
Page 1 of 14

EECS 583 – Fall 2013 – Midterm Exam

Wednesday, November 20, 2013; 7:00-9:00pm

Open book, open notes

Name: _______Key_______________________________

Please sign indicating that you have upheld the Engineering Honor Code at the

University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 12 questions divided into 3 sections. The point value for each question is

specified with that question. Please show your work unless the answer is obvious. If you

need more space, use the back side of the exam sheets.

Part I: Short Answer

 5 questions, 15 pts total Score:_____

Part II: Medium Problems

5 questions, 55 pts total Score:_____

Part II: Longer Problems

 2 questions, 30 pts total Score:_____

Total (100 possible): _______

Page 2 of 14

Part I. Short Answer (Questions 1-5) (15 pts)

1) Name a dataflow analysis discussed in class that is forward and any path (3 pts)

Reaching definitions

2) Name one advantage that superblocks provide a compiler over traditional basic

blocks (3 pts)

Several answers are possible here: Larger scope for scheduling to find more ILP,

Isolate hot paths from cold paths for increased optimization opportunities, Improved

icache performance due to sequential layout of hot path.

3) Name two optimizations that exhibit constructive interference, i.e., the application of

one optimization enables additional opportunities for the other to be applied. (3 pts)

Many answers were accepted for this question: constant propagation & constant

folding, CSE & copy propagation, constant/copy prop & induction variable strength

reduction, copy propagation & dead code elimination

4) Give a reason why it may be undesirable to apply common subexpression elimination

(CSE) to an instruction that can be legally optimized? (3 pts)

There are several answers for this question as well: increase register pressure as CSE

requires preserving the destination of the first instruction for a longer period of time

which in turn may lead to additional spill code during register allocation, increased

number of dependences as the second instruction is made dependent on the first (or the

copy) to remove the redundancy, if the second instruction takes no more time than a copy

(say an add), then you eliminate an add for 2 copies.

5) For a processor with infinite resources, a naïve heuristic that maximally if-converts

acyclic control flow graphs would be seemingly effective. In what situation would

this strategy not be effective? Briefly explain your answer (3 pts)

There are 2 possible answers for this one: Imbalanced dependence heights of if-

converted blocks increases the dependence height of the shorter path independent of

the number of resources, presence of a hazard in one of the blocks that is if-converted

can slow down the other paths that are if-converted.

Page 3 of 14

Part II. Medium Problems (Questions 6-10) (55 pts)

6) Consider the following code segment. If 2 physical registers are available, how many

spills will occur when virtual registers r1, r2, r3, r4, and r5 are allocated? Assume that

&A, &B, and &C are compile time constants and do not require registers. The edges

of the control flow graph have been annotated with the profile execution counts.

Justify your answer. (10 pts)

Page 4 of 14

LR(r1) = {1,2,3,4,5,6,7} stack: r3 (removed)

LR(r2) = {2,3,4,5,6,7} r2 (removed)

LR(r3) = {4,6,7} r5 (spilled)

LR(r4) = {5,6} r4 (spilled) 3 spills

LR(r5) = {7,8} r1 (spilled)

 r1 r2 r3 r4 r5

Cost 11 18 20 6 11

Neighbors 4 4 4 3 3

c/n 2.75 4.5 5 2 3.67

r1 r2

r3

r4

r5

Page 5 of 14

7) In the following control flow graph (CFG), add 4 instructions such that the following

conditions are met: each instruction is in a different basic block, each instruction

sources the destination register of one of the instructions (possibly itself) but all

destination registers must be sourced at least once, at least 3 of the instructions can be

removed from the loop by LICM. You may assume any relevant registers are

properly initialized. (10 pts)

Below is one possible answer – more may be possible. Note, inserting dead

instructions of the form rx = rx + 0 into the loop is a creative but not a correct answer

as LICM itself should not be assumed to also do dead code elimination.

BB0

BB1 r1 = r0 + 1

BB2 r2 = r1 + 1 BB3 r3 = r1 + 1

BB4

BB5 r0 = r2 + r3

Page 6 of 14

Draw the control flow graph (CFG) and determine the minimum number of predicates

required to if-convert the code. Justify your answer. (10 pts)

do {

 a = load(x)

 if ((a > 0) || (y > 0)) {

 if (a > 10)

 y--;

 else

 x++;

 }

} while (a < 50)

4 unique sets
4 predicates
minimum

BB 1:
a = load(x)

BB2

BB3

BB4: y-- BB5: x++

BB6

a < 50 a >= 50

y <= 0

y > 0

a > 0

a > 10 a <= 10

a <= 0

Page 7 of 14

8) Convert the following program segment into static single assignment (SSA) form.

You should perform the necessary renames and show the Phi nodes. Solving by

inspection is fine and you can put your solution directly on the diagram. (10 pts)

Page 8 of 14

 x0 = 0

y0 = 0

x1 = phi(x0, x3)

y1 = phi(y0, y4)

y2 = x1 + y1

y3 = x1 + 1

x3 = phi(x1, x2)

y4 = phi(y2, y3)

x2 = y2 + y2

x4 = phi(x0, x3)

y5 = phi(y0, y4)

x5 = x4 * y5

y6 = x5 + y5

Page 9 of 14

9) Compute the ResMII, RecMII, and MII for following dependence graph and

processor model. Then, generate the MII modulo schedule. Show the unrolled and

rolled schedules for your answer. You can assume that instruction 1 is the highest

priority, 2 is second, etc. You do not need to assign staging predicates. (15 pts)

ResMII

 For the ALU: 4 operations / 2 units = 2

 For the MEM: 2 operations / 1 unit = 2

 ResMII = MAX(2, 2) = 2

RecMII

 252: (2+1)/(0+1) = 3

 44: 1/1 = 1

 RecMII = MAX(3,1) = 3

MII = MAX(ResMII, RecMII) = MAX(2,3) = 3

2 schedules were accepted for this problem. The correct schedule is actually difficult to

generate as it requires backtracking when instruction 5 is scheduled (assuming

instructions 1-4 have already been scheduled) to remove instructions 3&4 which conflict

with it. Both schedules are for II=3 and consist of 3 stages.

2,2

2,0

1,1

0,0

2,0

1,1

3,0

2,0

Processor model

3 fully pipelined function units

2 ALU, 1 MEM

Instructions 1 and 2 are memory

Instructions 3, 4, 5 and 6 use the ALU

Instruction 6 is the branch

1

D

2

3

4

5

6

0,0

Page 10 of 14

Correct answer

Rolled schedule

Cycle Instructions scheduled

0 1

1 3,5

2 2,4,6

Unrolled schedule

Cycle Instructions scheduled

0 1

1

2 2

3

4 3,5

5

6

7

8 4,6

Alternate answer – This answer is not technically correct because it does not properly

honor the cross-iteration dependence between instruction 5 and 2. Instruction 5 is issued

too late to produce a value for instruction 2 in the next iteration. However, this is the

most natural schedule to obtain if you follow the modulo scheduling algorithm presented

in class, thus it was accepted as a correct answer.

Rolled schedule

Cycle Instructions scheduled

0 1

1 3,4

2 2,5,6

Unrolled schedule

Cycle Instructions scheduled

0 1

1

2 2

3

4 3

5 5

6

7 4

8 6

Page 11 of 14

Part III. Longer Problems (Questions 11-12) (30 pts)

10) Given the following definition of anticipated: An expression E is anticipated at a

point p if every path from p to Exit contains an instruction that evaluates E and is not

preceded on that path by an instruction that might kill E. The idea is to determine

how early one could compute an expression in the program before it actually needs to

be used.

So for example, at the top of the left block, the expressions r2+r3 and r7-r8 are

anticipated, but at the top of the right block only r7-r8 is anticipated.

Define the set of dataflow equations to solve for anticipated expressions. You should

define GEN, KILL, IN, and OUT. (14 pts)

This problem is equivalent to reverse available expressions, thus it is bottom up and all

paths.

GEN/KILL calculation

Initialize GEN/KILL = 0 for all BB

For each basic block, BB

 For each instruction in BB from bottom to top, X

 G = op

 K = {all instructions which source a destination operand of X} – X

 GEN(BB) = (GEN(BB)-K) + G

 KILL(BB) = (KILL(BB)-G)+ K

IN/OUT calculation

Initialize OUT=0 for all BB; IN(BB)={all instructions} – KILL(BB)

While (change)

 For each basic block, BB

 OUT(BB) = Intersect IN(successors of BB)

 IN(BB) = (OUT(BB) – KILL(BB)) + GEN(BB)

 Change = true if IN(BB) was changed from its old value

r4 = r7 - r8

r1 = r2 + r3

r4 = r7 - r8

r6 = r4 + r5

Page 12 of 14

Your boss has tasked you with reverse engineering a competitor’s VLIW processor. You

have been provided an application and its resulting compiler schedule. Through some

preliminary analysis, some of the machine characteristics have been determined, as

provided in the table on the left. But they have not yet determined the complete resource

usage of each instruction, which is where you come in. (Note: “?” can be between 0 and

the total resources the associated type.) (16 pts)

a) Draw the data dependence graph for the application labeling each edge with the

latency. You can assume that each source operand is read at time 0 and each

destination operand is written at the latency. Note, instructions 1, 2 and 3 do not

alias with instruction 10.

b) What operations are on the critical path? How many cycles does the application

require if there were infinite resources?

c) Suppose the schedule on the right is the best that can be achieved for the

application on the processor. What can you conclude about the resource

utilization of each operation type? Explain your answer.

d) Suppose you can add 1X resource to the processor or reduce the multiply latency

to 1 cycle. Which change will increase the performance of the application the

most? Explain your answer.

Use the next page for your answers

Opcode Latency Resources

Add 1 1X, 0Y, 0Z

Mpy 2 ?X, ?Y, 2Z

Load 3 1X, ?Y, 1Z

Store 1 ?X, 2Y, ?Z

Application

1: r1 = load (A)

2: r2 = load (B)

3: r3 = load (C)

4: r4 = r1 + r2

5: r5 = load (r4)

6: r6 = r4 + 1

7: r7 = r6 × r5

8: r8 = r3 + r5

9: r9 = r7 × r6

10: store(r4, r8)

Best schedule

time instructions

0 1

1 2

2 3

3

4 4

5 5,6

6

7

8 7

9 8

10 10

11 9

Total resources: 2X, 3Y, 3Z

Page 13 of 14

Answer 12)

(A)

(B) Operations on critical path: 1, 2, 4, 5, 7, 9.

9 cycles with infinite resources.

(C)

 add: all resources are known

 mpy: instructions 7 (mult) and 8 (add) cannot issue at the same time, so there

must be a resource constraint the multiply requires at least 2 X to issue

 load: since two loads can’t issue simultaneously (like instructions 1,2), each load

must require at least 2 Y resources to issue.

 store: 10 (store) and 9 (mult) cannot issue at the same time. If the multiply

requires 2 or more X resources to issue, the store must require at least 1 X

resources as well in order to prevent these from issuing simultaneously.

(D) Reducing mpy latency may allow mpys to finish faster, but it does nothing to reduce

resource contention. 7 & 8 would still issue at the same times as in the schedule, and

while 7 may finish 1 cycle earlier, 9 would not be able to issue any sooner due to 9 &

10’s resource contention.

1 2 3

4

5 6

7

9

8

10

3 3

3

3

1 1

1

1

2

3 1 1

1

Page 14 of 14

Adding 1X will allow 7 & 8 to be issued at t=8. At t=9, the 10 can issue since 8 is done.

The 8 will finish at t=10, allowing 9 to issue at t=10, one cycle earlier. So, adding 1X

will have the most impact on application performance.

