
Page 1 of 8

EECS 583 – Fall 2012 – Midterm Exam

Monday, November 19, 2012

10:40-12:30: open book, open notes

Name: ______________________________________

Please sign indicating that you have upheld the Engineering Honor Code at the

University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 12 questions divided into 3 sections. The point value for each question is

specified with that question. Please show your work unless the answer is obvious. If you

need more space, use the back side of the exam sheets.

Part I: Short Answer

 4 questions, 12 pts total Score:_____

Part II: Short Problems

6 questions, 58 pts total Score:_____

Part II: Longer Problems

 2 questions, 30 pts total Score:_____

Total (100 possible): _______

Page 2 of 8

Part I. Short Answer (Questions 1-4) (12 pts)

1) A basic block can be control dependent on an edge coming from a dominating basic

block? Is this statement True or False, briefly explain. (3 pts)

2) Compilers often provide warnings if local variables can be used without first being

defined in a function. Circle the standard dataflow analysis provides the best

information to issue such warnings. (3 pts)

Liveness Reaching defs Available defs Available exprs

3) When scheduling a basic block, all instructions must be scheduled at their Estart time

to achieve the minimum schedule length. Is this statement True or False, briefly

explain. (3 pts)

4) Compute the ResMII for a loop with 8 memory and 20 arithmetic instructions on a

processor with 2 fully pipelined MEM units and 3 fully pipelined ALUs. (3 pts)

Page 3 of 8

Part II. Short Problems (Questions 5-10) (58 pts)

5) Compute the post dominator (PDOM) set for each basic block in the following

control flow graph. (5 pts)

6) Draw the control flow graph (CFG) and determine the minimum number of predicates

required to if-convert the code. (10 pts)

i = 0;

do {

 if (A[i] && A[i]->b && A[i]->b->c)

 x++;

 else

 y++;

} while (++i < 100);

1

2

6

4

3

5

7

1

2

3

4

5

6

7

PDOM BB

Page 4 of 8

7) Convert the following program segment into static single assignment (SSA) form.

You should perform the necessary renames and show the Phi nodes. Solving by

inspection is fine and you can put your solution directly on the diagram. (10 pts)

8) In the following loop consisting of basic blocks 1-4 with 2 exit points, LICM has

been applied to the instruction “r1 = r2 * 27”. Assuming the optimization was legal,

which block(s) could not be the original home of the invariant instruction? Explain.

(8 pts)

x = x + y

y = y + 1

y = y * 5

y = 2

x = x + 1

y = x * y

x = 1

y = 1

Live = r2 Live = r2

r1 = r2 * 27

BB1

BB2

Use of r1

BB3

BB4

Hoisted invariant

Page 5 of 8

9) Generate the II=4 modulo schedule for the following dependence graph and processor

model. Show the unrolled and rolled schedules for your answer. You can assume

that instruction 1 is the highest priority, 2 is second highest, etc. and you do not need

to assign staging predicates. (15 pts)

0,0

0,0

1,1

3,0

2,0

Processor model

2 fully pipelined function units

1 ALU, 1 MEM

Instructions 1 and 2 are memory

Instructions 3, 4, 5 and 6 use the

ALU

Instruction 6 is the branch

1

D

2

3

4

5

6

2,0

1,1

0,0

Page 6 of 8

10) Consider the following code segment. How many physical registers are necessary to

allocate virtual registers r1, r2, r3, r4 without spilling? Assume that &A, &B, &C,

and &D are compile time constants and do not require registers. Justify your answer.

(10 pts)

1: r1 = 0

2: r2 = LD(&A)

3: r1 = r1 + r2

4: r3 = LD(&B)

5: r1 = r1 + r3
6: r4 = LD(&C)

8: store (&D, r1)

7: r1 = r1 + r4

Page 7 of 8

Part III. Longer Problems (Questions 11-12) (30 pts)

11) Suppose that you are given a new dataflow problem, MustDef. At a point p in a

program, MustDef is defined as the set of variables that are guaranteed to be defined

along all paths from ENTRY to p.

So for example, at point p, MustDef contains r1 and r6, but not r5.

Define the set of dataflow equations to solve for MustDef. You should define GEN,

KILL, IN, and OUT. (15 pts)

r1 = r2 + r3

r5 = r3 + r4

r6 = r5 + 1

r6 = r2 + 3

p

Page 8 of 8

12) You are the professor in a compiler construction class and have to write an exam

question on optimization. Create a small pseudo assembly function which reduces to

three instructions: a constant assignment, an add, and a store, each in its own basic

block with the implied control flow as shown below. Note: you do not need to

include a branch instruction. You should use the optimizations listed below, they

must be applied once each (exhaustively), in an order selected by you.

Create the answer key by showing the code before and after each optimization.

Assume that each optimization must fire at least one time. You may use all or a

subset of {r1, r2, r3, r4, r5} as extra registers, and your starting code should not

contain any dead code. (15 pts)

add

store

Constant

assignment

Code template after

all optimizations

Optimizations:

Constant folding

Dead code elimination

Constant propagation

Induction variable strength reduction

Copy propagation

