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Abstract—The application of machine learning to large
datasets has become a vital component of many important and
sophisticated software systems built today. Such trained systems
are often based on supervised learning tasks that require features,
signals extracted from the data that distill complicated raw data
objects into a small number of salient values. A trained system’s
success depends substantially on the quality of its features.

Unfortunately, feature engineering—the process of writing
code that takes raw data objects as input and outputs feature
vectors suitable for a machine learning algorithm—is a tedious,
time-consuming experience. Because “big data” inputs are so
diverse, feature engineering is often a trial-and-error process
requiring many small, iterative code changes. Because the inputs
are so large, each code change can involve a time-consuming data
processing task (over each page in a Web crawl, for example).
We introduce ZOMBIE, a data-centric system that accelerates
feature engineering through intelligent input selection, optimizing
the “inner loop” of the feature engineering process. Our system
yields feature evaluation speedups of up to 8x in some cases and
reduces engineer wait times from 8 to 5 hours in others.

I. INTRODUCTION

Many of today’s most compelling software systems, such
as Google’s core search engine, Netflix’s recommendation
system, and IBM’s Watson question answering system, are
trained systems that employ machine learning techniques over
very large datasets. The financial value of these systems far
outstrips the traditional database software market, and though
the social value is hard to quantify, it is undeniably high.
Unfortunately, constructing trained systems is often a difficult
endeavor, requiring many years of work even for the most
sophisticated technical organizations. One reason for this is the
difficulty of feature engineering.

A feature engineer writes code to extract representative
features from raw data objects; the features are the input to a
machine learning system. For example, consider a Web search
engine that uses a trained regressor to estimate a Web page’s
relevance to a user’s query; a feature engineer might write
functions to determine if the query appears in italics in the
document, if the query is in the document’s title, and so on. The
challenge of feature engineering is that good feature code must
not only be programmatically correct; it must also produce
features that successfully train the machine learning system.

Unfortunately, good features are difficult to devise [1], [2]
and are a crucial bottleneck for many trained systems [3]–[5].
First, using a large set of diverse inputs (say, a set of crawled
Web pages) means the engineer never quite knows the “input
specification” and must resort to trial-and-error bug fixing as
unexpected inputs are discovered. Second, predicting whether a
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Fig. 1: In the feature engineering evaluation loop, bulk data processing
and machine learning steps are interdependent but to date have been
commonly implemented as separate systems.

proposed feature will in fact be useful to the machine learning
algorithm is difficult; the programmer may implement a feature
only to throw it away after it is found to be ineffective. As
a result, feature engineers make many small iterated changes
to their code and need to evaluate candidate features many,
many times before achieving a well-trained machine learning
model. But evaluating each change to the feature code can take
hours, as it entails applying user-defined functions to a huge
number of inputs and retraining a machine learning model. In
this paper, we address the sheer amount of time required to
perform this feature code evaluation loop.

System Goal — Figure 1 shows the feature evaluation loop
as conventionally implemented. Having written new feature
code, the engineer applies it to a large raw dataset (Step 1)
using a bulk data processor, like MapReduce [6], Spark [7],
or Condor [8]. This time-consuming step executes the feature
code during a scan of the data, producing a training set sent to
a machine learning system (Step 2). The engineer evaluates the
resulting trained model’s accuracy (probably using a holdout
set of human-labeled examples). If the model is satisfactory,
the engineer is done; otherwise, she modifies the feature code
and returns to Step 1.

Feature engineering and feature selection are topics of
growing importance in the database field because of their
inherent data management challenges [1], [9]–[14]. Here, we
model feature evaluation as a specific SQL query over a relation
of raw data items. The query implements the feature code as a
user-defined function (UDF) and computes a machine learning
quality metric with a custom aggregation function. Feature
engineering amounts to repeatedly running this query with small
changes to the feature UDF. The query is run over large data
volumes, so the engineer spends a huge portion of the evaluation
loop waiting for the query result. Thus, a feature engineer’s
productivity is bound by the feature evaluation query’s runtime.
We treat accelerating feature evaluation as a query optimization
problem; our metric of success is the reduction in the time
needed to evaluate feature code.



Technical Challenge — To date, the bulk data processing and
machine learning stages have typically been separate systems,
with neither module aware of the larger feature evaluation loop.
Since the actual bulk data processing system’s output only
matters insofar as it eventually produces a high-quality trained
system, we can use feedback from the machine learning system
to perform input selection optimization. Rather than scanning
over the entire set of raw data—as is standard today—we can
perform a variation of active learning: choose to process raw
inputs that maximize the quality of the trained model, while
minimizing runtime by not processing inputs that have little
effect on the model’s quality. Thus, our technical challenge
is to build an effective training set while running the user’s
feature code as little as possible. The system’s success can
be measured by its speedup over traditional methods when
producing the training set for a model of comparable quality.

Our Approach — We propose a version of the bulk data
processing system (from Figure 1) that optimizes the feature
extraction time through effective rule-based input selection. Our
system replaces systems like MapReduce, Spark, and Condor,
but our core techniques are orthogonal to their distributed
processing methods; in the future, our approach could be
combined with those systems. Our system has two stages: (1)
offline indexing, where the system organizes the raw dataset
into many index groups of similar elements before it is used
and (2) online querying, where the system dynamically builds
a high-quality subset of the data using index groups determined
likely to yield useful feature vectors. This subset is used to
train the machine learning system for feature code evaluation.

Traditional active learning techniques require computing
the features for the entire raw dataset, and thus are much
too expensive. Instead, we want to use an online method to
quickly discover high-impact raw inputs. Our index groups
allow us to use a multi-armed bandit algorithm: runtime
identification of high-yield index groups is a good fit for a
bandit problem’s classic tradeoff of exploration vs. exploitation.
By using carefully designed rewards for our bandit, our system
quickly identifies relevant index groups for processing, while
avoiding irrelevant ones. Our group-and-explore approach yields
a substantial speedup over both conventional practice and
a previous state-of-the-art method that builds a supervised
classifier to choose inputs [15]. We have implemented this
method in a prototype data processing system called ZOMBIE.1

Contributions and Outline — Our central contributions are:

• A proposed query model of the feature engineering
workflow that captures current practices (Section II).

• A system design and algorithms for optimizing input
selection (Sections III–IV).

• An implemented feature engineering evaluation system
that can speed up the feature evaluation loop by up to
8x in some settings and has reduced engineer wait times
from 8 to 5 hours in others, compared to conventional
methods (Section V).

We cover related work in Section VI. Finally, we conclude
with a discussion of future work in Section VII.

1Like the undead, ZOMBIE goes straight for the “brains” of the input data.

Parameter Description Example

R Raw dataset Crawl of news sites with several
million pages

F Feature functions Boolean indicators of keywords
and named entities

L Label function Label extractor from in-page tags
T Training procedure Multi-class Naı̈ve bayes
Q Quality function Accuracy over holdout set
G Quality goal 90% accuracy

TABLE I: Feature engineering inputs, given by (R,F , L, T,Q,G),
with examples from a classification task: a classifier is trained with
crawled news pages to automatically categorize future pages.

II. THE FEATURE EVALUATION QUERY

Feature engineering is a task parameterized with a 6-tuple
of inputs (R,F , L, T,Q,G). The raw dataset R is a large
corpus, such as a Web crawl. The feature engineer writes a
set of feature functions F that extract features from a raw
data item r ∈ R. Each function f ∈ F accepts an item r as
input and emits a single value. Taken together, F(r) yields
an unlabeled feature vector. A label function L provides a
supervised label for a raw data item.2 A machine learning
training procedure T accepts the training set of labeled
feature vectors and produces a trained model T (F(R), L(R)).
A quality function Q determines the quality of the trained
model Q(T (F(R), L(R))). Finally, G is the quality goal: the
ultimate quality level desired for the trained model.3 Feature
engineering, then, is task of writing and evaluating the feature
code F such that Q(T (F(R), L(R))) ≥ G.

Table I summarizes these elements and shows examples
from a document classification task. Five of the elements—R,
L, T , Q, and G—are pre-determined and remain static for the
duration of the task (or even across many tasks). A feature
engineer adds to or modifies the functions F to maximize the
value of Q. To do this, she writes and evaluates feature code in
the feature evaluation loop in Figure 1 and defined as follows:

Definition 1 (Feature Evaluation Loop): Starting with R,
L, T , Q and G, the feature engineer writes a set of feature
functions F , and then applies F and L to R to create a
trained model M = T (F(R), L(R)). The engineer evaluates
the features in F by comparing the quality Q(M) with goal
G. If Q(M) is less than G, the feature engineer modifies or
adds to F and repeats the process until Q(M) ≥ G.

A. Feature Evaluation Loop as a Query

We can model the inner loop of this workflow as a database-
style query, shown in Algorithm 1. Lines 4 to 6 show the query
as a hypothetical SQL statement. We consider the raw data
R and the labels L to be relations. The feature code F is a
UDF that produces the input for an aggregation function T
that trains the learning system. Q is a UDF that accepts the
trained model and emits a quality metric. The NAÏVE execution
plan for this query is shown in Figure 2a. Because F(R) is
computed by applying an expensive UDF with a full scan over
a large dataset, it is slow; our goal is speed it up.

2We assume labeling is relatively inexpensive; e.g., labels may be drawn
from an existing database or provided by distant supervision techniques [16].

3G might also be defined in terms of time: a feature engineer may have,
say, 8 hours to produce the highest quality model possible.
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Tincremental and Q. The output quality is continuously monitored to detect the early stopping point. In (c), data are pipelined to Tincremental and
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Algorithm 1 Feature Evaluation Loop
Input: Task (R,L, T,Q,G)

1: repeat
2: User writes or modifies feature code F
3: query
4: SELECT Q(T (F(R.data), L.label) AS quality
5: FROM rawDataSet R, labels L
6: WHERE R.id = L.id
7: done
8: until quality ≥ G
9: return F

B. Common Practice: Subset

One popular method for speeding up the feature evaluation
loop is an informal method we call SUBSET. The feature
engineer creates a task-specific program S that consumes the
entire raw input R and generates a smaller dataset R′ ⊆ R. She
then enters the evaluation loop, running the SQL query with
R′ instead of R. Because R′ is small, the evaluation is fast.
After exiting the loop, the engineer may perform an additional
run with the full R to produce the final trained model.

In a series of conversations with feature engineers, we have
found that SUBSET is popular, though it does not appear to
be a topic of academic investigation.4 The implicit assump-
tion behind SUBSET is that Q(T (F(R′), L(R′))) accurately
approximates Q(T (F(R), L(R))). While SUBSET’s popularity
suggests it provides some benefits, its drawbacks are clear:

1) The program S takes extra effort to develop.
2) Applying S means scanning R at least once.
3) If R is large and diverse, it may be difficult to write a

filter program S that identifies a high-quality subset.
4) When the engineer changes F , the set of useful inputs

may change. She may need to rewrite and rerun S.
5) Even if S produces a relevant subset, it may still

contain unproductive “redundant” inputs and be unnec-
essarily large. If, for example, the engineer identifies
useful Web domains, only a few examples from each
domain may actually be useful.

SUBSET has overhead costs associated with writing and
running S. Thus, we believe it is likely only useful when the

4The textbook Data Mining does, however, describe an interactive procedure
for feature selection that is roughly akin to SUBSET [17].

costs can be amortized over many runs of the same feature
code, probably when debugging the code itself is the goal.
Further, choosing the right size for R′ is difficult: too few
inputs lead to an inaccurate estimate of the Q value, while too
many quickly reduce the time advantage of using S. Moreover,
the optimal size for R′ will change per task.

The method we propose in this paper can be seen as
an attempt to remove the weaknesses of SUBSET. An ideal
input selection method would reduce development time and
runtime overhead (weaknesses 1 and 2), choose good subsets
automatically (weakness 3), and respond quickly to feature
code changes (weakness 4). Finally, it would respond to the
learner’s changing requirements (weakness 5).

C. Approximation by Early Stopping

To address weaknesses 1–4 of the SUBSET method, we can
use a method similar in spirit to the approximation and early
stopping of online aggregation [18]. We can build the subset
by adding one item at a time, retraining and re-evaluating the
model after each addition. Once the model reaches a desired
state, we can stop early and have an appropriately sized subset
that contains enough useful inputs for the learning task.5

Figure 2b illustrates this EARLY execution plan. The raw
data items, stored in random order on disk and accessed
sequentially, are pipelined to F , to Tincremental, which is retrained
as new items arrive, and then to Q, whose output is monitored
by a process that stops the query when a stopping criterion is
met. In this paper, we stop the query when the learning curve
(e.g., Figure 3) begins to plateau, though there are a number of
valid stopping criteria, including reaching a certain accuracy
level or after a specific amount of runtime. Researchers have
also investigated algorithmic stopping criteria, though these are
tailored to specific learning tasks [19], [20].

Figure 3 shows the effects of early stopping on a single
iteration of the feature evaluation loop. The gray line is a
learning curve taken from our experiments. The x-axis shows
the runtime, which increases as more raw items from R are
added to R′ and processed by the UDF; the y-axis shows the
classifier’s accuracy after each item is added to R′. As R′

grows, the accuracy curve flattens out as the marginal return

5Training overhead is a concern, but many learning algorithms can be trained
incrementally. We discuss this further in Section III-B.
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Fig. 3: Learning curves for our execution plans. The NAÏVE plan
performs a bulk scan over R, while EARLY stops the bulk scan early
to use a subset R′. ZOMBIE scans the data from index groups and
stops early much sooner, translating to a time savings for the user.

for each new item in the training set decreases. Using all items
in R, the classifier—with this particular feature set—achieves
an accuracy of 56%. The dotted line shows 98% of the full
accuracy; with early stopping, the trained model achieves nearly
the full accuracy when R′ is only half the size of the full R.

D. Optimizing the Approximate Query

With ZOMBIE, we also address SUBSET’s weakness 5. We
construct R′ using only a minimal number of corpus’s low-
utility items (i.e., items that are redundant or irrelevant to the
task), so R′ consists mainly of high-utility items, and thus
a high-quality model can be trained with a relatively small
amount of data. This is similar to traditional active learning,
described by Algorithm 2 [21]. The crucial difference is that for
active learning, F(R) is already computed (on line 2) for all
potential training examples—exactly what we wish to avoid. An
active learning-based feature evaluation method would require
the full scan of the NAÏVE plan plus significant overhead from
using an active learning method to build a subset R′.

Algorithm 2 Active Learning-based Feature Evaluation
Input: Task (R,F , L, T,Q,B)

1: trainingSet = [], M = ∅
2: examples = F(R)
3: repeat
4: best = chooseBestExample(M, examples)
5: trainingSet.append([best, L(best)])
6: M = T (trainingSet)
7: until |trainingSet| == B
8: return Q(M)

What ZOMBIE does instead is estimate the average utility of
groups of similar raw data items in real time. Like the two-phase
operation of many approximate query databases [22]–[24], our
system first creates many sub-samples of the data in an offline
phase; the raw data in R is organized into many groups of
similar items, called index groups. Then, during the runtime
query phase, the most relevant index groups are used to answer
the user’s query. Again, we cannot pre-compute the utility
values; an item’s usefulness directly depends on the features
generated by F . ZOMBIE learns the index group utility values
in real time with a multi-armed bandit algorithm. We describe
this algorithm in detail in Section III-B.

Figure 2c shows the optimized query execution plan. Like
the previous early stopping method, the raw data is pipelined
through Tincremental, which incrementally trains the learning
system, and Qoptimize, which, in addition to the quality value
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Fig. 4: Illustration of the subset R′ created by each execution plan.
Colored rectangles represent raw data items. High-utility items are
white; low-utility ones are dark. The NAÏVE plan processes R in its
entirety. EARLY processes R′, chosen by streaming R and stopping
early. ZOMBIE patches together R′ from index groups.

monitored for early stopping, also produces a utility value
that quantifies the usefulness of the item just processed. The
utility value is used by the “choose index group” operation to
estimate which index group has the highest average utility. This
operation is key to our input selection optimization method
and is the focus of the remainder of this paper.

Figure 3 illustrates the benefit of using ZOMBIE’s input
selection method. The blue line shows a full scan done with
ZOMBIE, with the dot showing the early stopping point. With
ZOMBIE, the classifier can reach nearly its full potential in a
much shorter runtime than with EARLY and in just a small
fraction of the time needed by NAÏVE. Figure 4 illustrates the
difference in the subset R′ created by each method. NAÏVE
processes all of R, EARLY processes truncated version R, and
ZOMBIE patches together R′ from its index groups, as it learns
which will provide the highest-utility items.

E. Deployment and Limitations

There are settings in which ZOMBIE may not be helpful.
First, our user model itself may not apply. In domains where
it is difficult for humans to provide insight (e.g., signal
processing), a “generate-and-select” approach—a huge number
of candidate features are hypothesized and data-centric methods
select the best ones—may be more useful than the “engineer-
and-test” approach described here. Even when it is possible
to provide domain insight, “generate-and-select” needs little
human attention, and the resulting features may be sufficient if
the high accuracy enabled by domain knowledge is not required.

Alternatively, deployment details may reduce the need for
ZOMBIE. Some machine learning systems have huge training or
evaluation costs; any reduction in feature extraction time may
be negligible compared to the learning system’s inherent costs.
(We examine this point experimentally in Section V-E1.) Finally,
a few organizations may have massive parallel infrastructures
that make all but the most burdensome computations irrelevant.

Despite these limitations, ZOMBIE directly targets a setting
that we believe is extremely common (from both published
engineering accounts and personal experience): a feature
engineer trying to improve a trained system’s accuracy by
creating features that embody domain expertise.

III. SYSTEM ARCHITECTURE

We can now describe our design for ZOMBIE, depicted
in Figure 5. First, we discuss ZOMBIE’s two-phase execution
model. We then detail the system’s two major components: the
input selector and the physical indexes.
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Fig. 5: ZOMBIE’s basic architecture. The novel components are (a)
the Physical Index and (b) the Input Selector.

A. Execution Model

ZOMBIE executes in two stages, similar to the indexing
and query processing stages of a relational database. In system
initialization, the system is given dataset R but has no access
to any other part of the task description. System initialization is
a one-time pre-processing of R that builds a physical index I—
a set of index groups that each contain a set of similar raw
inputs. System initialization may be costly, but its runtime
can be amortized over many rounds of code modification (and
further, many distinct learning tasks if they use the same input
set R). In the feature evaluation query, the system is given the
feature engineering parameters (R,F , L, T,Q). The query is
repeated with a modified F until the quality goal G is achieved.

Our design is shown in Figure 5. It is driven by the basic
framework from Figure 1 and the query model from Section II
but includes two novel components. ZOMBIE completely takes
over the role of the bulk data processing system from Figure 1,
but it invokes the machine learning system as an external
library component. The raw data items are organized into a
physical index (a) consisting of a series of index groups built
during system initialization. Instead of simply scanning and
fully processing R during feature evaluation, ZOMBIE uses an
input selector module (b) that repeatedly chooses the next raw
data item to process from the index groups. The system stops
when the trained model meets the user’s stopping criterion.

B. Input Selector

ZOMBIE’s input selector is the core of the system, repeatedly
choosing the next raw data input r ∈ R to process with the
feature functions F . As items are processed, the input selector
learns which index groups are most likely to produce high-
utility inputs and uses those groups as the source of the next
selected inputs. By prioritizing inputs that are most likely to
improve Q, our approach is roughly comparable to the active
learning strategy of expected error reduction [21].

Input Selection Algorithm — The selector’s basic execution
loop is shown in Algorithm 3. On line 4, it chooses an index
group from which to select an input, using current statistics and
utility information. On lines 5 and 6, it fetches the item and
applies F and L to create a labeled feature vector. On line 7, T
trains a new model. On lines 8 and 9, it measures and records
the model’s quality the chosen input’s utility with Q. The loop
ends on line 10 when R is exhausted or shouldStop()
returns true (as discussed in Section II-C).

ZOMBIE’s performance is linked to its ability to accurately
predict the utility of applying F to an input from a given
index group. We track the utility of a single raw input r by
observing changes in the model after adding 〈F(r), L(r)〉 to
the training set (by using T to train a new model and using

Algorithm 3 Input Selection Algorithm
Input: Task (R,F , L, T,Q), index I

1: trainSet = {}; utilities = []
2: quality = 0; model = ∅;
3: repeat
4: bestIdx = chooseIndexGroup(utilities)
5: r = I(bestIdx).getNext()
6: trainSet = trainSet ∪ 〈F(r), L(r)〉
7: model = T(trainSet)
8: (quality, utility) = Q(model)
9: utilities[bestIdx].append(utility)

10: until |trainSet| == |R| or shouldStop(quality, model)
11: return model, quality

Q to evaluate it). We track index group utility by aggregating
utility values of previously processed inputs from the group.
We discuss this important part of our algorithm—embedded in
the chooseIndexGroup() function—in Section IV.

Managing Overhead — Depending on how T and Q are
implemented, running them could be computationally expensive.
Indeed, the expense might undermine any advantage gained by
avoiding unproductive raw inputs. If T can incrementally retrain
the model with each input, doing so should yield large perfor-
mance benefits. ZOMBIE does not strictly assume incremental
retraining, but the lack of it may add substantial overhead.
However, incremental procedures exist for a range of popular
machine learning methods, including neural networks [25],
SVMs [26], and decision trees [27]. In Section V, we examine
several tasks, including one without incremental retraining.

C. Index Groups

At system initialization, we group the raw inputs in R into
a task-independent set of index groups. We create an inverted
index I that contains one entry for each index group. The key
is a unique identifier for the group, while the key’s indexed
posting list is an unordered set of raw inputs. An input can be
present in multiple groups.

Choosing a good set of index groups for I is a core
challenge for ZOMBIE. Because feature code in F changes
quickly and often (and re-indexing for each change would be too
expensive), we assume I is built just once and serves a range
of feature engineering tasks. I must be broadly useful over
many runs of the feature engineering loop. We expect, though,
a single task-independent I will serve many different versions
of F . If there are index groups within I with a concentration
of useful inputs even slightly higher than the corpus as a whole,
ZOMBIE can perform better than other methods.

This paper’s core contribution lies in how the system exploits
the grouped data, not in particular grouping methods. Our work
assumes that the qualities that make a raw input useful for the
learner will be reflected in a grouping of the input data. Our
method relies on correlation between I and the output of the
F ; if there is no relationship between the two, our method will
be no better than random selection. Though this assumption
might seem unreasonably strong, we find off-the-shelf, general-
purpose clustering effective, for several reasons:

1) Experience has shown general-purpose clustering to be
broadly useful across a huge range of domains, includ-
ing Web page clustering [28], cancer detection [29],
and network security [30].



2) The output of F and I can be correlated in unexpected
ways that are useful for input selection. E.g., a feature
describing document length may seem unrelated to
a token-based I, but our method will work if some
tokens exist primarily in long documents.

3) As we show in Section V-D3, ZOMBIE yields substan-
tial speedups over traditional input selection methods
using even low-quality input groupings.

Index groups tailored to a particular run of ZOMBIE
would surely allow for successful input selection, but the time
advantage gained by selecting good raw inputs would be lost
while waiting for the data to be grouped. Thus, we depend
on a general, task-independent grouping done using standard
clustering algorithms known to be successful with a wide variety
of data types, such as k-means. We examine grouping methods
in depth in Section V-A. In certain cases, if the index groups
and features are truly uncorrelated (a situation we view as
unlikely) it might make sense to re-group the data using a
different user-defined method, similar to reindexing a database.

D. Physical Access

ZOMBIE is designed for processing large datasets, so the
selector should be able to handle raw input sets larger than
available memory. Our physical indexes are essentially inverted
index posting lists and so are compatible with handling larger-
than-RAM datasets. However, even modest memory sizes
are quite large; we assume each posting list has a buffered
in-memory portion continually replenished by a background
process scanning items from disk.

IV. PREDICTING INPUT UTILITY

In this section, we cover how the input selector can
effectively implement the chooseIndexGroup() function
from Algorithm 3. Our solution is to learn at runtime a
notional inverted mapping from user feature vectors output
by F to the index groups in the index I. The system creates
this mapping by observing the utility of the feature vectors.
The chooseIndexGroup() function then uses the inverted
mapping to find high-utility index groups in I.

A. Design Discussion

By processing many raw inputs r ∈ R with F , and thereby
generating many (r,F(r)) example pairs, we can likely build a
high-quality mapping from the space of feature vectors to that
of index groups. Such a mapping would be useful in choosing
raw inputs, but building a high-quality mapping would require
the costly processing of a large amount of example data and
would often be unnecessary. Instead, exploiting a quickly built,
medium-quality mapping may be better. In other words, we
face the classic tradeoff between exploration (processing novel
items to improve the mapping) and exploitation (using the
current mapping to select the most useful data items).

Bandits — Researchers in fields ranging from online adver-
tising to robotics have developed a number of solutions for
such problems under the banner of reinforcement learning. A
standard problem formulation in this area is the multi-armed
bandit [31]. Consider a gambler choosing to pull an arm
from one of a number of slot machines with different but

unknown payout rates. Each pull yields a reward drawn from
a distribution of values tied to that arm. The gambler must
balance explorative arm-pulling to gather additional payout
information against exploitative arm-pulling to maximize the
reward using current knowledge. Our system fits well with this
model: the input selector (the gambler) must choose which of
the index groups (the arms) will supply the next raw data item.

Strategies — Many arm-pulling strategies have been developed
to minimize regret, the difference between actual and optimal
payouts. One popular strategy bases arm selection on comparing
upper-confidence bounds (UCB) of estimated rewards rather
than the estimated rewards themselves. UCB-based strategies
have been shown to have near optimal regret bounds [32]. We
use a UCB strategy to choose arms to pull—that is, index
groups from which to fetch raw inputs—in our input selector.
We now describe more precisely how we model the task.

B. Our Bandit Model

The multi-armed bandit in our system determines which
index groups from the task-independent grouping I of the raw
dataset R are most useful to the current task and which can
be safely ignored. We define our bandit problem as follows:

• A set of bandit arms. We create one bandit arm for
each key k ∈ I. “Pulling arm ak” means reading a
random raw data item from I[k], processing it with F
and L, and adding the result to the training set.

• A reward function to compute a pulled arm’s payout.
This is the utility value in Algorithm 3.

For each index group (i.e., key in I), we must record the
rewards received so far (lines 8 and 9 of Algorithm 3). The
rest of our chooseIndexGroup() procedure comes from
carefully defining the reward function.

C. Rewarding a Pull

The reward for an arm pull is how the bandit learns the
pulled arm’s utility to the current task. Careful design of the
reward function lets us encourage the selector to prefer certain
index groups over others. Consider, for example, a classification
task where examples of one of the labeled classes are rare.
Giving a high reward (i.e., utility value) to members of the rare
class and a low reward otherwise will lead to the selection of
index groups more likely to contain members of the rare class.
For our experiments, we implemented four reward functions
based on active learning and other machine learning techniques:

ClassBalance is designed to produce a training set that
is more balanced in terms of relative class populations than
is the raw data corpus. Real-world datasets are often heavily
imbalanced, and restoring a degree of balance is often a first
step in building a learning system [33]. The reward (or utility)
ubalance(r) for a selected item r is based on the ratio of that
item’s class in the current training set:

ubalance(r) = 1−
nL(r) − nLmin

nLmax − nLmin
(1)

where nL(r), nLmin , and nLmax are the counts of the items in
the training set belong to r’s class, the least populated class,
and the most populated class, respectively. The label function
L determines the item’s class.



Uncertainty is a reward based on the active learning
technique of uncertainty sampling, where the item selected is
the one the classifier is most uncertain about when predicting its
class label [34]. Using a probabilistic classifier, a prediction’s
uncertainty is defined in terms of the probabilities of the two
most likely class labels. That is, for a raw data item r ∈ R with
feature vector F(r), p(c1|r) is the probability of the most likely
label for r, p(c2|r) is the probability of the next most likely
label, and the reward uuncert(r) is given by the uncertainty:

uuncert(r) = 1− (p(c1|r)− p(c2|r)) (2)

ClassifyError gives a high reward to items for which the
currently trained classifier predicts the wrong class label. The
reward uerror(r) is defined as:

uerror(r) =

{
1, if classifier error
0, otherwise

(3)

This method is somewhat related to boosting, where a series
of weak classifiers are trained on different subsets of training
data and then combined. When a weak classifier’s training set
is constructed, previously misclassified examples are preferred,
to emphasize the “hardest” training examples [35].

InfoTrace is our reward for regression tasks, based on the
idea of minimizing the training set’s variance by maximizing
the Fisher information, a technique from active learning and
optimal experiment design [21]. To encourage the selection
inputs that yield a large increase in the trace of the learner’s
Fisher information matrix I , the reward uinfo(r) is given by:

uinfo(r) = β (trace(Inew)− trace(Iold)) (4)

For linear regression with a constant variance σ2, I = 1
σ2X

TX,
where X is the model’s design matrix [36]. We chose β = 0.2
after testing a range of values (0 < β ≤ 1) in our experiments.

D. Selecting an Arm

Arms are selected in our system using the UCB1 algorithm
of Auer et al. [32]:

UCBa,t = µa + α

√
2 lnn

na
(5)

where µa is the average reward of arm a, na is the number of
pulls of arm a, and n is the overall number of pulls so far. The
parameter α controls the size of the confidence bound, which
sets the balance between exploration and exploitation in the
system. We chose α = 2 after testing a range of values.

E. Putting It All Together

We can now summarize our overall bandit algo-
rithm for choosing raw inputs. At each invocation of
chooseInputGroup(), we use the learner’s statistics about
previous pulls to estimate the reward and update the UCBa,t
values (as in “Selecting an Arm” above) for each ak in index I .
We then return the key with maximal UCB. Depending on the
initial grouping method, a raw input can appear in more than
one index group, so we may encounter previously processed
raw inputs. If so, we do not invoke F but instead update the
UCBa,t value for the pulled arm using that input’s previous
reward, and then again select the key with highest UCB.

Parameter Setting

Index grouping method cluster
Reward method UNCERTAINTY
Minority class rarity 0.5%

TABLE II: Default experiment settings.

V. EXPERIMENTS

We ran four types of experiments to demonstrate ZOMBIE
performs effective input selection under a range of tasks and
system settings. First, we compared ZOMBIE’s overall speedup
to several baselines on a family of learning tasks. Second,
we compared ZOMBIE to a common input selection method,
SUBSET. Third, we varied internal algorithmic decisions: the
reward function, the input grouping method, and the quality
of the index groups. Finally, we varied two kinds of difficulty
that impact input selection: feature function execution time
and rarity of high-value data items in the raw corpus. Table II
shows default settings for important system parameters, which
were used except where stated otherwise.

We implemented ZOMBIE and our machine learning tasks
(using Weka [37]) as a Java application of about 17,500 lines
of code. (Our prototype replaces the bulk data processing
platform in Figure 1, but our method could be integrated into
existing data processing systems.) We deployed the system on
an Amazon EC2 r3.xlarge instance with 30 GB of RAM.

A. Feature Engineering Workloads

We evaluated the system using two different learning tasks
and four different index group creation methods.

Document Classification — We first tested a document
classification task. The raw input dataset (R in the feature
engineer’s tuple) was a corpus of one million WikiText
documents randomly drawn from Wikipedia, after removing
all pages marked as “deleted” or “redirect.” We labeled each
document with a function (L) that derived a label from Category
tags. The trained artifact predicted a novel page’s class label.
We tested two variants of this task: DC2 labeled documents
as either geography or other. The DC6 task distinguished
among six different labels: geography, politics, science, sports,
videoGames, and other. For both tasks, other was the majority
class. The remaining classes each comprised 0.5% of the corpus,
except when explicitly varied for the experiments discussed in
Section V-E2. The engineer’s Q function returned the trained
model’s classification accuracy over a holdout set of 2,500
documents from each labeled class.

The training mechanism T for DC2 and DC6 was Weka’s
updatable multinomial naı̈ve Bayes classifier. We tested a set
of 40 feature functions as F ; each applied a single regular
expression to the raw input document and returned the number
of matches; thus, F resulted in a 40-element feature vector
for each input. We also tried a more time-consuming F that
applied the Stanford Named Entity Recognizer [38] to each text,
yielding a vector of counts of the three NER types (organization,
person, and location); the tasks that use NER features are DC2-
NER and DC6-NER. The regular expression F averaged 1 ms
per execution per input, while the NER F averaged 87 ms. We
held F constant over each experiment to measure ZOMBIE’s
impact on a single iteration of the feature engineering loop.



Linear Regression — To test ZOMBIE on a non-classification
problem, we created a regression task using the same Wikipedia
raw dataset. The trained model predicts the page’s length. This
simple task has several desirable methodological qualities: (1)
this prediction should be possible, as some topics naturally
lend themselves to longer articles; (2) it is not trivially obvious
how to make this prediction, so it is a good target for a trained
system; (3) we can use the same data and features as our
classification task, making feature function times comparable
across the tasks; and (4) page length is an easy value for
others to compute when trying to reproduce our results. We
counted the page’s length in bytes, normalized by the standard
deviation of the page lengths. The Q function measured root
mean squared error over a holdout set. For training procedure
T , we used Weka’s least squares regression module. The feature
function set F was the 40-element vector described above.

Index Group Construction — We tested four methods to
create index groups. For ZOMBIE’s default cluster method, we
used tf-idf normalized token counts as features for the k-means
clustering implementation from scikit-learn [39]. (We chose
k = 500 after testing values of k ranging from 100 to 10,000.)
The remaining three methods were designed to test a variety of
grouping methods and are not proposed for practical use. For
the w2v index, we used Google’s word2vec tool [40] to build a
set of index groups. To do so, we provided the tokenized corpus
to the tool to create a feature vector for every token. We then
clustered these vectors using k-means clustering, with k = 2000
(chosen from a range of tested values) and created an index
group for each cluster by assigning a document to a group if
one of its tokens belonged to that index group’s corresponding
cluster. Documents could belong to multiple index groups.
For the token index, we tokenized the Wikipedia documents
and removed stop-listed and rare tokens (those with fewer
than 50 occurrences). We created one index group per unique
token, adding to each group the documents containing the
corresponding token. The resulting index had roughly 35,000
index groups. For random, we assigned documents randomly
to one of 500 index groups. Finally, to test the impact of index
group quality on ZOMBIE, we evaluated a range of synthetic
groupings, each with a different distribution of “useful” items.

B. Overall Performance

We measured the speedup of all input selection mechanisms
relative to the EARLY technique—the early stopping execution
plan discussed in Section II. For EARLY, raw data items were
stored on disk in random order and processed sequentially.
EARLY allows for a direct comparison to ZOMBIE’s early
stopping, though the NAÏVE full scan method may better
represent current practice. Comparing to EARLY understates the
actual speedup that feature engineers would see with ZOMBIE,
since standard systems do not perform early stopping.

We also compared ZOMBIE to our implementation of an-
other proposed input selection method called FILTEREDSCAN,
from Ipeirotis et al. [15]. FILTEREDSCAN first runs in standard
bulk processing mode, collecting example pairs of raw inputs
and observed accuracy improvements. It trains a classifier with
the gathered data to label new items as helpful or not. Helpful
inputs are those that are expected to yield large accuracy
gains. Then, candidate inputs are classified; helpful inputs
are processed first and the rest deferred until helpful inputs
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Fig. 6: Time to stopping point, as well as ZOMBIE’s speedup over
EARLY in reaching that point, for all of our experimental tasks. At
bottom, the dotted line indicates EARLY’s performance.

have been exhausted. For our experiments, FILTEREDSCAN
chose its first n inputs randomly and used commodity bag-of-
words features to train the helpful-or-not model. For document
classification, helpful items were in the minority class. For
regression, the labels were based on the INFOTRACE reward:
helpful items increase the information matrix’s trace more than
the average of previous inputs. We then trained a naı̈ve Bayes
classifier that, starting with the n+ 1 input, labeled new items
as helpful or not. For each experiment, we tested a range of n
values and chose the one yielding the best speedup.

Methodology — As we showed in Figure 3, better input
selection systems can reach high quality values rapidly, so the
system can stop early. We measure performance by recording
how long either EARLY or ZOMBIE took to reach a plateau
in accuracy in its learning curve. This plateau is defined as
the point where the tested accuracy values over a window of
time change less than a user-specified minimal change value.
In our experiments, we chose a value equal to ε times the final
accuracy achieved by running the task to completion. We ran
each experiment ten times. To show our system is robust to the
user’s choice of stopping point, we evaluated each result with ε
varying from 0.01 to 0.05. We averaged the measured time to
the stopping point over all ten runs and minimal change values.
When we report speedup vs. EARLY, it is EARLY’s stopping
point time divided by ZOMBIE’s stopping point time.

Results — Our basic results for the document classification
and regression tasks are summarized in Figure 6. ZOMBIE
yielded a gain over EARLY in all cases, with speedups up to
nearly 8x. It also beat the FILTEREDSCAN method in all cases,
usually substantially. ZOMBIE performed especially well on
DC6; our index groups correlate well with all of our tasks, but
EARLY displayed a slower learning rate on DC6 than on the
other tasks, giving ZOMBIE more room for improvement. The
speedup numbers are important, but so are actual time savings.
When using ZOMBIE, the feature engineer could reach the
accuracy plateau for the DC6 task in 12 seconds (processing
about 11,800 items or 1.2% of the corpus), nearly eight times
faster than the 92 seconds (9.1% of the corpus) required to
reach the same level of accuracy with EARLY. FILTEREDSCAN
was better than EARLY but still required 61 seconds.

ZOMBIE speedups over EARLY for the NER tasks are 3.6x
and 5.1x for DC2-NER and DC6-NER, respectively. These
speedups were smaller than DC6, but the high cost of the
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Fig. 7: SUBSET sizes tested on DC6 using (a) the full dataset and (b)
a class-balanced filtered dataset. SUBSET10 was too small in (b) and
had no result. Execution time for both is shown in (c).

NER function still made the absolute time savings substantial.
ZOMBIE reached the stopping point for DC2-NER in 2.2
minutes instead of the 8.1 minutes required for EARLY. For
DC6-NER, ZOMBIE could stop after 5.6 minutes instead of
EARLY’s 28.3 minutes. Saving over 20 minutes per iteration
of the feature engineering cycle would certainly improve an
engineer’s productivity over the course of a work day. For
the Regression task, ZOMBIE showed a 1.7x speedup over
EARLY, needing only 36 seconds versus EARLY’s 63 seconds.
FILTEREDSCAN’s speedup over EARLY was relatively poor,
with a less than 2x speedup for even the simplest DC2 task.
As tasks became more difficult—that is, with more classes to
label—FILTEREDSCAN declined to almost the same level as
EARLY. We could almost certainly improve FILTEREDSCAN’s
performance by tuning it to particular tasks, but this is exactly
the type of extra human labor we aim to avoid.

C. Testing SUBSET

The SUBSET method (Section II-B) is a common approach
to speeding up feature evaluation. The user has two main
choices when building a subset: the method used to choose its
contents and its size. Recall that in addition to the manual labor
involved in writing the SUBSET program and its execution
overhead, the user has a real challenge in formulating the
SUBSET size; choosing too few samples will mean the system
fails to meet the plateau-based stopping point, while too many
will make the system run longer than is necessary. The feature
engineer using SUBSET must make this guess in a preliminary
phase before running any machine learning procedures.

We tested two subset selection methods on our DC6 task:
the Full method sampled randomly from the entire dataset,
while the Balanced method sampled from a dataset that was
filtered so it has a balanced number of class labels. The Full
dataset contained one million items and the Balanced dataset
had 30,000 items. We tested different user guesses for size:
SUBSET10 (10%), SUBSET25 (25%), and SUBSET50 (50%),
as well as the unrealistic SUBSETEARLY, which contained the
exact number of items needed to reach the task’s stopping
point. This method acts as if the user could perfectly predict
the number of items used by our EARLY baseline method.
Averaged over 10 runs, SUBSETEARLY contained about 91,000
items for Full (9.1%) and 3,400 for Balanced (11.3%).

Figure 7 shows the results for these experiments. As
expected, SUBSETEARLY was better than any of the subsets that
represent more realistic user guesses (SUBSET10, SUBSET25,
and SUBSET50). In the Balanced experiment, we show no result
for SUBSET10, since it was too small to reach the stopping
point (and the feature engineer would not accept the subset’s
trained model). For SUBSET25 and SUBSET50, the Balanced
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Fig. 8: Time to stopping point, as well as ZOMBIE’s speedup over
EARLY in reaching that point, for our different bandit reward methods.
At bottom, the dotted line shows EARLY’s performance.

method was fast in terms of raw execution time, taking less than
10 seconds to complete the task. ZOMBIE was the best approach
on both the Full and Balanced sets; it beat SUBSETEARLY by
avoiding the processing of redundant items unlikely to improve
the end system. The filtering done to create the Balanced
subsets does not generalize across learning tasks and must be
repeated for each subsequent task using the dataset. In contrast,
ZOMBIE’s initialization is performed just once per dataset.

D. Varying System Parameters

We also tested ZOMBIE’s configuration, testing several
bandit rewards, several index grouping methods, and ZOMBIE’s
robustness in the face of index groups of varying quality.

1) Bandit Reward Methods: We evaluated ZOMBIE using
the reward functions described in Section IV-C. For classifi-
cation tasks, we tested CLASSIFYERROR, CLASSBALANCE,
and UNCERTAINTY. For Regression, we tested INFOTRACE.
Finally, we tried a baseline ROUNDROBIN mechanism that just
cycled through the list of index groups, choosing one element
per group on each pass.

Figure 8 shows the impact of choosing different reward
functions for our bandit model on the classification tasks.
All of our three proposed reward functions (UNCERTAINTY,
CLASSBALANCE, CLASSIFYERROR), had at least a 2x speedup
over EARLY for all of the document classification tasks. It
may seem surprising that the baseline ROUNDROBIN method
fared reasonably well on several tasks: in these cases, just the
index grouping alone is enough to increase the likelihood of
processing an example of one of the minority classes. Perhaps
not surprisingly, UNCERTAINTY either performed the best or
tied for best method in all cases and is our recommended reward
function for classification tasks. CLASSIFYERROR is likely to
learn incorrectly from bad past decisions. CLASSBALANCE
cannot avoid candidate inputs that might have been useful in
the past but are no longer useful to the learner.

For the Regression task, INFOTRACE outperformed EARLY,
showing a speedup of 1.7x. ROUNDROBIN performed slightly
worse than EARLY, with a 0.9 speedup. Our Regression results
were not as good as those for the other tasks: overhead is higher
from retraining the linear regression learner, as well as from
the expensive INFOTRACE. Also, active learning for regression
is relatively understudied, and the field’s best techniques are
unsuitable due to high computational costs.
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2) Index Grouping Methods: Figure 9 shows ZOMBIE’s
speedup over EARLY using the UNCERTAINTY reward on the
DC6 task for four index group construction methods: cluster
(our recommended method) and, for comparison, random, token,
and w2v. We found similar results for the other tasks, but omit
them due to space constraints. The figure’s left axis describes
the bars, showing the speedup over EARLY. The right axis
describes the black diamonds, showing the mean group quality
for each method, defined as an index group’s ratio of minority
class items (our proxy for useful items), weighted by its fraction
of all the minority items. The random index performs poorly.
For all others, ZOMBIE yields a speedup over EARLY.

Unsurprisingly, ZOMBIE’s speedup was roughly correlated
with the quality of the grouping. In the case of random, there
were simply no high-quality index groups for our bandit model
to find and exploit. The results show that ZOMBIE can yield
a very large speedup when the group quality is middling and
can even yield some speedup when the group quality is quite
poor (as with w2v and token). These results give us increased
confidence in our recommendation of ZOMBIE’s use of standard,
task-independent clustering (e.g., our k-means cluster method).

The time needed to compute these indexes for our Wikipedia
dataset was non-trivial but manageable, ranging from 30 to 60
minutes for token and cluster and several hours for w2v. Because
these indexes are designed for use with many different learning
tasks, their construction costs (as when building traditional
database indexes) can be amortized over their long life.

3) Effects of Index Group Quality: To better understand
the impact of index group quality on ZOMBIE’s performance
independent of any particular grouping method, we created
a range of synthetic indexes with specific quality measures.
We fixed the raw dataset while distributing the items among
index groups to vary two parameters. Useful group density
measures the fraction of index groups containing at least one
minority class item (again, our useful items proxy). Group
quality measures the fraction of useful items in each useful
index group, as defined previously. That is, the former is how
likely a random input will be useful; the latter is how likely a
random item from a useful index group will itself be useful.

Figure 10 shows ZOMBIE’s performance using index
groupings with parameter settings ranging from 0.1 to 0.9,
averaged over 10 runs, for DC2 and DC6. Each square’s color
represents ZOMBIE’s speedup using the grouping with the
corresponding parameters, compared to EARLY. Red regions
show where ZOMBIE underperformed EARLY, while green
regions show where ZOMBIE had a significant speedup. In the
lower left corner are truly bad (and likely unrealistic) groupings:
most index groups contain no useful items, and in those that do,
useful items are very rare. Here, ZOMBIE has a very difficult
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Fig. 10: ZOMBIE’s speedup over EARLY for a range of different
index group quality levels on the (a) DC2 and (b) DC6 tasks. Green
and yellow areas indicate speedups over EARLY. All but the very
lowest-quality groupings (lower left, in red) yield a speedup.
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job finding any useful items. The upper right represents near
perfect (and, again, unrealistic) groupings: most index groups
contain high concentrations of useful items. Here, our bandit
method can quickly start exploiting the good groups. Between
these extremes is a large area of the parameter space showing a
positive speedup. Even with low-quality index groups, ZOMBIE
is successful at speeding up the feature engineering loop.

We expect standard clustering methods to fall within
ZOMBIE’s effective range. As a point of comparison, our k-
means cluster method exhibits density 0.55 and group quality
0.11 on DC2 and density 0.86 and group quality 0.24 on DC6.

E. Varying Task Parameters

We performed two types of experiments to test properties
of the learning task, first exploring the impact of the feature
function costs. We then tested how the difficulty of finding
useful inputs in the dataset affects ZOMBIE’s performance.

1) Feature Function Costs: ZOMBIE’s performance gains
are tied to the computational difficulty of F and T . Reducing
the number of function invocations is more meaningful when
F is expensive. However, ZOMBIE incurs overhead from T
and from the input selection loop. If F is fast enough, this
overhead will swamp any gains from avoiding calls to F .

Figure 11 shows the results of our experiment to discover
how slow a feature function has to be before it can benefit
from using ZOMBIE. We compared five tasks to SUBSETEARLY,
chosen for a baseline because it only runs T after the subset
has been created and so does not incur additional retraining
runtime costs; these results show the worst-case effects of
ZOMBIE’s overhead. The y-axis shows ZOMBIE’s speedup
over SUBSETEARLY. For the x-axis, we simulated different
average F runtimes. We kept the other aspects of the tasks—
the number of inputs processed, the outputs from F , and the
observed learner accuracy—exactly the same.



A line on this graph shows ZOMBIE’s speedup ratio for
a task, if a single invocation of the user’s F took the time
indicated on the x-axis. The diamonds show the actual F
average runtimes. As a line increases, the effect of ZOMBIE’s
overhead (largely from retraining) decreases. When a line is
“flat,” the overhead is negligible compared to F’s invocation
time. For longer F times, ZOMBIE’s ability to avoid function
invocation yields a larger speedup. A line’s height is task-
specific, showing how fast we reach the task’s stopping point.

For three of the tasks, ZOMBIE yields a speedup larger
than 1x except when F is extremely fast. Even with the
observed average runtime of 1 ms in the case of DC6 and
Regression, ZOMBIE is useful. For DC6-NER’s 87 ms runtime,
ZOMBIE provides a healthy speedup. For DC6 and DC6-NER,
retraining is incremental and the training costs are negligible.
Regression’s retraining costs are about five times higher.

We also introduced two synthetic tasks: DC6-50X and
DC6-100X. These are identical to the DC6 task, except with
artificially-inflated training times of 50 and 100 times DC6’s
average training time, simulating tasks with an extremely com-
putationally intensive training procedure T . The gentler curves
of DC6-50X and DC6-100X show that when T is extremely
time-consuming, F must also be more time-consuming for
ZOMBIE to yield a substantial speedup. In some cases, a very
fast F might mean that ZOMBIE does not yield a speedup
over EARLY. Indeed, with the 1 ms F we observed for DC6,
the DC6-100X task would be slower than SUBSETEARLY.
However, ZOMBIE yields a real speedup even when running
with a training procedure 50x slower than our real system. And
when training is 100x slower, even a tiny increase in feature
function invocation time means ZOMBIE is worth running.

2) Difficulty of Finding Good Inputs: We varied the relative
rarity of the labeled classes in the document classification task
in order to test how ZOMBIE responds when it is difficult to
find good items. As minority items become more rare, we
expect the input selection task to become more difficult, as it
is harder to find the minority-class examples needed to train a
high-quality learner. EARLY should also suffer in this situation.

Figure 12 shows that ZOMBIE does well for minority class
sizes that range from 0.01% to 5% of the corpus for the DC6
task. For the timing plot on the left, error bars indicate a 95%
confidence interval. Results for our other tasks were consistent
with these results but are omitted due to space constraints. For
the most difficult case, only 100 examples of each minority class
were present in the 1M document test corpus. This extreme
ratio would not be surprising in many settings: for example, a
task that predicts e-commerce prices might use a feature that
exploits rare pages that list prices but is useless on news or
social media pages. While ZOMBIE’s speedup ratio over EARLY
was relatively low in the 0.01% case, the engineer’s wait time
was reduced from almost 10 minutes to 5 minutes, which could
have a major impact on workflow. When the feature function
execution time is much larger, absolute savings can be much
larger: ZOMBIE saves 182 minutes, or over 3 hours, on DC6-
NER at 0.01% rarity, reducing the evaluation loop from 8 to
5 hours. This would allow an engineer to perform two feature
iterations in a workday instead of just one.
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Fig. 12: Left: Time needed to reach the accuracy plateau for both
EARLY and ZOMBIE on the DC6 task. Error bars show the 95%
confidence bound for mean time over 10 runs. Right: Speedup over
EARLY for the same trials. EARLY is shown by the dotted line.

VI. RELATED WORK

Database researchers have begun to propose frameworks
that support feature selection and engineering [1], [13], [14].
Our system’s goal—accelerating the feature engineering devel-
opment cycle—has grown from the vision sketched in Anderson
et al. [1]. We have demonstrated a user-facing tool [9] built on
the techniques detailed in this paper. Zhang et al.’s work [13]
is more suited for the “generate-and-select” feature generation
approach discussed in Section II-E. MLBase [14] focuses on
the learning pipeline and does not specifically address feature
engineering; ZOMBIE may be complementary to its methods.

Our system draws intellectually on several other areas of
data management. Large-scale distributed data processing has
seen intensive research for at least a decade [6], [7], [41]–[45].
MapReduce [6] was the first in the modern wave of systems,
but its simple scan-and-process model has been largely eclipsed
by systems that use familiar database techniques: indexes, high-
level query languages, query optimization, etc. Few, though,
optimize execution of user-defined code, let alone opaque
feature code in a learning task, as we do with ZOMBIE.

ZOMBIE’s two-phase operation is similar to approximate
query processing systems; samples of the data with specific
statistical properties are pre-computed and then used to answer
an approximate query [22]–[24]. Our system also answers
queries using pre-computed data subsets. Unlike approximate
query processors, it is unclear what useful statistical properties
could be pre-calculated because of the users changing feature
code; feature evaluation is more suited to an online approach.

Active learning is a well-known topic within machine
learning [21]. Our work shares the main goal of active learning:
minimizing the cost of constructing a training set through
careful selection of training examples. We differ from typical
active learning in that we cannot examine the features of
potential training examples to guide our selection, which
would require unwanted feature code runtime costs. The most
related line of active learning research is active feature-value
acquisition, which attempts to avoid very expensive features,
like medical tests, by estimating the utility of every object
in the raw dataset [46]. This assumes a dramatic cost split
between features that are nearly free and features that are so
expensive that it is worth paying almost any computational
cost to avoid them. While useful, this does not apply in our
setting: our work assumes functions with comparable runtimes,
so total runtime is best reduced by processing less raw data.

Deep learning has become a hot area of research, promising
high-accuracy models that do not require traditional explicit
feature engineering [47], [48]. Deep learning methods may
somewhat displace human feature engineers in the future,



though we believe there will always be a strong role for human-
provided domain knowledge. Deep learning, despite its many
successes, faces several challenges. Its applicability to text
is still unclear, and it is extremely computationally intensive.
Moreover, its operation is notoriously opaque: engineers may
face trouble maintaining and debugging these systems. In any
case, our system can be used alongside such approaches.

VII. CONCLUSIONS AND FUTURE WORK

We have described the ZOMBIE input selection system. For
the critical feature engineering evaluation loop, ZOMBIE obtains
speedups of up to 8x, and reduces wait from 8 to 5 hours in
some cases. It is a promising tool in the effort to accelerate the
feature engineering iteration cycle. We view ZOMBIE as just
one component of an integrated feature engineering system. We
would like to improve ZOMBIE by incorporating arm statistics
across multiple iterations of the evaluation loop, and by giving
the engineer explicit feature design hints. We will also explore
other applications for our bandit method, such as automatically
choosing among data sources of varying quality.
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[11] A. Kumar, F. Niu, and C. Ré, “Hazy: Making it easier to build and
maintain big-data analytics,” Communications of the ACM, vol. 56, no. 3,
pp. 40–49, 2013.
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