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Abstract—Social media nowcasting, the process of estimating
real-world phenomena from social media data, has grown in
popularity over the last several years as an alternative to tradi-
tional data collection methods like phone surveys. Unfortunately,
current nowcasting methods depend on pre-existing, traditionally
collected survey data as an aid to sift through the huge number
of signals that can be derived from social media. This dependence
severely limits the applicability of current nowcasting techniques.
If we could remove this need for conventional data, social media
signals could describe a much wider range of target phenomena.

We have built a nowcasting querying system that estimates
real-world phenomena without requiring any conventional data,
relying instead upon an interactive exploration with users. Specif-
ically, our system exploits a user-provided multi-part query
consisting of semantic and signal components. The user can
explore in real time the tradeoff between these two components to
find the most relevant social media signals to estimate the target
phenomenon. Our demonstration system lets users search for
signals within a large Twitter corpus using a dynamic web-based
interface. Also, users can share results with the general public,
review and comment on others’ shared results, and clone these
results as starting points for further exploration and querying.

I. INTRODUCTION

Over the last several years, there has been a growing interest
in social media nowcasting—estimating real-world phenomena
with social media data.1 Examples include flu activity [1], stock
market behavior [2], and more [3]–[9].

The goal of a nowcasting system is to consume social
media data as input and produce as output a time-varying signal
that accurately reflects changes in a real-world phenomenon
(i.e., not one-off events like riots or natural disasters). For
example, when real-world unemployment rises, so should the
nowcasting system’s output signal, which is commonly based
on the frequency of observing certain salient phrases (e.g., “I
lost my job”) on social media [1], [3], [8].

Nowcasting has the promise of being both faster and
less expensive than traditional survey-based methods, which
generally require costly person-to-person interaction. Such
inexpensive high-quality datasets would be a boon for many
fields—economics, public health, and others—that to a com-
puter scientist appear simultaneously high-impact and data-poor.
For example, US government economists use a relatively small
number of expensive conventional economic datasets to make
decisions that impact trillions of dollars of annual economic
activity; even a tiny improvement in policy decision making
can mean the addition of billions of dollars to the economy.

In spite of demonstrated successes of nowcasting in aca-
demic settings—including our ongoing work with several

1We use “social media” as an umbrella term for user-generated content,
which includes tweets, web searches, blog posts, etc.

Raccoon 
User

Raccoon 
Nowcasting 

System

User Query

Nowcasting Results

1

0Re
la

tiv
e 

C
ha

ng
e

job, unemployment

2012 20142013 2015

2012 20142013
Correlation with query signal: 0.897

2015

Topics Used:
 • job new year
 • job interview tomorrow
 • first job interview today
 • working two jobs
 • job interview
 • #hiring #jobs
 •  ...

Resulting Target Estimate:
1

0R
el

at
iv

e 
C

ha
ng

e

2012 20142013
Correlation with query signal: 0.897

2015

Topics Used:
 • job new year
 • job interview tomorrow
 • first job interview today
 • working two jobs
 • job interview
 • #hiring #jobs
 •  ...

Resulting Target Estimate:
1

0R
el

at
iv

e 
C

ha
ng

e

2012 20142013
Correlation with query signal: 0.897

2015

Topics Used:
 • job new year
 • job interview tomorrow
 • first job interview today
 • working two jobs
 • job interview
 • #hiring #jobs
 •  ...

Resulting Target Estimate:
1

0R
el

at
iv

e 
C

ha
ng

e

A

B

Fig. 1: The user-in-the-loop interaction of RACCOON, where a user
can explore the impact of her query components in real time.

economists [8]—nowcasting has not penetrated deeply into
broader use. We believe an important reason is that systems to
date have focused on one-off projects that reproduce a known
dataset at low cost.

In contrast, we have built RACCOON, a prototype user-in-
the-loop querying system for discovering novel nowcasting
signals for phenomena that lack conventional survey-driven
data. The user submits a query that encodes multiple forms of
her domain knowledge: a semantic query component—a text
string that describes the target phenomenon—and signal query
components—a partial time-varying signal that represents the
user’s (likely incomplete) domain knowledge about the target
phenomenon’s signal (Figure 1, label A).

Our system returns a set of nowcasting results that best
match this domain knowledge. Each nowcasting result consists
of two parts: a list of text phrases relevant to the target
phenomenon, which we refer to as topics, and a time-varying
signal that estimates the phenomenon’s relative change over
time. The set of nowcasting results offer a range of options
for the user to explore in real time (Figure 1, label B), each
varying the impact each query component has on the result.

Contributions — The contributions of this work include:

1) A prototype user-in-the-loop querying system that
allows users to choose the most relevant social media
signals for a given real-world phenomenon without
requiring any conventional ground truth data.

2) A prototype online community built around our
querying system to encourage publishing, reviewing,
and collaborating on nowcasting results.

3) A demonstration of these prototype systems using over
50 billion tweets (collected from mid-2011 to present),
where conference attendees can perform queries in
interactive time, view nowcasting results in a dynamic
web-based interface, and explore the components of
our online community.
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Fig. 2: Sample user queries illustrating the semantic and signal
components of the two-part query.

II. RUNNING EXAMPLE

Our demonstration system is designed to allow conference
attendees to understand the capabilities of our signal querying
system, as well as to demonstrate the usefulness of nowcasting
results. Attendees will be able to explore pre-selected phenom-
ena or phenomena of their own choice. To illustrate a typical
user scenario, consider a fictitious economist, Janet, using our
system as a means to create inputs into economic models used
to advise policy decisions. She wishes to create an estimate of
weekly unemployment rates using signals derived from social
media. We will refer back to Janet throughout the rest of this
paper to help illustrate RACCOON.

III. SYSTEM FRAMEWORK

In this section, we give a brief overview of our system’s
inputs and outputs, our approach to processing a user’s query,
and our overall system architecture. A fully detailed discussion
of these aspects of our system is covered in a separate paper,
currently under submission.

A. Social Media Corpus

Prior to processing any user queries, our system requires a
corpus of social media data. In particular, our demonstration
system uses over 50 billion tweets collected between mid-
2011 and present. After filtering out non-English tweets, we
enumerate all the topics in the Twitter corpus by pre-processing
the remaining 16 billion raw tweets to produce 1- through 4-
grams using a Hadoop MapReduce system and store the daily
and weekly counts of occurrences of each of these n-grams. As
an example, consider the tweet “Happy Holidays.” This single
tweet would result in three topics: happy, holidays, and happy
holidays. Each of these topics appear with varying frequency
across the entire corpus of tweets, with holidays and happy
holidays typically peaking in December and happy showing a
much more consistent year-round trend.

After generating the topics, we remove rare ones that do
not occur at least x times throughout our data’s time period.2
The final processed corpus consists of nearly 150 million topics

2We found that x = 150 removes many low quality phrases with little
impact on result quality for real queries.

and their associated frequency trends (our topic-signal pairs).
Each week, we update these signals with the latest social media
data using a similar offline process.

B. Query Design Considerations

Several reasonable query models can be proposed for a
nowcasting system. In this section, we will discuss the problems
facing both textual and signal-based query models and how
RACCOON combines the two to overcome these challenges.

Textual Queries — A straightforward way of modeling queries
in a nowcasting system is to ask users to describe their target
phenomena textually. Using keywords or short phrases, a
user has the flexibility to be as descriptive in their input as
their domain knowledge allows. Even with lower-information
inputs, the system can leverage semantic similarity to find
good matches. For example, our user Janet may try estimating
unemployment behavior by simply providing “unemployment”
as the query’s input, and the system would rank candidate
topic-signal pairs in the corpus by their semantic similarity to
this keyword.

Unfortunately, many topic-signal pairs in the social media
database seem to be good semantic matches but are actually
poor sources of nowcasting data. As an example, the topic
unemployment, with its associating signal (derived from the
number of tweets containing the word “unemployment”),
indicates the genuine level of unemployment on most days,
but for certain days of the month reflects a government data
release and its subsequent press coverage instead.

Signal Queries — A slightly less obvious, though still
reasonable, model is for users to specify a query as a time-
varying signal, intending to find similar signals in the social
media corpus. Official government data can be used to find
similar signals, but this model is not limited to official data: it
is also possible that as with semantic queries, users would only
provide signal information for time periods in which they have
some confidence. Janet may indicate that the target spikes after
the holidays (i.e., when seasonal jobs end) and leave other time
periods blank.

Unfortunately, signal queries have the same problem as
semantic queries: it is easy to find topic-signal pairs that closely
match a user’s signal query component, but would be poor
choices for building a nowcasting query answer. For example,
we found that the time-varying social media signal associated
with the topic pumpkin muffins is closely correlated with flu
activity as reported by the US Center for Disease Control. This
is not surprising: Fall baking and influenza trends both grow at
the same time of year. However, an especially heavy year for
flu will likely not also be a heavy year for pumpkin muffins.
No epidemiologist would accept such data.

Our Approach — We address the pitfalls described with both
of these query models by allowing a user to provide both types
of query inputs and using both to select the candidate topic-
signal pairs for the query answer. Results from an incomplete
signal component will be improved by the contributions of the
semantic component of the query. Further, semantic matches
that are obviously irrelevant in the signal domain will be
eliminated. This is akin to distant supervision [10], in that
we are replacing high-quality ground truth trend data with



lower-quality, user-provided partial signals. By simultaneously
using both signal and semantic query components, our system
can produce higher-quality results: topics like pumpkin muffins
and unemployment in the above examples would be rejected
for not satisfying both parts of the user’s query.

C. User Query Model

Figure 2 shows two examples of the two-part user query.
In part (a), our economist Janet, who is searching for a signal
to model unemployment behavior, enters the phrase “job,
unemployment” as the semantic query component and draws
from her domain knowledge to create a signal query component
showing peaks of unemployment following the winter holidays
and a smaller one during the summer months, each representing
seasonal job losses. In this example, Janet does not accurately
know the actual unemployment trend for the entire time span,
so she intentionally leaves several gaps. The system can still
process the query with an incomplete signal query component,
finding signals that are highly correlated with the portions
specified by the user.

In part (b) of Figure 2, a different user attempts to estimate
flu activity by using a semantic query component of “flu, fever,
sick day” and drawing a signal query component with wide
peaks having apexes in mid-winter, based on known behavior
of the flu infections. Clearly, there are many possible signal
matches in a social media corpus to this query: topics about
the winter holidays, for example, will have a very similarly
shaped trend. However, they are likely not good candidates
for generating a flu signal; if in the future there were a
particularly hard or light year for flu, we would not expect
tweets about winter vacation to change appropriately. Thus,
the semantic query component allows our system to eliminate
many spuriously related signals, narrowing the signal search to
those that are semantically related to the user’s specifications.

As can be seen by these examples, this query model is very
flexible, allowing a user to describe many phenomena with as
much or as little information as she can provide. Further, it
allows experimental and aggressive hypotheses to be tested.
Like a search engine, the system does not prejudge whether the
query makes any sense. The system will do its best to answer
it, letting the user judge the query’s utility after the fact. While
this experimental approach is familiar to search engine users,
it is entirely novel for social science data production.

D. Query Execution

The raw data corpus consists of a large number n of topic-
signal pairs, from which a much smaller number k are selected
and aggregated into the output signal. (In our demonstration
system, n is roughly 150 million and k = 100.) To select the
k pairs for aggregation, we first compute two scores for each
topic-signal pair: (1) a textual relevance score between the
topic and the user’s semantic query component and (2) the
Pearson correlation between the topic’s signal and the user’s
signal query component. Using these scores and a range of
weights, we compute a set of weighted harmonic means and
rank the topic-signal pairs by these values for each weight.
Each ranked list represents a different tradeoff between the
relative importance of the two parts of the user’s query. The
top k pairs for each ranking are selected for aggregation.
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Fig. 3: The system’s runtime architecture.

We use an Apache Spark cluster to process each query in
roughly interactive time (with a typical query taking around
30 seconds to process on a seven-node cluster). Most of this
processing time is spent on computing the semantic and signal
relevance scores, both of which parallelize well. Our full
processing pipeline certainly has room for optimizations—and
indeed, our full paper (currently under submission) shows how
to optimize runtimes to sub-second levels—but such work is
not a focus of this current paper.

Our system combines the signals from the top k pairs
using a PCA-based method [8] and then filters the topics
to remove near-duplicates and reduce the number to a more
user-comprehensible representative sample. Once complete, the
system returns the resulting aggregated signal and associated
topics to the user for further exploration.

E. System Architecture

A high-level view of our system’s architecture is shown
in Figure 3. The system has two main modes of operation.
In offline processing, the topic-signal pairs are extracted and
updated from the raw social media corpus as discussed in
Section III-A. During online operation, a web-based interface
accepts the user’s query and launches multiple processes in
parallel across a cluster of servers, which perform the scoring,
ranking, and aggregation described in Section III-D. The
aggregated results are then returned to the user’s web browser
and presented in a format allowing interactive exploration and
evaluation (described further in the next section).

IV. USER INTERFACE

The user interface for our querying system consists of two
main parts. First, the user enters her query using an intuitive
two-part form (Figure 4a). The semantic query component is
entered as a comma-separated series of words or phrases in a
simple text field. The signal query component can either be
uploaded via a CSV file or drawn directly on a time series-type
graph using an interactive JavaScript-based widget. Partial or
fragmented signals can be entered here, allowing the user to
encode as much (or as little) domain knowledge she possesses
about the actual historical behavior of her target phenomenon.
Second, after submitting the form, our system processes the
query and returns the results to the user on a page similar to
Figures 4b and 4c. Here the user can use interactive controls
to investigate the contributions of individual topic-signal pairs
to the nowcasting result.
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Fig. 4: User interface of the demonstration system.

Further, the user can explore in real time a tradeoff between
the influence of her query’s semantic and signal components
via a slider widget. This tradeoff can be visualized in a “Pareto
Frontier” plot (Figures 4b and 4c), where the x-axis and y-axis
indicate each result’s similarity with the user’s semantic and
signal query components, respectively. Each score generally
decreases as the other’s influence increases, where the “best”
tradeoff can vary from query to query—and from user to user—
because for any given query, a user may have more confidence
in her signal query component than in her semantic query
component, or vice versa. By letting the user adjust this balance,
our system offers more flexibility across a range of phenomena.

While Janet is interactively exploring these results, she sees
a nowcasting result (Figure 4b) that heavily favors her signal
query component and that has a very high similarity score with
her query signal; however, the topics used to create this signal
have no relevance to her task and instead deal with the seasonal
time period (e.g., “end of january”). Moving the constraint
weighting slider to more heavily favor her semantic query
component results in a signal generated from topics that are
now very relevant to the unemployment task (e.g., “job interview
tomorrow”) and only cause a slight reduction of the similarity
score with her signal query component (Figure 4c). Satisfied,
she exports this result for use in her economic modeling, and
then shares the result for other users to explore.

Sharing Results — One of the goals of our system is to
create an online community where users can share interesting
results with the public, as well as get feedback on potentially
questionable results. If a user makes an outlandish claim
supported by data generated by RACCOON, others can review
the components that went into creating the data, respond with
commentary, or “clone” the result as a starting point for their
own exploration. This type of analysis and reproducibility
is especially important for economists, where researchers at
the US Federal Reserve recently showed they were unable to
reproduce over 50% of selected published economic results—
and that was even with the original authors’ help [11].

In addition to allowing users to review, comment, and clone
shared results, RACCOON can keep shared results updated
regularly with new social media data, thus making it easy for
anyone to monitor for changing trends. We envision economists
and other researchers using this community as a means for
better nowcasting collaboration, discovery, and debugging.

V. CONCLUSION

Our nowcasting querying system demonstrates the power
of being able to extract time-varying estimates of real-world
phenomena from data sources like Twitter, all without requiring
any conventional ground truth data. By allowing users to
describe their query in two parts in an interactive, user-in-
the-loop manner, our system can build useful and trustworthy
signal estimates. These estimates correlate well with the desired
phenomena and, importantly, are semantically related to them
as well. We believe a query system like this will allow the
power of nowcasting to be brought to bear on many diverse
real-world phenomena.
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