The executive processes control the task processes below
them.

Generally speaking, once basic perceptual and motor delays have had their effect, the performance
speed depends primarily on the extent to which the task processes are overlapped by the task
strategy.

 Dynamic modulation of optional aspects. To fit the observed task data, we had to
postulate that subjects followed the task strategy shown in Figure 4, but dynamically modulated the
dual-task executive's task-switch rule and the degree of tactical-task process overlap as a function
of current workload. During high load periods such as those for events 1-3 and 7-9 in Figure 3,
the task strategy is more aggressive with overlapping and anticipation, while during lower-load
periods, less overlapping and anticipation is used.

The resulting model using the dynamically modulated task strategy fits the data very well, as
shown in Figure 5. This model will be termed the Fitted Model in the rest of this chapter. For
present purposes, the Fitted Model serves to show that EPIC is a reasonably successful
architecture under the usual scientific criteria that allow the task strategy to be iteratively modified
to fit the data.

Strategy options complicate prediction. Despite the apparent success of this modeling
with EPIC, there is a serious limitation with such work: The fact that one can program models
using a cognitive architecture to fit data accurately does not mean that models built with the
architecture will be useful in system design. There are many technical obstacles to making model-
based predictions in a practical context, but the chief problem of concern in this chapter is dealing

11

with the optional aspects of the task strategy. These must be resolved before practical model-based
predictions are possible. For example, the modulation decisions in the Fitted Model are not dictated
by either the task requirements or the architecture constraints, but rather depend on how the
subjects chose to do the task strategically. The problem for practical prediction is to determine how
enterprising the system operator will be: Will operators use a task strategy that aggressively
optimizes performance speed, or will they take a more leisurely approach? In combat, it would be
reasonable for operators to try to work rapidly, but what if they have to function for hours at a
time? Wouldn't they slow down to a sustainable level of effort? These questions are much more
difficult to deal with than the typical task analysis, because their answers cannot be derived in any
obvious a priori way from the task requirements, system design, or cognitive architecture. Rather,
such strategy issues involve as yet unknown aspects of human metacognition.

The Bracketing Heuristic

Given these considerations, this chapter provides a basic new insight: rather than trying to guess
the actual task strategy, it is easier and more reliable to characterize the extremes of the possible
task strategies, using the following bracketing heuristic: First, identify a base strategy for
performing the task, dictated by the logical requirements of the task and a systematic approach to
representing the strategy in a well organized and structured form, and which incorporates plausible
estimates for important task-specific parameters. Second, define a slowest-reasonable version of
the base strategy; this strategy consists of nominal adherence to the task requirements, but without
use of enterprising strategy options. Such a task strategy is neither haphazard nor "lazy," rather, it
is deliberate and unhurried. Third, define a fastest-possible version of the base strategy, which
given the limits represented by the cognitive architecture, exploits that architecture to its fullest, to
produce the fastest performance. According to the bracketing heuristic, actual human performance
on the fielded system should lie somewhere between the extremes of the fastest-possible and

12

0

1000

2000

3000

4000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

Figure 5. Observed and predicted reaction times in the Ballas task based on the Fitted Model for each event after
tactical task resumption. Observed times are shown as solid lines and points, predicted times as dotted lines and
open points. The lower curves (circles) are the times for the first keystroke, the higher curves (squares) for the
second. The close fit was obtained as a result of the task strategy dynamically modulating the overlapping and
anticipation options as a function of workload.

slowest-reasonable strategy. Exactly where actual performance lies will depend on the level of
training, stress, motivation, and fatigue, as well as the extent to which the operators are clever,
enterprising, or simply lucky in their choice of strategy. Thus, instead of trying to guess what
specific optional strategy the operators will devise, we can simply bracket their performance.

A Test of the Bracketing Heuristic

To test the viability of the bracketing heuristic, we first applied it to the same data set that we
used originally to formulate the Fitted Model. Next we applied it to a new set of data collected for a
similar version of the task. In each case, we used the Fitted Model as the base strategy, and from it
created fastest-possible and slowest-reasonable versions that worked for both cases. In the first
case, we were bracketing data that we already had examined extensively, but in the second case,
we did not even examine the data until the bracketing predictions had been obtained. Thus, we
were able to approximate the situation of using a cognitive model predictively.

The Bracketing Strategies

Of course, the bracketing heuristic has to be elaborated in the context of a multitask situation like
the Ballas et al. (1992a, b) task — what is the meaning of "slowest-reasonable" and "fastest-
possible" when there are two tasks that must compete for processing resources? For our current
test of the bracketing heuristic, we answered this question in terms of the task designated as the
highest priority, which was the tactical task. Thus, fastest-possible means that the tactical task is
executed as fast as possible regardless of the effect on the lower-priority tracking task. Slowest-
reasonable means that the higher priority of the tactical task is honored, but no more so than the
overall task instructions explicitly require.

More specifically, the slowest-reasonable task strategy implements a nominal adherence to the
task instructions. The instructions imply that the tracking task should be performed until a blip
changes color in the tactical task, so under the slowest-reasonable strategy, there is no attempt to
anticipate when the tactical task needs attention. Likewise, the instructions imply that when the
tactical task is automated, there is no need to monitor the tactical display. The slowest-reasonable
strategy therefore lacked the optional enterprising features we have often had to include in our fitted
models (Meyer & Kieras, in press). So it omitted movement pre-positioning, advance preparation,
and overlapping for the three subprocesses of the tactical task — each response movement had to
be complete before the next step in processing for the tactical task began.

In contrast, the fastest-possible task strategy corresponds to the most extreme interpretation of
the task instructions. Because the tactical task supposedly has higher priority than the tracking task,
this strategy ignores the tracking task if there is anything useful to be done on the tactical task. For
example, if there is even a single blip on the tactical display, then under the fastest-possible
strategy, the eye is kept on it until it changes color, resulting in faster responding than if the eye
had been moved back to the tracking task display. In addition, the tactical display is monitored at
all times, even while the tactical task is automated and tracking being performed, because this will
speed up identifying relevant blips when the tactical task is resumed. Furthermore, the fastest-
possible strategy overlaps the three tactical task subprocesses as much as possible, maximizing
advance movement pre-positioning, preparation, and overlapped movement execution.

Bracketing Results

We derived predictions from the two models that implemented the fastest-possible and slowest-
reasonable strategies, using the same perceptual parameter estimates as in the Fitted Model. The
corresponding predicted and observed times are shown in Figure 6. The observed times are the

13

same as those shown before in Figure 3. The predictions based on the fastest-possible and
slowest-reasonable strategies do a very good job of bracketing the observed times, both in absolute
magnitude and sequential trends across events. We obtained similarly good bracketing results for
another version of the Ballas task that involved a touch-screen interface.

After this initial success, we next attempted to bracket a new set of data collected by Ballas and
his current co-workers for a task that had the same structure and requirements as the previously
modeled one, but which involved different event scenarios and different properties of the targets to
be classified. For this purpose, Ballas also collected single-task single-target classification reaction
times, in which a single blip was presented, and subjects had to classify it as hostile or neutral by
pressing a single key. We used these supplementary data to obtain new estimates of the perceptual
processing parameters for the new target properties. This was done with a simple model for doing
just this tiny task, and the perceptual processing parameters were adjusted to match the differences
in the time to classify the single targets.

Then we generated bracketing predictions from the same fastest-possible and slowest-reasonable
models with these perceptual parameters for the new experimental scenarios. Finally, we got the
actual data from Ballas's laboratory, and compared the predicted with the observed times.

The predicted and observed reaction times from this a priori bracketing are shown in Figure 7.
Again the fastest-possible and slowest-reasonable predictions do a very good job of bracketing the
observed performance, both in absolute magnitude and the sequential trends across events. We
also obtained similarly good bracketing results for a second scenario in the same experiment. Since
we had not previously modeled these data, we are highly encouraged about the value of the
bracketing heuristic. We hope to conduct more ambitious applications of it in the future.

14

0

1000

2000

3000

4000

5000

6000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

Figure 6. Observed and predicted reaction times in the Ballas task obtained from the bracketing models for each event
after tactical task resumption. Observed times are the same data as shown in Figure 3, and are shown as solid lines
and points, predicted times as dotted lines and open points. The curves plotted with circles are the times for the first
keystroke, the curves plotted with squares are for the second. The slowest-reasonable model is plotted with large open
points; the fastest-possible with small open points. Note how the observed times for each keystroke across events
are bracketed between the slowest-reasonable and fastest-possible predicted times.

Conclusions

Conclusions about the Bracketing Heuristic

Bracketing as a scientific tactic. These results suggest a tactic for future scientific work in
the post-hoc model-fitting mode, in which the goal is to arrive at a well-fitting model by iterative
testing. The bracketing predictions could help arrive at a well-fitting task strategy more rapidly. For
example, as previously described, our Fitted Model strategy in the Ballas task adjusted the
overlapping dynamically as a function of workload. We arrived at this strategy by tediously
iterating through a large number of models, finally achieving the insight that an apt strategy had to
perform at nearly top speed during high workload, and much more leisurely during low workload.

However, we might have achieved this insight much sooner if we had obtained the bracketing
predictions first. For example, in Figure 6, during the high-workload portions of the scenario
(events 1-3 and 7-9) performance is close to the predictions from fastest-possible strategy, while
during the low-workload times, performance is closer to predictions from the slowest-reasonable
strategy. These results support our final conclusion about dynamic overlapping adjustment, but
they also would have made the need for dynamic adjustment rather obvious at the outset. Future
work with EPIC will allow us to test this a priori constrained approach further.

The bracketing heuristic in system design. The bracketing heuristic could be used
during system design as a way to obtain performance predictions for a proposed system despite the
indeterminacy about what final strategies the human operators will learn and apply. The fastest-
possible and slowest-reasonable strategies correspond to the range of variation that could be
attributed to differences in levels of training, experience, or motivation on the part of the ultimate

15

0

1000

2000

3000

4000

5000

6000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

Figure 7. Observed and predicted reaction times in the Ballas task obtained from the bracketing models for each
event after tactical task resumption. Observed times are the new data described in the text, and are shown as solid
lines and points. Predicted times as shown as dotted lines and open points. The curves plotted with circles are the
times for the first keystroke, the curves plotted with squares are for the second. The slowest-reasonable model is
plotted with large open points; the fastest-possible with small open points. Note how the observed times for each
keystroke across events are bracketed between the slowest-reasonable and fastest-possible predicted times.

operators of the system.

For two system designs being compared to see which produces the best performance, if they are
consistently ordered in terms of the fastest and slowest task strategies, then the best design can be
chosen despite of the unknown future effects of operator strategy.

There is a more interesting case of predicting system performance in which there are absolute
requirements for the overall speed of performance of the human-machine system. If the bracketing
predictions both fall inside the acceptable range of performance, then the design is acceptable. But
if the fastest-possible performance is too slow, then the system design is seriously flawed — no
human operator will be able to do the task fast enough. In this situation, the analyst can examine
the model and its activity to identify the obstacles to faster performance, and then consider
alternative system designs to relieve the problem, such as additional automation, or a different user
interface design.

On the other hand, if the fastest-possible performance is adequate, but the slowest-reasonable is
not, then the system design is marginal — its success will depend on whether the human operators
are able or willing to perform according to a more efficient task strategy. This problematic situation
could be addressed by considering the demands of the faster strategies and assessing whether they
could be easily and consistently trained, and then reliably executed under actual field conditions. Of
course the safest and most robust approach would be to change the system design so that even the
slowest-reasonable strategy produces acceptable performance

Required Task Analysis for Bracketing Prediction

Mandatory vs. optional requirements of the task. The bracketing heuristic is a way to
obtain performance predictions in spite of variations in human task strategies. However, to devise
the bracketing strategies, we need to know the mandatory and optional task demands so that the
bounds on the possible ways of doing the task can be defined. This requirement is not normally an
objective of task analysis — we are not asking "how is the task done?" but rather "what about the
task absolutely must be done?" Providing an answer to the latter question requires a much more
thoughtful analysis than simply observing and recording how users operate an existing system, or
working through a few specific scenarios of how a system might be operated in the future.

Why don't operators work as fast as possible? For the bracketing heuristic to be most
useful, we also need a greater understanding of when people will try to achieve the fastest possible
performance and when not. Our models of telephone operator performance suggested strongly that
some operators had optimized their performance with respect to energetic, "ergonomic", or fatigue-
based criteria in their task strategy, rather than maximizing their performance speed. How can we
tell when and in what ways to take account of such considerations when predicting performance?

Relation of Task Analysis to Cognitive Modeling

Using computational models to express a task analysis. Many commonly used task
analysis notations are difficult to check for accuracy and completeness due to their informality and
reliance on interpretation by the human analyst. In contrast, expressing the result of a task analysis
as a computational model would go far toward making task analysis more accurate and complete.
By attempting to construct the model, the analyst will gain more insight into what the task
requirements actually are. By attempting to run the model, the analyst will be able to check whether
the analysis accurately captures a correct understanding of the task. In short, a computational
model is an excellent target for task analysis methods. If the task analysis is complete and accurate
enough to specify a running computational model of performance, then the essential features of the

16

task have almost certainly been captured. Furthermore, with appropriate tools, a model-based task
analysis approach can reduce the gap between task analysis, system design, performance
evaluation, and system implementation: both the task analysis and the system design are
represented in the computational model, which can both predict performance and potentially help
generate the actual user interface implementation (see Byrne, Wood, Sukaviriya, Foley, and
Kieras, 1994).

What is a "formal" task analysis? Traditional task analysis can be fairly informal, because
the knowledge and intuition of the audience can make up for vagueness and incompleteness in the
analysis itself. But computational modeling requires a very formal representation of a task, and so
suggests a distinction between what is and what is not formalizable in a task analysis. That is,
understanding a user's task is inherently an informal, intuitive process in which the task analyst
attempts to arrive at an understanding of the user's task and situation. Once this understanding has
been achieved, it must be recorded and communicated in some notational scheme that should be at
least formal enough to be standardized and documented. The task analysis methods developed in
human factors thus consist essentially of suggestions about what to observe, measure, or record
about the user's activities, and useful human-readable notations for recording the information so
collected. The methods are nothing more, nor less, than guides to make the analysis process more
systematic, dependable, and communicable, but the analyst's intuition and expertise is still the
actual source of the understanding of the user's task. Thus, having a computational cognitive
model to express the results of the task analysis would extend the value and testability of this
intuitively-derived information by representing it in a more rigorous and executable form.

How reliable is task analysis? Conventional applications of task analysis make only limited
claims to rigor and objectivity; it suffices that the analysis helps to develop a good system design.
However, if task analysis is to be coupled with computational predictive models for rigorous
engineering in system design, it helps to know more about how much the results of task analysis
depend on the idiosyncrasies of the analyst and the vagaries of the analysis process. Unfortunately,
there has been very little work on assessing the reliability of standard task analysis methods.
Clearly, a computational model can be no more reliable than the task analysis used to construct it,
and the power of a computational model can be especially dangerous if the reliability of the task
analysis from with it came is suspect. This concern has led some researchers to question the value
of modeling approaches such as GOMS, but they have failed to understand that the basic reliability
problem lies with the task analysis, not with the modeling approach. High priority should be given
to studying the reproducibility and reliability of task analysis methods.

Generative models are essential. A major contribution of computational modeling
approaches is its potential for overcoming a serious practical limitation in most task analysis
approaches. The general pattern seen in typical current task analysis practice is that the analyst
considers only a small number of task situations or scenarios, and either records at a detailed level
how users operate an existing system, or forecasts at a gross level how a future system might be
operated. However, fundamental human performance abilities and limitations can only be
addressed at the detailed level of analysis, and for a valid assessment of system performance, a
large variety of scenarios must be analyzed. The reason why only a small number of scenarios are
studied and detailed analysis is avoided is that a typical detailed task analysis method requires
enumerating, by hand, every operator action in every specific scenario for every system design
under consideration. The time and labor required are simply prohibitive.

However, computational models like those described earlier in this chapter use a representation
of procedural knowledge that allows task strategy knowledge to be expressed as general
procedures, rather than simply as lists of action sequences in specific scenarios. Such models are
generative, in that that can generate all possible action sequences in all possible instances of the

17

task subsumed by the strategy. Thus, once programmed with a general strategy, a computational
model can be run to automatically generate predicted operator behavior and performance for any
number of representative situations. Modifications to the system design typically require only small
modifications to the model, and the same situation descriptions can be then be rerun to quickly
obtain a new set of predictions. In addition, the explicit representation of the procedural knowledge
in a general form allows the prospective system to be studied and analyzed in considerable depth,
such as assessing interface consistency and the potential for transfer of training. The advantages of
generative models are presented in more detail in Kieras, Wood, and Meyer(1997), and John and
Kieras (1996b).

Can task analysis support modeling directly? Clearly, the effort to apply predictive
human performance modeling to system design requires more theoretical and practical work on
computational cognitive architectures and overcoming the technical difficulties in programming
models using these architectures. However, the real bottleneck is in the task analysis process. It
would seem that traditional cognitive task analysis at least focused on the proper subject matter,
and so it should dove-tail nicely with the needs of model building. For example, so-called
Hierarchical Task Analysis (HTA, see Kirwan & Ainsworth, 1992, p. 104ff), the most popular
single task analysis method, represents task procedures in ways very similar to GOMS models,
which it predates by many years and vastly surpasses in amount of practical application and
guidance available to the analyst. However, we don't really know whether the standard task
analysis methods will work in support of model building because in fact there is little past
experience. What is missing, and badly needed, is a demonstration that one can start with a
conventional task analysis such as HTA and then proceed systematically to a usefully accurate
computational cognitive model, with no "hand-waving" in between. If so, then prospects are good
that task analysis methods and computational models can be combined to increase the range and
power of the tools available to help design more effective systems.

Acknowledgement

This work was supported by grants to the authors from the Office of Naval Research, Grant No.
N00014-92-J-1173, and Grant No. N00014-96-1-0467 in collaboration with James Ballas, Naval
Research Laboratory.

References

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992a). Direct manipulation and intermittent
automation in advanced cockpits. Technical Report NRL/FR/5534--92-9375. Naval Research
Laboratory, Washington, D. C.

Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992b). Evaluating two aspects of direct
manipulation in advanced cockpits. Proceedings of the CHI'92 Conference on Human Factors in
Computing Systems, 127-134. New York: ACM.

Beevis, D., Bost, R., Doering, B., Nordo, E., Oberman, F., Papin, J-P., I., H. Schuffel, &
Streets, D. (1992). Analysis techniques for man-machine system design. (Report
AC/243(P8)TR/7). Brussels, Belgium: Defense Research Group, NATO HQ.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance of text
editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5, 1-48.

Byrne, M.D., Wood, S.D, Sukaviriya, P., Foley, J.D, and Kieras, D.E. (1994). Automating
Interface Evaluation. In Proceedings of CHI, 1994, Boston, MA, USA, April 24-28, 1994).
New York: ACM, pp. 232-237.

18

Elkind, J. I., Card, S. K., Hochberg, J., & Huey, B. M. (Eds.) (1989). Human performance
models for computer-aided engineering. Committee on Human Factors, National Research
Council. Washington: National Academy Press.

Harris, R., Iavecchia, H.P, & Dick, A.O. (1989). The Human Operator Simulator (HOS-IV). In
G.R. McMillan, D. Beevis, E. Salas, M.H. Strub, R. Sutton, & L. Van Breda (Eds.).
Applications of human performance models to system design. New York: Plenum Press. 275-
280.

Hoecker, D.G., Roth, E.M., Corker, K.M., Lipner, M.H., and Bunzo, M.S. (1994). Man-
machine Design and Analysis System (MIDAS) Applied to a Computer-Based Procedure-Aiding
System. In Proceedings of the 38th Annual Meeting of the Human Factors and Ergonomics
Society. Memphis, TN, Oct. 1994.

John, B. E., & Kieras, D. E. (1996a). Using GOMS for user interface design and evaluation:
Which technique? ACM Transactions on Computer-Human Interaction, 3, 287-319.

John, B. E., & Kieras, D. E. (1996b). The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3, 320-351.

Kieras, D. E., & Meyer, D. E. (in press). An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction. Human-Computer Interaction.

Kieras, D.E., Wood, S.D., & Meyer, D.E. (1997). Predictive engineering models based on the
EPIC architecture for a multimodal high-performance human-computer interaction task. ACM
Transactions on Computer-Human Interaction.4, 230-275.

Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. London: Taylor and Francis.

Laird, J. E., Newell, A., and Rosenbloom, P.S. (1987) Soar: An architecture for general
intelligence. Artificial Intelligence, 33, 1-64.

Laughery, K. R. (1989). Micro SAINT - A tool for modeling human performance in systems. In
G.R. McMillan, D. Beevis, E. Salas, M.H. Strub, R. Sutton, & L. Van Breda (Eds.).
Applications of human performance models to system design. New York: Plenum Press. 219-
230.

McMillan, G. R., Beevis, D., Salas, E., Strub, M. H., Sutton, R., & Van Breda, L. (1989).
Applications of human performance models to system design. New York: Plenum Press.

Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive cognitive processes
and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3-65.

Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive control processes
and human multiple-task performance: Part 2. Accounts of Psychological Refractory-Period
Phenomena. Psychological Review. 104, 749-791.

Meyer, D. E., & Kieras, D. E. (in press). Precis to a practical unified theory of cognition and
action: Some lessons from computational modeling of human multiple-task performance. In D.
Gopher & A. Koriat (Eds.), Attention and Performance XVII. Cambridge, MA: M.I.T. Press.

Moore, E. F. (1956). Gedanken-experiments on sequential machines. In C. E. Shannon, & J.
McCarthy (Eds.), Automata studies. Princeton, NJ: Princeton University Press.

Smith, B.R., & Tyler, S.W. (1997). The design and application of MIDAS: A constructive
simulation for human-system analysis. Paper presented at the Second Simulation Technology
and Training Conference, March 17-20, 1997, Canberra, Australia. Available online at
http://www-midas.arc.nasa.gov.

19

