Built-In Self-Testing
Pattern Generation and
Response Compaction

® Motivation and economics

® Definitions

@ Built-in self-testing (BIST) process
® BIST pattern generation (PG)

® BIST response compaction (RC)

® Aliasing probability

©® Example

® Summary

Costly Test Problems
Alleviated by BIST

Increasing chip logic-to-pin ratio — harder
observability

Increasingly dense devices and faster clocks
Increasing test generation and application times
Increasing size of test vectors stored in ATE
Expensive ATE needed for 1 GHz clocking chips

Hard testability insertion — designers unfamiliar
with gate-level logic, since they design at
behavioral level

In-circuit testing no longer technically feasible
Shortage of test engineers
Circuit testing cannot be easily partitioned

Benefits and Costs of
BIST with DFT

Falbri- Manuf. Maintenance Diagnosis Sernvice
andl repaiir imiEnnuypliomn

+- Caost increase may balance cost reduction

BIST Motivation

® Useful for field test and diagnosis (less
expensive than a local automatic test
equipment)

® Software tests for field test and diagnosis:
" Low hardware fault coverage
" Low diagnostic resolution
" Slow to operate

® Hardware BIST benefits:
" Lower system test effort
" Improved system maintenance and

repair

" Improved component repair
" Better diagnosis

Typical Quality
Requirements

® 98% single stuck-at fault coverage
® 100% interconnect fault coverage
® Reject ratio — 1 in 100,000

Economics - BIST Costs

Chip area overhead for:

®Test controller

eoHardware pattern generator

eoHardware response compacter

@®Testing of BIST hardware
Pin overhead — At least 1 pin needed to
activate BIST operation
Performance overhead - extra path delays due
to BIST
Yield loss — due to increased chip area or more
chips In system because of BIST
Reliability reduction — due to increased area
Increased BIST hardware complexity —
happens when BIST hardware is made testable

BIST Benefits

©® Faults tested:
= Single combinational / sequential stuck-at
faults
= Delay faults
= Single stuck-at faults in BIST hardware
©® BIST benefits
* Reduced testing and maintenance cost
* Lower test generation cost
* Reduced storage / maintenance of test patterns
= Simpler and less expensive ATE
= Can test many units in parallel
= Shorter test application times
= Can test at functional system speed

More Definitions

@ Primitive polynomial — Boolean polynomial p
(x) that can be used to compute increasing
powers n of xX™ modulo p (x) to obtain all
possible non-zero polynomials of degree less
than p (x)

® Pseudo-exhaustive testing — Break circuit
into small, overlapping blocks and test each
exhaustively

® Pseudo-random testing — Algorithmic pattern
generator that produces a subset of all
possible tests with most of the properties of
randomlygenerated patterns

® Signature — Any statistical circuit property
distinguishing between bad and good circuits

® TPG - Hardware test pattern generator

BIST Architecture

o] (e Cincter- Tt
e (th opdonal
o | moddcakas)

©® Note: BIST cannot test wires and transistors:
* From PI pins to Input MUX
* From POs to output pins

Definitions

@ BILBO - Built-in logic block observer, extra
hardware added to flip-flops so they can be
reconfigured as an LFSR pattern generator or
response compacter, a scan chain, or as flip-
flops

® Concurrent testing — Testing process that
detects faults during normal system operation

® CUT - Circuit-under-test

@ Exhaustive testing — Apply all possible 2™
patterns to a circuit with n inputs

® lireducible polynomial — Boolean polynomial that
cannot be factored

® LFSR - Linear feedback shift register, hardware
that generates pseudo-random pattern seguence

BIST Process

Fatiin
[
Sysiom Board chip [}
I Tear =T st | T |
Corriacehe [pile) Conilenber IE
[T
Ay

® Test controller — Hardware that activates self-
test simultaneously on all PCBs

® Each board controller activates parallel chip BIST
Diagnosis effective only if very high fault
coverage

BILBO — Works as Both a
PG and a RC

[-i=eT]
LFBA
Lnaer Faptinek] T 1
Shi¥ Hegusior
Hakem
Sermamky

n Logic Block Observer (BILBO) — 4 modes:
ip-flop
2. LFSR pattern generator
3. LFSR response compacter
4. Scan chain for flip-flops

Complex BIST Architecture Bus-Based BIST Architecture

® Testing epoch I:

= LFSR1 generates tests for CUT1 and CUT2

= BILBO2 (LFSR3) compacts CUT1 (CUT2) ® Self-test control broadcasts patterns to each
® Testing epoch II: CUT over bus — parallel pattern generation

* BILBO2 generates test patterns for CUT3 ® Awaits bus transactions showing CUT’s
* LFSR3 compacts CUT3 response responses to the patterns: serialized compaction

Exhaustive Pattern

Pattern Generation i
Generation

® Store in ROM — too expensive

©® Exhaustive

® Pseudo-exhaustive

® Pseudo-random (LFSR) — Preferred method

® Binary counters — use more hardware than
LFSR

® Modified counters

® Test pattern augmentation

* LFSR combined with a few patterns in

Holl _ ©® Shows that every state and transition works
= Hardware diffracter — generates pattern

cluster in neighborhood of pattern stored @ For n-input circuits, requires all 2" vectors
in ROM ® Impractical for n > 20

Pseudo-Exhaustive Pseudo-Exhaustive
Method Pattern Generation

@ Partition large circuit into fanin cones
= Backtrace from each PO to Pls influencing it
* Test fanin cones in parallel

©® Reduced # of tests from 28— 256102°> x2=64
= Incomplete fault coverage

Random Pattern Testing

Bottom:
Random-
Pattern
Resistant
circuit

s Pt Covorsge

&

K1

Rirnber of flscion Paioms
100 T cren - oo parbT g wilh At sbie L cowags
1 SelBa curve = Lndoieplable iRt pal i laing

Matrix Equation for
Standard LFSR

Xo (t+1) Xo (O
X; (t+1) X4 ()

Xy 3 (T+1)
Xy (E+1)

0 .. 1 o0 ||[x,3m
o . 1 |[|Xp2®
Xpa (T+1) hy . hpp hpg || Xpg (9

X(t+1)=TgX(V) (Tg is companion matrix)

Standard n-Stage LFSR
Implementation

Lo
® Autocorrelation — any shifted sequence same as
original in 2™ _ 1 bits, differs in 2™ bits
@ If h; = 0, that XOR gate is deleted

Pseudo-Random Pattern
Generation

Gt Xz ; X
® Standard Linear Feedback Shift Register (LFSR)
* Produces patterns algorithmically — repeatable
= Has most of desirable random # properties
® Need not cover all 2" input combinations
® Long sequences needed for good fault coverage

LFSR Implements a
Galois Field

" Galois field (mathematical system):
= Multiplication by x same as right shift of
LFSR
* Addition operator is XOR (&)
" Tg companion matrix:
= 15t column 0, except nth element which is
always 1 (X always feeds X, 1)
* Rest of row n - feedback coefficients h;
* Rest is identity matrix | — means a right shift

® Near-exhaustive (maximal length) LFSR
= Cycles through 2" — 1 states (excluding all-0)
= 1 pattern of n 1's, one of n-1 consecutive 0's

LFSR Theory

® Cannot initialize to all 0’s — hangs

@ If Xis initial state, progresses through
states X, Tg X, T2 X, Te> X, -

©® Matrix period:
Smallest k such that T,X=1
= k° LFSR cycle length
® Described by characteristic polynomial:
f(x)=[Tg-1X]|
=1+hy x+hyxZ+ . +hy g X"+ x"

LFSR Fault Coverage
Projection

® Fault detection probability by a random number
P (%) dx = fraction of detectable faults with
detection probability between x and x + dx

= p (x) dx 9 OthLen0£x£1
- OPEYdx=1
® Exist p (x) dx faults with detection probability x

® Mean coverage of those faults is x p (x) dx
® Mean fault coverage y,, of 15 n vectors:

I(M=1- ¢ (1-x)"p () dx
0

Ynl1-1() + (15.6)

total faults

Example External XOR
LFSR

® Characteristic polynomial f (x) = 1 + x + x3
(read taps from right to left)

Generic Modular LFSR

LFSR Fault Coverage &
Vector Length Estimation

©® Random-fault-detection (RFD) variable:
= Vector # at which fault first detected
= w;© # faults with RFD variable i
esSop@=-1 Swp
ns i=1

® ng 0 size Olel sample simulated; N O # test vectors

= Estimate random first detect variables w; from
fault simulator using fault sampling

= Estimate I (n) using book Equation 15.8

= Obtain test length by inverting Equation 15.6
& solving numerically

External XOR LFSR

® Pattern sequence for example LFSR (earlier):
100101110
0
0

01011100
10111001

® Always have 1 and x" terms in polynomial

® Never repeat an LFSR pattern more than 1 time —

Repeats same error vector, cancels fault effect

Xo (t+1) 010|[Xe®
X (@t+1) | =(00 1||x;(®
X5 (t+1) | 110][x;® |

Modular Internal XOR LFSR

©® Described by companion matrix T, =T "
® Internal XOR LFSR — XOR gates in between D
flip-flops
® Equivalent to standard External XOR LFSR
* With a different state assignment
= Faster — usually does not matter
* Same amount of hardware
@ X(t+1)=T, x X(
®f(x)=|Typ-I1X|
=1+hyx+hy 2+ . +hp g x™
® Right shift — equivalent to multiplying by x,
and then dividing by characteristic
polynomial and storing the remainder

1, ,n

Modular LFSR Matrix

Xo (t+1) Xo ()
X; (t+1) X1 (9
X5 (t+1) X5 ()

Xpg (€+1) D 0 0. 0 C Xp 3 (0
Xp o (E+1) Xp o (D)
Xy (E+1) | 1| [Xn1 @]

Primitive Polynomials

® Want LFSR to generate all possible 2™ — 1
patterns (except the all-0 pattern)
® Conditions for this — must have a primitive
polynomial:
= Monic — coefficient of X" term must be 1
®Modular LFSR - all D FF's must right shift
through XOR’s from X through X4, ...,
through X, ;, which must feed back
directly to X,
@Standard LFSR — all D FF's must right shift
directly from X, ; through X, 5, ..., through
Xg» which must feed back into X, ; through
XORing feedback network

Weighted Pseudo-Random
Pattern Generation

s-a-0
=
@ Ifp(1) atall Plsis 05, p(1)=05%=
1 _ 255

PrO)=1- 558 = 556

® Will need enormous # of random patterns to
test a stuck-at O fault on F -- LFSR p (1) = 0.5
* We must not use an ordinary LFSR to test
this
® IBM - holds patents on weighted pseudo-
random pattern generator in ATE

-
256

Example Modular LFSR

b, (™ | |
2 | -
o oo '}Bl}lr j o o a{e dHe j}i}'fﬂ .T,
z] 4 5 &]
] ¥ A i LhoE K ¥l ox o
ey e 3 3 o
CLock
Of(xX)=1+ 32+ x7 + xB
® Read LFSR tap coefficients from left to right

Primitive Polynomials
(continued)

" Characteristic polynomial must divide
the polynomial 1 + xXfor k= 2" 1, but
not for any smaller k value

" See Appendix B of book for tables of
primitive polynomials

@ If p (error) = 0.5, no difference between
behavior of primitive & non-primitive
polynomial

® But p (error) is rarely = 0.5 In that case,
non-primitive polynomial LFSR takes much
longer to stabilize with random properties
than primitive polynomial LFSR

Weighted Pseudo-Random
Pattern Generator

® LFSR p (1) =05

® Solution: Add programmable weight selection
and complement LFSR bits to get p (1)’s
other than 0.5

® Need 2-3 weight sets for a typical circuit

® Weighted pattern generator drastically
shortens pattern length for pseudo-random
patterns

Weighted Pattern Gen.

Cellular Automaton

@ Five-stage hybrid cellular automaton
@ Rule 150: X (t+1) =X 1 () A Xc () A Xcuq (©
® Alternate Rule 90 and Rule 150 CA

Response Compaction

® Severe amounts of data in CUT response to
LFSR patterns — example:
= Generate 5 million random patterns
= CUT has 200 outputs
= Leads to: 5 million x 200 = 1 billion bits

response

® Uneconomical to store and check all of these
responses on chip

® Responses must be compacted

Cellular Automata (CA)

® Superior to LFSR - even “more” random
* No shift-induced bit value correlation
= Can make LFSR more random with linear phase
shifter
® Regular connections - each cell only connects to
local neighbors

Xc-1 (1) Xc (1) Xc4q (D
(e

oo |

264244234 21— g0 called Rule 90
® X (E+1) =X q (DA Xgpq (D

Test Pattern Augmentation

® Secondary ROM — to get LFSR to 100% SAF
coverage
= Add a small ROM with missing test
patterns
= Add extra circuit mode to Input MUX — shift
to ROM patterns after LFSR done
* Important to compact extra test patterns

® Use diffracter:
= Generates cluster of patterns in
neighborhood of stored ROM pattern
® Transform LFSR patterns into new vector set
® Put LFSR and transformation hardware in full-
scan chain

Definitions

® Aliasing — Due to information loss, signatures
of good and some bad machines match

® Compaction — Drastically reduce # bits in
original circuit response — lose information

® Compression — Reduce # bits in original
circuit response — no information loss — fully
invertible (can get back original response)

® Signature analysis—- Compact good machine
response into good machine signature.
Actual signature generated during testing,
and compared with good machine signature

® Transition Count Response Compaction —
Count # transitions from 0 —»1 and 1 —» 0 as
a signature

Transition Counting

[} Legic smulstion of good macking and
fauk a stuck-at-1

{b) Transition counts of good and Bailng machnes.

LFSR for Response

Compaction

® Use cyclic redundancy check code (CRCC)
generator (LFSR) for response compacter

® Treat data bits from circuit POs to be compacted
as a decreasing order coefficient polynomial

® CRCC divides the PO polynomial by its
characteristic polynomial
* Leaves remainder of division in LFSR
* Must initialize LFSR to seed value (usually 0)

before testing

@ After testing — compare signature in LFSR to
known good machine signature

@ Critical: Must compute good machine signature

Polynomial Division
Inputs X2 x1x2 x3 x4
Initial State 0 0 O 0

Logic
Simulation:

OROROOOR
RRrRRROOOR
OROOCOORKD
moOOORKODO
moOROROOOO
oROROOOO

Logic simulation: Remainder = 1 + x2 +x3

0O 1 0 1 0 0 O 1

0> +1 x1+0>x2+1x3+0 x*+0 x>+ 0°x®
+1" x

Transition Counting
Details

® Transition count:
i
C(R)= S (r; A rip) for all m primary outputs
i=1

® To maximize fault coverage:

= Make C (R0) — good machine transition
count — as large or as small as possible

Example Modular LFSR
Response Compacter

1
Charactenstc Pofyromial £ 48 + 6+ T

L
il falle o] o o 7]
F]
H S | S
CLOCK
' T

® LFSR seed value is “00000™

Symbolic Polynomial
Division

Multiple-Input Signature
Register (MISR)

® Problem with ordinary LFSR response
compacter:
* Too much hardware if one of these is put on
each primary output (PO)
® Solution: MISR — compacts all outputs into one
LFSR
= Works because LFSR is linear — obeys
superposition principle
= Superimpose all responses in one LFSR —
final remainder is XOR sum of remainders of
polynomial divisions of each PO by the
characteristic polynomial

Modular MISR Example

I
moia E b2

'l:'.l i

y Torg

Xg (t+ 1) Xg (B dg (©
X, @+1) | = Xy (] + |dy (®)
X (t+1) | | | X2®] |d2(®)]

Aliasing Probability

® Aliasing — when bad machine signature
equals good machine signature
® Consider error vector e (n) at POs

= Set to a 1 when good and faulty machines
differ at the PO at time t

® P °© aliasing probability
® p ° probability of 1 in e (n)
@ Aliasing limits:
"0 <pf % pP“EPuE A-pX

BEpPE 1, A-pXEP, £ pK

MISR Matrix Equation
@ dj (1) — output response on PO; at time t

Xo (t+1) o|[xe®]| [do®
X, (t+1) ol|x;®m| |dy®
Xpz@+1) [=]00 . 1 0 ||X,3®|+|dyz®
Xpo (T+1) Xno(®] |dpo(®
Xpq (t+1) | 1| [(Xna (@] |dpa (®)

Multiple Signature Checking

® Use 2 different testing epochs:
= 1St with MISR with 1 polynomial
= 2nd with MISR with different polynomial
® Reduces probability of aliasing —
* Very unlikely that both polynomials will
alias for the same fault
® Low hardware cost:
= A few XOR gates for the 2"® MISR
polynomial
= A 2-1 MUX to select between two feedback
polynomials

Aliasing Probability Graph

== Bl Doz o= I
— Rt 17 ce e

Bevarcs o Almeiog

Additional MISR Aliasing R

® Theorem 15.1: Assuming that each circuit PO dij
has probability p of being in error, and that all
outputs dij are independent, in a k-bit MISR,
® MISR has more aliasing than LFSR on single PO P = 1(2), regardless of initial condition of
* Error in CUT output d; at t;, followed by error MISR. Not exactly true — true in practice.

in output dj,, at t;,,, eliminates any ® Theorem 15.2: Assuming that each PO d;; has
signature error if no feedback tap in MISR

between bits Qj and le probability P; of being in error, where the P;
probabilities are independent, and that all
outputs dij are independent, in a k-bit MISR,
Pa =]J/(ﬂ‘), regardless of the initial condition.

Transition Counting vs. LFSR

® LFSR aliases for f sal, transition counter for

Experiment Hardware

- Respon:
T e [Trarshon Counter | :

f

o T -
LFER =7 +a% +1

EIPRT,

HHHOHHHO!
HHHHHHHH@&
HHHHOOOOE

= RROCOROC

® 3 bit exhaustive binary counter for pattern
generator

S w
=1

Summary

@ LFSR pattern generator and MISR response
compacter — preferred BIST methods

® BIST has overheads: test controller, extra
circuit delay, Input MUX, pattern generator,
response compacter, DFT to initialize circuit &
test the test hardware

® BIST benefits:
= At-speed testing for delay & stuck-at faults
* Drastic ATE cost reduction
Field test capability
Faster diagnosis during system test
Less effort to design testing process
Shorter test application times

