Combinational Automatic
Test-Pattern Generation
(ATPG) Basics

Algorithms and representations
Structural vs. functional test
Definitions

Search spaces

Completeness

Algebras

Types of Algorithms

Functional vs. Structural
ATPG

Origins of Stuck-Faults

Eldred (1959) - First use of structural
testing for the Honeywell Datamatic 1000
computer

Galey, Norby, Roth (1961) - First
publication of stuck-at-0 and stuck-at-1
faults

Seshu & Freeman (1962) - Use of stuck-
faults for parallel fault simulation

Poage (1963) - Theoretical analysis of
stuck-at faults

Carry Circuit

D
17 stuck-at faulis




Functional vs. Structural
(Continued)

Functional ATPG - generate complete set of tests for
circuit input-output combinations

129 inputs, 65 outputs:

2129 = 680,564,733,841,876,926,926,749,

214,863,536,422,912 patterns

Using 1 GHz ATE, would take 2.15 x 1022 years
Structural test:

No redundant adder hardware, 64 bit slices

Each with 27 faults (using fault equivalence)

At most 64 x 27 = 1728 faults (tests)

Takes 0.000001728 s on 1 GHz ATE

Designer gives small set of functional tests - augment
with structural tests to boost coverage to 98+ %

Circuit and Binary
Decision Tree

{bf Binary dogision e

Definition of Automatic
Test-Pattern Generator

Operations on digital hardware:
Inject fault into circuit modeled in computer
Use various ways to activate and propagate fault
effect through hardware to circuit output
Output flips from expected to faulty signal
Electron-beam (E-beam) test observes internal signals -
“picture” of nodes charged to 0 and 1 in different colors
Too expensive
Scan design - add test hardware to all flip-flops to make
them a giant shift register in test mode
Can shift state in, scan state out
Widely used - makes sequential test combinational
Costs: 5 to 20% chip area, circuit delay, extra pin,
longer test sequence

Binary Decision Diagram

BDD - Follow path from source to sink node -
product of literals along path gives Boolean
value at sink

Rightmost path: ABC=1
Problem: Size varies greatly
with variable order




i Algebras: Roth’s 5-Valued
Algorithm Completeness and Muth’s 9-Valued

ultimately can search entire binary Symbol] Meaning] Ma Machine
D 0

decision tree, as needed, to generate a
test

Untestable fault - no test for it even after
entire tree searched

Combinational circuits only — untestable
faults are redundant, showing the
presence of unnecessary hardware

Roth’s
Algebra

Muth’s
Additions
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Roth’s and Muth’s ) )

Represent two machines, which are simulated
simultaneously by a computer program:

Good circuit machine (1st value)

Bad circuit machine (2" value) . . . . .
Better to represent both in the algebra: Infeasible, unless circuit is partitioned into

Need only 1 pass of ATPG to solve both cones of logic, with <15 inputs

Good machine values that preclude bad machine Perform exhaustive ATPG for each cone

values become obvious sooner & vice versa Misses faults that require specific
Needed for complete ATPG: activation patterns for multiple cones to

Combinational: Multi-path sensitization, Roth Algebra be tested

Sequential: Muth Algebra -- good and bad machines

may have different initial values due to fault

For n-input circuit, generate all 2" input
patterns




Random-Pattern Generation

Flow chart for
method

Use to get
tests for 60-
80% of faults,
then switch
to D-algorithm
or other ATPG
for rest

Boolean Difference
(Sellers, Hsiao, Bearnson)

Shannon’s Expansion Theorem:

F (X1, X2, «oes Xp) = Xo o F (X1, 1, ..., X)) + Xg ¢ F (X1, O, ..., Xp)
Boolean Difference (partial derivative):

0F; _

%l- = Fj (1, X1, X, ... Xp)O Fj (0, Xq, ., Xpy)

Fault Detection Requirements:
G (Xl' X2, slesly Xn) =1

g; = Fj (1, Xg, Xg, -, Xp) [ Fj (0, Xg, .oy Xp) = 1

Boolean Difference Symbolic
Method (Sellers et al.)

g =G (Xq. X2, -... Xp) for the fault site

fj = Fj (9. X1, X2, - Xp)
1<j<m
Xij=O0orilfor1<i <n

Path Sensitization Method
Circuit Example

Fault Sensitization
Fault Propagation
Line Justification




Path Sensitization Method Path Sensitization Method

Circuit Example Circuit Example
Try path f- h - k- L blocked at j, since Try simultaneous paths f- h -k - L and

there is no way to justify the 1 on i g-i-j-k-L blocked at k because
D-frontier (chain of D or D) disappears

Path Sensitization Method

Circuit Example Boolean Satisfiability

Final try: path g-i-j- k- L - test found! 2SAT: Xj Xj * Xj Xk + X| Xy ... =0

xpxy+xrx_s+xt7u...=0

3SAT: xi;jxk+xj>?(;|+x| Xm Xp - =0

xpxy+xrxsxt+xtxu)?,...=0




Satisfiability Example
for AND Gate

2 ay b c =0 (non-tautology) or
M (ax + by + c}) = 1 (satisfiability)

AND gate signal relationships:
Ifa=0,thenz=0
Ifb=0,thenz=0
Ifz=1,thena=1ANDb=1
Ifa=1ANDb=1,thenz=1

Sumtoget: az+bz+abz=0

(third relationship is redundant with 1st two)

AND Gate Implication Graph

Really efficient
Each variable has 2 nodes, one for each literal

If ... then clause represented by edge from if
literal to then literal

Transform into transitive closure graph
When node true, all reachable states are true
ANDing operator [] used for 3SAT relations

Pseudo-Boolean and
Boolean False Functions

Pseudo-Boolean function: use ordinary + --
integer arithmetic operators

Complementation of x represented by 1 - x

Fpseudo—Bool =2z2+ab-az-bz-abz=0
Energy function representation: let any variable
be in the range (O, 1) in pseudo-Boolean function

Boolean false expression: _
fanp @ b,2)=z [] (@b)=az+bz+abz

Computational Complexity

Ibarra and Sahni analysis - NP-Complete

(no polynomial expression found for compute

time, presumed to be exponential)

Worst case: )

no_pi inputs, 2 "°-P! input combinations

no_ff flip-flops, 4 "°—initial flip-flop states
(good machine O or 1X pad machine 0 or 1)

work to forward or reverse simulate n logic
gates a n )

Complexity: O (n x 2 "O-Pi x 4 no_ff)




History of Algorithm Analog Fault Modeling
Speedups Impractical for Logic ATPG

Algorithm Est. speedup over D-ALG |Year
normalized to D-ALG time) Huge # of different possible analog faults
1 in digital circuit
7 Exponential complexity of ATPG algorithm
23 - a 20 flip-flop circuit can take days of

292 computing

1574 t ATPG System Cannot afford to go to a lower-level

2189 + ATPG System model

8765 + ATPG System Most test-pattern generators for digital

3005 T ATPG System circuits cannot even model at the
Recursive learning|485 transistor switch level (see textbook for 5
Tafertshofer et al. 25057 examples of switch-level ATPG)




