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1 Knowledge Representation in Algernon

1.1 Facts, Formulas, and Frames

The set of facts in an Algernon knowledge base can be viewed in two different ways.

• Viewed as a logic, the KB contains a collection of ground atomic formulas, representing predicates
applied to constant symbols.

• Viewed as a semantic network, the KB contains a collection of frames describing individual objects,
linked by known relations.

An advantage of the logic view is the vast body of relevant theory, useful for providing guarantees of
expressive and inferential power. An advantage of the semantic network view is that the organization of
knowledge into frames provides direct access to relevant information, and supports tractable reasoning. The
(conceptual) objects related to a frame can be easily accessed by looking in a slot of the frame without
searching the entire knowledge-base.

In Algernon, these two views are equivalent, since the ground atomic formula r(f, g) is represented by
placing the value g in the values facet of the r slot of the frame f [Hayes, 1979]. Similarly, if we know
¬r(f, h), the value h is placed in the non-values facet of the r slot of the frame f.

r(f, g) ∧ ¬r(f, h) ≡

f:
r:

values: { . . . g . . . }
non-values: { . . . h . . . }

1.2 True Names and Public Names

A frame has two different types of name.

• Every frame has a single true name (tname), which is a symbol referring uniquely to that frame. In
the Lisp implementation, the tname is the Lisp symbol on whose property list the frame structure is
stored.

• A frame can have any number of public names (pnames), which are strings, and need not be uniquely
referring. Public names are stored as values in the name slot of the frame. An indexing mechanism
(case insensitive) allows frames to be retrieved given a public name.

True names are the pointers from one frame to another that actually represent the structure of the knowl-
edge base. Public names are for communication with other agents.

For ease of debugging and interaction, when a new frame has a simple public name, Algernon attempts
to generate a true name that has the same or similar printed representation. Similarly, the user interface
attempts to retrieve the desired frame, whether you type its true name or its public name.
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1.3 Access Paths

Facts are retrieved from an Algernon knowledge-base by following access paths of alternating frames and
slots, in which each frame is only accessed if it appears in a known slot of a known frame. Syntactically, a
sequence of atomic formulae defines an access path iff any variable appearing as a predicate-symbol or as
the first argument to a predicate has appeared previously in the sequence.

An Algernon knowledge base contains rules as well as facts. Rules are of two types:

• forward-chaining (if-added) rules, applied when a new fact is asserted into the knowledge-base;

• backward-chaining (if-needed) rules, applied when an unknown fact is queried.

In almost all cases, a rule is associated with the slot of the frame specified in its key: the left-most atomic
formula in the rule. (The exceptions are generic rules, associated with sets of slots, where the specific slot
is determined by the actual assertion or query.) When a rule is invoked, the asserted or queried formula is
unified against the key. Starting with these bindings, the antecedent of the rule must be an access path. The
antecedent is queried, and the consequent is asserted for every set of bindings resulting from the query of
the antecent. (See Algernon for Expert Systems for examples.)

2 The Syntax and Semantics of Algernon

2.1 The Formal Syntax of Algernon

Notation: The italic font is used for non-terminals and the teletype font is used for terminals, (i.e.,
strings that actually occur in Algernon code).

[x ] denotes zero or one appearance of x.

x∗ denotes zero or more repetitions of x.

x+ denotes one or more repetitions of x.

atomic-formula = (sterm fterm vterm+) | (not (sterm fterm vterm+))
fterm = variable | frame | (sterm fterm) | (:slot slot)
sterm = variable | slot
vterm = fterm | number | string | (:quote expression) | (quote expression)

domain = frame | :number | :string | :symbol | :list

path = (form+) plus access path restriction on variables.

rule = (form+ <- form∗) |
(form+ -> form∗)

vars = variable | (variable+)
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form = atomic-formula |

(:taxonomy set-descriptor)

(:slot symbol (domain+) slot-descriptor∗) |

(:rules fterm rule+) |
(:srules fterm rule+) |

(:eval expression) |
(:test expression) |
(:boundp variable) |
(:unboundp variable) |
(:bind variable expression) |
(:branch variable expression) |
(:funcall function expression∗) |

(:a vars . path) |
(:forc vars . path) |
(:the vars . path) |
(:any . path) |
(:cut . path) |
(:db atomic-formula) |
(:retrieve atomic-formula) |

(:unp . path) |
(:fail . path) |
(:assume atomic-formula) |
(:neq fterm fterm) |

(:or path+) |
(:all-paths path path) |

(:delete atomic-formula) |
(:clear-slot fterm slot) |
(:del-rule fterm rule) |
(:del-srule fterm rule) |
(:del-rules fterm slot) |
(:del-srules fterm slot) |

(:ask atomic-formula) |
(:show fterm) |

(:w-contra-positive . path) |
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(:wo-contra-positive . path) |
(:no-completion form)

slot-descriptor = :cardinality number |
:backlink slot |
:inverse slot |
:comment string

set-descriptor = (fterm set-descriptor∗ fterm∗)

expression = Any Lisp expression |
(:values frame slot) |
(:non-values frame slot)

variable = a Lisp symbol whose print name begins with “?”.

frame = a Lisp symbol that represents a frame in the knowledge-base.
slot = a Lisp symbol declared as a slot in the knowledge-base.
number = a Lisp number.
string = a Lisp string.
symbol = a Lisp symbol.
function = a Lisp function (in a form suitable to be passed to the Lisp function funcall).

2.2 Special Forms

Algernon supports a number of “special forms”. This section provides a description of these forms and
examples of their use.

Most forms have similar behavior in assertions and queries. The form :all-paths is the only serious
exception to this rule. All other forms have exactly the same behavior in assertions and queries.

2.2.1 Declaring a Taxonomy of Frames

(:taxonomy set-descriptor)

Adds to the basic taxonomic structure of the knowledge-base. Sets are described by lists whose atomic
elements are (names of) the members of the sets and whose sublists are subsets of the set. The set
forming the root of the taxonomy (set1 in the example below) must exist in the knowledge base
when the :taxonomy form is asserted.

The sets and elements in a :taxonomy form must have uniquely designating names.

The form:

(:taxonomy (set1
(set2 frame1 frame2)
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(set3 frame3)))

requires that set1 already exists in the knowledge base; asserts that set2 and set3 are subsets of set1,
not necessarily disjoint; that frame1 and frame2 are elements of set2; and that frame3 is an element
of set3.

2.2.2 Declaring Slots and their Domains

(:slot atom (domain+) descriptor∗)

Declares a new slot and types it using domain+. Typing is enforced using an if-added rule. For
example:

(:slot has-disease (people diseases))

declares the slot has-disease to be a relation between people and diseases. If one then asserts:

(has-disease p1 d1)

Algernon concludes that p1 isa people, and d1 isa diseases.

In general, domains must be Algernon sets, defined by the time the slot is accessed. A warning is
given if a domain is undefined when the :slot is asserted. However, a domain may also be de-
clared to be one of the Lisp datatypes, :number, :string, :symbol or :list. The variable
*lisp-type-domains* holds the current complete list of permissible Lisp datatypes. The do-
main specification nil is completely unconstrained.

:slot takes the following “keyword” arguments:

:cardinality n Asserts that the slot holds at most n values. Defaults to nil (no restriction). In
the current implementation, cardinality information is primarily used to limit the application of
if-needed rules (if a slot is queried but is full then the rules are not applied).

:backlink slot2 Backlinks the slot to slot2. This means that if Algernon learns (slot f1 f2)
it will conclude (via an if-added rule) (slot2 f2 f1). slot2 must already be defined.

:inverse slot2 Asserts that the inverse of the slot is slot2. This is equivalent to bi-directional
backlinks.

:comment string Adds a comment for the slot.

(:declare-slot atom (domain+) [:cardinality number])
This is a limited-purpose version of :slot, allowing only the :cardinality keyword, used
in the early stages of setting up the knowledge-base.

See section 4 for examples of the use of :taxonomy and :slot.

2.2.3 Declaring Rules

(:rules fterm rule+)
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(:srules fterm rule+)
These two forms add rules, associated with the frame referred to by fterm, to the knowledge-base.
The only difference between them is the way in which the rules are indexed (and therefore in the way
they will later be accessed). Consider a query of (r frame1 ?x) (assertions are similar). Such a
query will access rules from several sources:

1. It will access slot rules (rules added using :srules) associated with the slot r.

2. It will access ‘normal’ rules (rules added using :rules) associated with any set which frame1
is a member of (i.e., rules associated with any frame f such that (isa frame1 f) is a fact
in the knowledge-base).

3. Finally, it will access slot rules associated with any set that the slot r is known to be a member
of.

As an example of a set of slots, consider the set transitive-relations. For this set one might
want a rule like:

(:srules transitive-relations
((?r ?x ?z) <- (?r ?x ?y) (?r ?y ?z)))

One could then assert that (isa (:slot less) transitive-relations) and the rule
above would enable Algernon to conclude (less frame1 frame3) from (less frame1 frame2)
and (less frame2 frame3).

Note that this rule for transitive relations has a variable in the slot position. Such rules are called
generic rules and can be associated with sets of frames or slots (though obviously not with individual
slots). Recall that at the time of a query or assertion, both the frame and the slot being accessed are
known.

2.2.4 Calling Algernon from Lisp

An Algernon knowledge-base can be regarded as the knowledge about the world possessed by an individual
agent. Algernon interacts with the world through a tell/ask (or equivalently, assert/query) interface by which
we tell things to Algernon and ask questions of the knowledge-base.

tell path &key :retrieve :eval :collect :comment
ask path &key :retrieve :eval :collect :comment

The functions tell and ask take an access path and assert or query it to the Algernon knowledge base.
These operations may branch on multiple bindings while following the path. If the keyword :retrieve
is t, only facts explicitly stored in the KB are retrieved, and no backward-chaining rules are invoked. If no
sets of bindings are found, the operation fails and nil is returned.

If the operation succeeds, then the Lisp forms provided for the :eval and :collect keywords are
instantiated with values substituted for Algernon variables in each binding found. The :eval forms are
evaluated, and the values of the :collect forms are collected and returned. If no :collect form is
provided, t is returned after a successful operation. The :comment string may be printed as trace output.

For example, if the brothers of Tom are Bob and Mike then:
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(ask ’((brother Tom ?x)) :collect ’?x)

will return: (Bob Mike). If further, Bob drives a Honda and Mike drives a Ford then:

(ask ’((brother Tom ?x) (drives ?x ?c))
:collect ’(?x drives ?c))

will return:

((Bob drives Honda)
(Mike drives Ford))

The a-assert and a-query functions are obsolete, but still supported. They call tell and ask,
respectively, with trace output turned on.

a-assert string path
a-query string path

where string is a comment string, and path is an Algernon path (defined formally in section 2.1 above).

2.2.5 Calling Lisp from Algernon

The special forms in this section allow a Lisp expression to be evaluated, and the value used in Algernon in
various ways. Before an expression is evaluated in Lisp, any Algernon variables appearing in the expression
are replaced by their bindings.

(:eval expression)

Evaluates expression as a Lisp expression for side effects. Returned value is ignored. Thus one can
print out the children of Tom using the path:

((child Tom ?x) (:eval (format t "A child of Tom is ˜a.˜%" ’?x))).

(:test expression)

Evaluates expression as a Lisp expression and succeeds iff it does not evaluate to nil.

(:boundp variable)

Succeeds if variable is bound to a value (not another variable), and fails otherwise.

(:unboundp variable)

Succeeds if variable is unbound, and fails otherwise.

(:funcall function exp1 . . . expn)

Applies function to the values obtained by evaluating exp1 . . . expn. Each of the expi may be of one of
four forms:

:assumptions — returns the list of lists of assumptions currently in force, in case the Lisp func-
tion needs them for something.
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(:values frame slot) — evaluates to a list of the values stored in slot of frame, stripped of the
associated assumptions.

(:non-values frame slot) — evaluates to a list of the explicit non-values in slot of frame, stripped
of their associated assumptions.

otherwise — evaluated as a Lisp expression.

When :funcall appears as a top-level special form in a path, the value returned is ignored by
Algernon. However, :funcall can also be embedded in :bind or :branch forms, in which case
the value returned can be bound to Algernon variables.

(:bind variable expression)

(:bind (variable+) expression)

After substituting in the values of any Algernon variables, evaluate the second argument and unify the
result with the first argument. The expression may be a Lisp expression or an embedded :funcall
expression. For example, to determine the number of values in a slot:

(:bind ?n (:funcall #’length (:values frame slot)))

Because the variable argument is unified with the result of evaluating expression, :bind can be
used to destructure and test properties of the value returned. For example, suppose the Lisp function
(gossip) returns a list of the form (Tom loves Mary) or (Bill hates Joe) or some
such. We could select for a particular case, and bind variables to the names of the protagonists with:

(:bind (?subj loves ?obj) (gossip))

The value returned from the Lisp function is captured using multiple-value-bind, with the
second argument being the set of assumptions. This means that a Lisp function could store information
in an external datastructure, indexed under the appropriate assumptions, using rules something like
the following:

((R ?x ?y) -> (:funcall #’Fout ’?x ’?y :assumptions))
((R ?x ?y) <- (:bind ?y (:funcall #’Fin ’?x :assumptions)))

(This has not been tested, and the returned values will be cached in the slot, which may not be what
we want.)

(:branch variable expression)

(:branch (variable+) expression)

:branch works just like :bind, except that the result of evaluating expression must be a list of
values, and variable is unified against each of those values along a separate branch.

Since parts of these forms are evaluated by Lisp after Algernon variables are replaced by their values,
and since Algernon frames are represented by Lisp symbols that are often unbound, it is important to quote
variables whose bindings shouldn’t be evaluated. For example, if foo is a function taking a single numerical
argument, then
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((:bind ?f ’foo) (:bind ?n (:funcall ’?f 2))) or even
((:bind ?f ’foo) (:bind ?n (?f 2))) will work as expected, but
((:bind ?f ’foo) (:bind ?n (:funcall ?f 2))) will not.

2.2.6 Controlled Retrieval

There are six main controlled-retrieval forms, summarized as follows:

term number of values returned frames created?
(:a variable(s) form∗) 1 always
(:the variable(s) form+) 1 on failure
(:forc variable(s) form+) 1 to N on failure
(:any form+) 0 or 1 no
(:cut form+) 0 or 1 no
(:retrieve form) 0 to N no

(:a variable [. path])

(:a (variable+) [. path])

:a creates new frames to bind to the specified variable(s), and asserts path about those frames. (:a
generalizes and replaces :create.) For example, (:a ?x (name ?x "Tom")) will create a
new frame, bind ?x to it, and assert the value "Tom" into its name slot. Algernon’s naming heuristics
may also be able to use the Lisp atom Tom to hold the frame, but this is not guaranteed.

(:forc variable . path)

(:forc (variable+) . path)

:forc implements “find-or-create” retrieval. :forc first queries path. If this query succeeds then
the :forc succeeds (binding variable). If the path fails then a new frame is created, variable is bound
to it, and the path is asserted. (:forc (variable+) . path) is similar, but allows multiple variables.

One use of :forc is to guarantee that certain slots always hold some value. For example, one might
express “Every car has a steering wheel.” as:

(:rules cars
((steering-wheel ?c ?w) <- (:forc ?w (steering-wheel ?c ?w))))

Care must be taken with such rules, however, as they can easily cause infinite chains (e.g., “Every
man has a father”) — see [Crawford, 90].

(:the variable . path)

(:the (variable+) . path)

:the is just like :forc except that it fails if the query of its path returns multiple bindings for its
variables.

It is used for definite descriptions, when a referring phrase is presumed to designate a unique entity.
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(:any . path)

If there are multiple bindings found when following the path, an arbitrary one is selected and returned.
Used to force a unique element, or failure.

(:cut . path)

Like :any, returns a single binding on success, but does depth-first search through the path to find a
single binding, unlike most Algernon retrieval which does breadth-first retrieval of all bindings. The
Algernon rule (p <- (:cut a b) c d) should be roughly equivalent to p :- a,b,!,c,d
in Prolog.

(:retrieve atomic-formula)

(:db atomic-formula)

:retrieve (and its synonym :db) suppress the usual application of deduction rules while querying
its atomic-formula. It should be used only in queries. :retrieve distributes over functional forms:
((:retrieve (p (f ?x) ?y))) expands to ((:retrieve (f ?x ?$X2)) (:retrieve
(p ?$X2 ?y))).

2.2.7 Negation and Non-Monotonic Reasoning

Non-monotonic reasoning is still a research topic in Algernon. To use non-monotonic forms like :unp and
:assume successfully, you will probably have to understand something of the internals of how Algernon
does inference (see section 2.3).

(:neq fterm1 fterm2)

Succeeds iff fterm1 6= fterm2. (:neq fterm1 fterm2) is equivalent to (:eval (not (eql ’fterm1 ’fterm2))).

(:fail . path)

(:unp . path)

Unprovable. Succeeds exactly when a query of path fails. :unp is used primarily in default rules.
For example:

(:rules Birds
((flies ?x True) <- (:unp (not (flies ?x True)))

(:assume (normal ?x Birds flies))))

(:assume is discussed below).

The idiom (:fail (:retrieve atomic-formula)) succeeds if atomic-formula is not ex-
plicitly stored in the knowledge base, without applying any rules.

(:assume atomic-formula)

Adds atomic-formula to the knowledge-base as an assumption. Assumptions differ from facts in two
ways. First, an attempt is made to prove the negation of the atomic-formula, and if this attempt suc-
ceeds, the :assume fails. Second, any future conclusion which depends on the assumption is tagged
with the assumption, so that if the assumption is later withdrawn the conclusion is also withdrawn.
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2.2.8 Control Structure

(:or path1 . . . pathn)

:or queries its paths in order, returning the stream of bindings produced by the first one that succeeds.
The following paths are not queried at all.

(:all-paths path1 path2)

:all-paths first queries path1. If it appears within a query, it then queries path2 under every
substitution generated by the first query and succeeds iff all of these queries succeed. If it appears
within an assertion it asserts path2 under every substitution generated by the first query and succeeds
iff all of these assertions succeed. For example, one could query “Are all Adam’s children male?” as:

((:all-paths ((child Adam ?x)) ((gender ?x male))))

Note that, like :unp, :all-paths and :or are non-monotonic.

2.2.9 Deleting Things

All of these operations are non-monotonic, and should only be used with great care.

(:delete atomic-formula)
Removes atomic-formula from the knowledge-base.

(:clear-slot fterm slot)
Removes all values from slot slot of the frame referred to by fterm.

(:del-rule fterm rule)

(:del-srule fterm rule)
Used to delete a rule (or slot rule) from a frame.

(:del-rules fterm slot)

(:del-srules fterm slot)
Used to delete all rules (or slot rules) from a slot of a frame.

2.2.10 Interacting with the User

These primitive forms are included only to make it easy to create self-contained demonstration examples.
The correct way to interact with the user is to write a user interface in Lisp and call it using :test, :bind,
or :branch.

(:show fterm)

Print the contents of the frame referred to by fterm. Any slots on the list *dont-print-slots*
are not printed by :show or the interface command visit-frame.
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(:ask atomic-formula)

Asks user for a value for atomic-formula. If atomic-formula is ground then Algernon simply asks the
user if atomic-formula is true. If the user answers yes then the atomic-formula is asserted and the
:ask succeeds. If the user answers no then Algernon concludes the negation of the atomic-formula
and the :ask fails.

If the atomic-formula is not ground then Algernon asks for a value for the variable in the atomic-
formula. If the slot of the atomic-formula is typed to hold values from a set, and the members of the
set are known, then Algernon requires the user to enter a value in the set.

2.2.11 Controlling Style of Inference

(:retrieve atomic-formula)

(:db atomic-formula)

:retrieve (and its synonym :db) succeeds if the atomic-formula is already in the knowledge base.
It does not apply any further rules to attempt to deduce the atomic-formula. :retrieve should be
used only in queries. It distributes over functional forms: ((:retrieve (p (f ?x) ?y)))
expands to ((:retrieve (f ?x ?$X2)) (:retrieve (p ?$X2 ?y))).

(:w-contra-positive . path)

(:wo-contra-positive . path)

These forms are used to enable and disable the addition to the knowledge-base of the contra-positives
of rules. The default is not to add contra-positives. Contra-positives are used to minimize proofs by
contradiction when reasoning with disjunctions. (An example of the use of disjunction is given in
[Crawford, 90].)

(:no-completion . path)

Suppresses rule completion (see section 2.3.1).

2.2.12 Obsolete Forms

The following slots are obsolete or for internal use only. Any use should be replaced by the indicated form.

Obsolete form Current form Section
:decl-slots :slot section 2.2.2
:lisp :eval section 2.2.5
:bind-to-values :bind section 2.2.5
:branch-on-values :branch section 2.2.5
:apply :funcall section 2.2.5
:create :a section 2.2.6
:in-own-partition none none
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2.3 Notes on Inference in Algernon

2.3.1 Rule Completion

In ALL, the application of an if-added rule is triggered by the assertion of a fact (into a slot from which the
rule can be accessed) which matches the first atomic-formula of the antecedent of the rule. This contrasts
with some expert system shells in which every rule is applied whenever a new fact is asserted. One potential
problem with this approach is that, if one is not careful, it can be the case that accessible rules, whose
antecedents are entailed by the knowledge-base, may never fire.

For example, consider a knowledge-base including the rule:

((r1 ?x ?y) (r2 ?y ?z) -> (r3 ?x ?z))

Suppose we assert the fact (r1 frame1 frame2), but the rule fails because no fact in the knowledge-
base matches (r2 frame2 ?z). Later, if we assert (r2 frame2 frame3), the rule will not be
triggered. We refer to this problem as if-added incompleteness. Algernon’s solution to this problem is to
complete the rule (when (r1 frame1 frame2) is added), by adding the shortened rule:

((r2 frame2 ?z) -> (r3 frame1 ?z))

This rule is added to the selfset of frame2 (the selfset of a frame is the set consisting exactly of the
frame). One might worry that rule completion would add a large number of rules to the knowledge-base and
thus slow reasoning. However, since they are associated with selfsets, such rules are inaccessible to almost
all operations.

One problem with rule completion is that it requires one to be careful when removing facts from the
knowledge-base (always a very dangerous operation). In the case above, if you later delete the fact (r1
frame1 frame2), using (:clear-slot frame1 r1) for example, the rule completion is not un-
done and the shortened rule remains. This is a symptom of the larger problem that Algernon expects to
reason monotonically and is not prepared to ‘roll back’ the assertion of a fact. If you want to be able to later
retract a fact then you must enter it as an assumption (see section 2.2 above).

3 Interactive Interface Commands

A full list of commands for the Algernon interactive interface is given below. The abbreviation for each
command is given in parentheses.

For each Algernon command com listed here (except exit), there is an equivalent Lisp function called
acom-com which takes the arguments shown for the command.
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3.1 General Commands

query (q) P Query path P in knowledge base.
(Essentially equivalent to (a-query string P).)

assert (a) P Assert path P in knowledge base.
(Essentially equivalent to (a-assert string P).)

help (?) Topic Prints help message on topic Topic (help help lists topics).

reset Reset Algernon.
clear-window (cw) Clear window.
version (v) Prints out the current version number.
profile-kb (pkb) Prints some statistics about the knowledge base.
exit (e x quit) Exit Algernon.

3.2 Saving and Restoring the Knowledge Base

dump-kb (dkb) name Record state of knowledge-base to a file.
kb-snapshot (kbs) name Record the current state of the knowledge-base in memory.

Equivalent to the Lisp function (kb-snapshot string).
write-snapshot (ws) name Write a snapshot to disk.
list-snapshots (ls) List current snapshots.
delete-snapshot (ds) name Delete a snapshot.
delete-all-snapshots (das) Delete current snapshots.
load-kb (lkb) name Load a saved knowledge-base (from disk or a snapshot).
kb-directory (kbd) check/change directory for storing snapshots.

3.3 Browsing the Knowledge Base

current-frame (cf) Show current frame.
who (w) n Visit frames with name n (n a symbol or list).
visit-frame (vf) f Visit frame f (f a symbol).
visit-slot (vs) s Visit frames in slot s of the current frame
visit-slot-nonv (vsn) s Visit frames in non-value facet of slot s of the current frame.
pop (p) Pop back to last visited frame.
next-frame (nf) Go to next frame in current frame list.
previous-frame (pf) Go to previous frame in current frame list.
rules (r) s Show all rules which apply to slots of current frame.

3.4 Tracing Algernon Inference

There are many trace switches in Algernon. The following commands turn on selections of them, providing
decreasing amounts of information. trace-logic is perhaps the most useful for debugging.
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trace-all (ta) Trace everything (very verbose).
trace-control (tc) Trace logic plus control queues.
trace-logic (tl) Trace queries, assertions, and rule applications.
trace-interest (ti) Trace interesting events (new facts and contradictions).
trace-off (to) Turn off all tracing.
default-trace (dt) Default trace (currently: trace off).

It can be useful to turn on tracing during an operation, using the Lisp versions of the trace commands.
For example, to start the trace after it is learned that the color of block is red,

(:rules blocks
((color ?b red) -> (:eval (acom-trace-logic))))

3.5 Output Control

Algernon is also willing to describe the results of each operation.

normal-output (no) Bindings and kb changes of operations shown.
minimal-output (mo) Bindings resulting from operations shown.
silent-output (so) Output silent unless operation fails.
verbose-output (vo) Results, kb changes, and predicates of operations shown.
last-op (lo) Show results of more recent operations.

3.6 Running Programs and Examples

lisp (l) exp Evaluate the exp as a Lisp expression.
load f Load file f (f a string).
compile-load (cl) f Compile and load file f (f a string).
load-ex (le) f Load example file f.
run-ex (re) e Run example e.

3.7 Debugging

backtrace (bt) Print Algy operation stack.

You can also evaluate (algy-backtrace) in a Lisp error-break.

3.8 Useful Global Variables

*dont-print-slots* (nil) Suppress printing of these slots.
*cerror-on-failed-assert* (t) Continuable error on failure.
*cerror-on-failed-query* (nil) Continuable error on failure.
*search-strategy* (depth-first) Strategy for rule chaining.
*special-forms* List of all legal special forms.
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4 The Built-In Knowledge-Base

The built-in knowledge-base sets up the top level of the taxonomy as well as several basic slots. The source
code for the knowledge base is in the file akbase.lisp.

4.1 Naming Conventions

The following conventions have been used in naming frames and slots:

• Names for sets are generally plural (e.g., people) to distinguish them from individuals.

• Names for slots are generally chosen so that (r f1 f2) can be read as “f1 r f2” or “An r of f1 is
f2” (depending on whether r is a verb or a noun).

4.2 Fundamental Objects and Relations

The basic structure of the knowledge base is organized around sets, their elements, and their subsets.

(isa x S) ≡ x ∈ S “x is an element of S.”
(member S x) ≡ x ∈ S “An element of S is x.”
(subset A B) ≡ A ⊇ B “A subset of A is B.
(superset B A) ≡ B ⊆ A “A superset of B is A.

Knowledge representation in Algernon exploits access limitations, so an individual will normally be linked
explicitly to some of its containing sets, but most large sets will not be explicitly linked to their members.

The taxonomy of fundamental objects is set up as follows:

(:taxonomy (things
(rules)
(objects
(sets things objects sets slots)
(booleans true false :complete)
(contexts global-context))

(slots
(order-relations
(tc-order-relations
(equivalence-relations))))))

Every frame in the knowledge-base is a member of the set things, which breaks down into the sets
objects and slots, and so on. In the knowledge-base, the taxonomy is represented using isa and
superset relations (and their inverses member and subset). isa links an object to a set of which it is
a member, and superset links a set to a superset of it (thus member links a set to one of its members,
and subset links a set to one of its subsets).

A basic design decision in building large taxonomies is whether to link an object in the taxonomy to
every set it is a member of, to link it to just the ‘lowest’ set in the taxonomy it is a member of (and then link
this set up to the sets higher up in the taxonomy using superset links), or to link it to some of the sets it
is a member of. We have chosen to take the third course, and link objects to just the “important” sets they
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are a member of. This distinction is represented using the relations superset and imp-superset. In-
tuitively, imp-superset links a set to an ‘important’ superset. Operationally this means that if Algernon
learns that an object, x is a member of a set s, and s has an important superset S, then a forward-chaining
rule immediately adds an isa link between x and S.

(:rules things
((isa ?x ?s1) (imp-superset ?s1 ?s2) -> (isa ?x ?s2)))

The slot declarations for some of the important slots defined in the built-in knowledge-base are given
below:

(:slot isa (things sets)
:comment "(isa ?x ?s) = ?x is a member of the set ?s.")

(:slot member (sets things)
:backlink isa
:comment "(member ?s ?x) = A member of ?s is ?x.")

(:slot subset (sets sets)
:comment "(subset ?s1 ?s2) = A subset of ?s1 is ?s2.")

(:slot superset (sets sets)
:inverse subset
:comment "(superset ?s1 ?s2) = A superset of ?s1 is ?s2.")

(:slot selfset (things sets)
:cardinality 1
:backlink member
:comment "The selfset of x is the set {x}.")

(:slot less (objects objects)
:comment "(less ?x ?y) = ?x less than ?y.")

(:slot greater (objects objects)
:inverse less
:comment "(greater ?x ?y) = ?x greater than ?y.")

(:slot equal (objects objects)
:inverse equal
:comment "(equal ?x ?y) = ?x is equal to ?y.")

(:slot least (objects sets)
:comment "(least ?x ?s) = ?x is the least member of ?s.")

(:slot greatest (objects sets)
:comment "(greatest ?x ?s) = ?x is the greatest member of ?s.")
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4.3 Knowledge of Common Things

Distinct from the fundamental ontology of the knowledge base, Algernon has knowledge of a few common
everyday objects and relations, mostly added to make our examples work.

Notice that there is no problem with declaring the same objects or relationship twice, if the information
is compatible and name references are unambiguous.

(:taxonomy (things
(objects
(physical-attributes
(colors black white red blue green

yellow brown orange purple)
(genders male female :complete))

(physical-objects
(people)))))

The slots relating these objects are the following.

(:slot color (physical-objects colors)
:cardinality 1
:comment "(color x c) = The color of x is c.")

(:slot gender (physical-objects genders)
:cardinality 1
:comment "(gender x g) = The gender of x is g.")

(:slot spouse (people people)
:cardinality 1
:backlink spouse
:comment "(spouse a b) = The spouse of a is b.")

(:slot wife (people people)
:cardinality 1
:backlink spouse
:comment "(wife a b) = The wife of a is b.")

(:slot husband (people people)
:cardinality 1
:inverse wife
:comment "(husband a b) = The husband of a is b.")

(:slot friend (people people)
:comment "(friend a b) = A friend of a is b.")

;; Husband and wife also imply genders:
(:rules people
((wife ?x ?p1) -> (gender ?p1 female)))
(:rules people
((husband ?x ?p1) -> (gender ?p1 male)))
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(:slot super-context (contexts contexts)
:comment "(super-context c1 c2) = A super-context of c1 is c2.")

(:slot sub-context (contexts contexts)
:inverse super-context
:comment "(sub-context c1 c2) = A sub-context of c1 is c2.")

(:slot current (contexts contexts)
:cardinality 1
:backlink super-context
:comment "(current c1 c2) = The current sub-context of c1 is c2.")

(:slot speaker (contexts people)
:cardinality 1
:comment "(speaker c s) = The speaker in c is s.")

(:slot recent (contexts objects)
:comment "(recent c r) = A recently mentioned thing in c is r.")
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5 Helpful Hints

Reader contributions are solicited to expand this section.

• Algernon is not Prolog. Despite the superficial similarities, there are several important differences in
the inference algorithms used. See section 2.3 for a brief description of the inference algorithms used
in Algernon.

• Avoid using the non-monotonic special forms. They are essential in some cases, but we currently do
not have a good theory of non-monotonic reasoning so it is difficult to predict their behavior without
knowledge of the Algernon inference algorithms.

• It is a good idea to create a taxonomy and link your frames and slots into it. Setting up a large
taxonomy in Algernon can be a slow process so it is often a good idea to set up the taxonomy and then
take a “snapshot” of the knowledge-base (see section 3.2).

• In general, rules should be associated with frames (instead of slots). There are two important excep-
tions to this rule. First, some rules are associated with slots because they allow Algernon to conclude
isa relations (and thus access rules). For example, it would do little good to associate the rule:

((father ?x ?y) -> (isa ?x people))

with the set people. The second exception are rules associated with sets of slots (e.g., rules for
partial orders).

• Don’t try to use :taxonomy to assert that a slot belongs to a set of slots. You can define sets of slots
using :taxonomy, but all slots should be created and defined using :slot, and then linked to the
taxonomy by asserting explicit isa relations.

• There is a simple theory of coreference (reasoning about whether two frames describe the same
object) that is no longer loaded by default into the knowledge-base. Old examples that use the
coreference link may fail.

5.1 Bugs and Problems

If you discover a bug in Algernon, please send a report, with enough information for us to reproduce the
bug, to algernon@cs.utexas.edu.
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