Web-Scale Extraction of Structured Data

Michael J. Cafarella
University of Washington
mjc@cs.washington.edu

ABSTRACT

A long-standing goal of Web research has been to con-
struct a unified Web knowledge base. Information ex-
traction techniques have shown good results on Web in-
puts, but even most domain-independent ones are not
appropriate for Web-scale operation. In this paper we
describe three recent extraction systems that can be
operated on the entire Web (two of which come from
Google Research). The TEXTRUNNER system focuses
on raw natural language text, the WEBTABLES system
focuses on HTML-embedded tables, and the deep-web
surfacing system focuses on “hidden” databases. The
domain, expressiveness, and accuracy of extracted data
can depend strongly on its source extractor; we describe
differences in the characteristics of data produced by the
three extractors. Finally, we discuss a series of unique
data applications (some of which have already been pro-
totyped) that are enabled by aggregating extracted Web
information.

1. INTRODUCTION

Since the inception of the Web, the holy grail of web
information extraction has been to create a knowledge
base of all facts represented on the Web. Even if such a
knowledge base were imperfect (and it certainly would
be), its contents can be used for a variety of purposes,
including answering factual queries (possibly perform-
ing simple inferences), expansion of keyword queries to
improve recall, and assisting more specific extraction
efforts. The vast majority of the work on information
extraction has focused on more specific tasks, either by
limiting the extraction to particular domains (e.g., ex-
tracting seminar announcement data from email in an
academic department, or extracting corporate intelli-
gence from news articles), or training extractors that
apply to specific web sites. As such, these techniques
cannot be applied to the Web as a whole.

In this paper we describe three extraction systems
that began with the goal of being domain and site in-
dependent, and therefore apply to the entire Web. The
systems target different kinds of resources on the Web:
text, HTML tables and databases behind forms. Each
of these systems has extracted a portion of what can

Jayant Madhavan
Google Inc.
jayant@google.com

Alon Halevy
Google Inc.
halevy@google.com

some day become the unified Web knowledge base, and
teaches us important lessons on the way to that goal.
The first project is the TEXTRUNNER system [3], which
operates on very large amounts of unstructured text,
making very few assumptions about its target data.
The second project is the more recent WEBTABLES sys-
tem [8, 9], which extracts relational tables from HTML
structures. The third project is the deep-web crawling
project [21], which surfaces contents of backend databases
that are accessible via HTML forms. We describe how
the data extracted from each of these systems differ in
content and the types of techniques that needed to be
applied in each case. We also describe how each system
contributes to computing a set of entities and relation-
ships that are represented on the Web.

Finally, we look beyond the specific goal of creating a
knowledge base of the Web and consider what kind of
semantic services can be created in order to assist with
a wide collection of tasks. We argue that by aggregating
vast amounts of structured data on the Web we can cre-
ate valuable services such as synonym finding, schema
auto-complete and type prediction. These services are
complimentary to creating a knowledge base of the Web
and can be created even if the knowledge base is still
under construction. We show early examples of such
services that we created in our recent work.

2. TEXTUAL EXTRACTION

The first extraction system that we consider operates
over very large amounts of unstructured text. Banko
et al.’s TEXTRUNNER consumes text from a Web crawl
and emits n-ary tuples [3]. It works by first linguisti-
cally parsing each natural language sentence in a crawl,
then using the results to obtain several candidate tuple
extractions. For example, TEXTRUNNER might process
the sentence “Albert Einstein was born in 1879”7, find
two noun phrases and a linking verb phrase, then create
the tuple (Einstein, 1879) in the was_born_in rela-
tion. Finally, TEXTRUNNER applies extraction-frequency-
based techniques to determine whether the extraction
is accurate. Table 1 lists a few example TEXTRUNNER
extractions.

There are a number of extractors that emit tuples
from raw text inputs, including DIPRE, SNOWBALL,
and KNOWITALL [1, 7, 14]. However, TEXTRUNNER
has two additional unusual qualities that make it es-

Object 1 Relation Object 2
einstein | discovered | relativity
1848 was_year_of | revolution
edison invented phonograph
einstein died_in 1955

Table 1: A few example binary tuple extractions
from TEXTRUNNER.

pecially apt for creating a Web-scale knowledge base.
First, TEXTRUNNER was designed to operate in batch
mode, consuming an entire crawl at once and emit-
ting a large amount of data. In contrast, other sys-
tems have been on-demand query-driven systems that
choose pages based on the user’s revealed interest. The
on-demand approach may seem more appealing because
it promises to only perform relevant work, and because
the system may be able to use the query to improve
the output quality. However, the batch-oriented tech-
nique allows us to pre-compute good extractions be-
fore any queries arrive, and then index these extrac-
tions aggressively. In the query-driven approach, all
of this work (possibly including downloading the text
itself) must happen at query-time. Also, note that tra-
ditional search engines follow a similar batch-processing
approach.

Second, TEXTRUNNER does not attempt to populate
a given target relation or schema, but rather discov-
ers them during processing. KNOWITALL, DIPRE, and
SNOWBALL all require some sort of target guidance from
the user (e.g., a set of seed pairs or a set of extraction
phrases). This kind of open information extraction is
necessary if we want to extract the Web’s worth of data
without a strong model of Web contents (in the form
of either a query load or perhaps some kind of general
ontology). Further, this approach allows the extractor
to automatically obtain brand-new relations as they ap-
pear over time.

This system has been tested in two large deployments.
The initial TEXTRUNNER project ran on a general cor-
pus of 9 million Web pages, extracting 1 million con-
crete tuples (of which 88% were accurate) [3]. In a more
recent experiment, TEXTRUNNER was run on a much
larger 500M page crawl, yielding more than 200M tu-
ples that occurred at least two times (though detailed
accuracy figures are not yet available) [2]. H-CRF is an
extension to the TEXTRUNNER system that uses an ap-
proach based on conditional random fields to improve
output quality [4].

TEXTRUNNER’s open IE technique differs substan-
tially from previous work. For example, the DIPRE and
SNOWBALL projects accept a set of binary seed tuples,
learn patterns that textually connect the two elements,
then extend the set by downloading relevant Web pages
and applying the learned patterns. The KNOWITALL
system extracts binary is-a relations (and in later work,
other n-ary relations) from downloaded Web pages [14].
It worked by applying a handful of generic extraction

phrases (due to Hearst [17]) like “X such as Y” and
“X, including Y,...” to the pages, then distinguishing
true from spurious extractions with a trained classifier
that took as input frequency-statistics of the extraction
phrases.

Several other systems occupy an interesting middle
ground between raw text and structured data. The
Yago system produced ontologies consisting of hyper-
nyms and binary relations, extracted from WordNet
and the structured parts of Wikipedia (such as the spe-
cialized “list pages” that put other Wikipedia entities
into broad sets) [24]. It did not extract information
from the Wikipedia article content. The Kylin system
used Wikipedia infoboxes (essentially, small lists of at-
tribute/value pairs associated with a single entity) to
train textual extractors that were then applied to the
article text [27]. The primary goal of the system was
to make the infobox data more complete, especially for
versions of Wikipedia in unpopular languages.

The data that TEXTRUNNER and other text-centric
extractors emit differs in several ways from traditional
relational-style data. First, the cardinality of text-derived
tuples is heavily reliant on extractable natural language
constructs: binary relations (generally two nouns and a
linking relation) are much easier to extract and are more
common than 3-ary or larger tuples. In contrast, rela-
tional tables make it easy to express data with many
dimensions.

Second, the domains that appear in text-derived data
will be different from data found in relations. In part,
this difference is due to the above point about binary
tuples being more “natural” than other tuple sizes in
natural language text. But this difference in domains is
also due to issues of human reading and writing style:
it would be very boring to read a piece of text that
exhaustively enumerates movie times, but scanning a
table is quite easy.

Third, unlike the WEBTABLES extractor we describe
next, where each extraction is based on a single occur-
rence of a table on the Web, the TEXTRUNNER (as well
as the KNOWITALL) extractor outputs extractions that
are found in multiple locations on the Web. This is nec-
essary since the extractors that TEXTRUNNER relies on
are linguistic extractors that are quite fallible. In con-
trast, the tables extracted by WEBTABLES are “cleaner”
after extraction than text-based tuples. Further, be-
cause an extracted relation is a fairly complicated object
consisting of multiple tuples, it is harder to find exact
replicas elsewhere on the Web and so frequency-based
techniques are not obviously applicable.

Finally, the output data model from TEXTRUNNER
differs slightly from the relational model. The indi-
vidual dimensions of a TEXTRUNNER extraction are
generally not labeled (e.g., we do not know that Ein-
stein is in the human attribute, and that 1879 is in
birthyear). But most relations (and extractions from
the “hard-coded” text systems) do have this kind of at-
tribute metadata. The situation is reversed in the case
of the name of the relation. The was_born_in extrac-
tion serves as a rough name for a relation in which the

free version of the ste, with print-friendly pages.
ck here.)

States of America
Sho -

izens of the United States, and

Vice-President

Figure 1: Example HTML Table.

derived tuple belongs to, but relational tables on the
Web do not usually offer their relation name.

3. THE RELATIONAL WEB

The WEBTABLES system [8, 9] is designed to extract
structured data from the Web that is expressed using
the HTML table tag. For example, the Web page
shown in Figure 1 contains a table that lists Ameri-
can presidents'. The table has four columns, each with
a domain-specific label and type (e.g., President is a
person name, Term as President is a date range, etc)
and there is a tuple of data for each row. Even though
much of its metadata is implicit, this Web page essen-
tially contains a small relational database that anyone
can crawl.

Of course, not all table tags carry relational data.
A huge number are used for page layout, for calendars,
or other non-relational purposes. For example, in Fig-
ure 1, the top of the page contains a table tag used to
lay out a navigation bar with the letters A-Z. Based on
a human-judged sample of several thousand raw tables,
we estimate that our general Web crawl of 14.1B ta-
bles contains about 154M true relational databases, or
about 1.1% of the total. While the percentage is fairly
small, the vast number of tables on the Web means that
the total number of relations is still enormous. Indeed,
the relational databases in our crawl form the largest
database corpus we know of, by five orders of decimal
magnitude.

Unfortunately, distinguishing a relational table from
a non-relational one can be difficult to do automatically.
Obtaining a set of good relational tables from a crawl
can be considered a form of open information extrac-
tion, but instead of raw unstructured text the extrac-
tor consumes (messy) structured inputs. Our WEBTA-
BLES system uses a combination of hand-written and
statistically-trained classifiers to recover the relational
tables from the overall set of HTML tables. After run-
ning the resulting classifiers on a general Web crawl,
WEBTABLES obtains a huge corpus of structured ma-
terialized relational databases. These databases are a

1http ://www.enchantedlearning.com/history/us/pres/list.shtml

very useful source of information for the unified Web
knowledge base.

Recovering relational databases from the raw HTML
tables consists of two steps. First, WEBTABLES at-
tempts to filter out all the non-relational tables. Sec-
ond, for all the tables that we believe to be relational,
WEBTABLES attempts to recover metadata for each.

WEBTABLES executes the following steps when filter-
ing out relational tables:

Step 1. Throw out obviously non-relational HTML
tables, such as those consisting of a single row or a single
column. We also remove tables that are used to display
calendars or used for HTML form layout. We can detect
all of these cases with simple hand-written detectors.

Step 2. Label each remaining tables as relational
or mon-relational using a trained statistical classifier.
The classifier bases its decision on a set of hand-written
table features that seem to indicate a table’s type: the
number of rows, the number of columns, the number of
empty cells, the number of columns with numeric-only
data, etc.

Step 1 of this process removes more than 89% of the
total table set. The remaining HTML tables are trick-
ier. Traditional schema tests such as constraint check-
ing are not appropriate in a messy Web context, so our
test for whether a table is relational is necessarily some-
what subjective. Based on a human-judged sample of
several thousand examples, we believe a little more than
10% of the remaining tables should be considered rela-
tional.

We used a portion of this human-emitted sample to
train the classifier in Step 2. That step’s output (and
hence, the output of the entire filtering pipeline) is an
imperfect but still useful corpus of databases. The out-
put retains 81% of the truly relational databases in the
input corpus, though only 41% of the output is rela-
tional. That means WEBTABLES emits a database of
271M relations, which includes 125M of the raw input’s
estimated 154M true relations (and, therefore, also in-
cludes 146M false ones).

After relational filtering, WEBTABLES tries to recover
each relation’s metadata. Because we do not recover
multi-table databases, and because many traditional
database constraints (e.g., key constraints) cannot be
expressed using the table tag, our target metadata is
fairly modest. It simply consists of a set of labels (one
for each column) that is found in the table’s first row.
For example, the table from Figure 1 has metadata
that consists of President, Party, Term as Presi-
dent, and Vice President.

Because table columns are not explicitly typed, the
metadata row can be difficult to distinguish from a ta-
ble’s data contents. To recover the metadata, we used
a second trained statistical classifier that takes a table
and emits a hasmetadata/ nometadata decision. It uses
features that are meant to “reconstruct” type informa-
tion for the table: the number of columns that have
non-string data in the first row versus in the table’s
body, and various tests on string-length meant to de-
tect whether the first value in a column is drawn from

the same distribution as the body of the column.

A human-marked sample of the relational filtering
output indicates that about 71% of all true relations
have metadata. Our metadata-recovery classifier per-
forms well: it achieves precision of 89% and recall of
85%.

The materialized relational tables that we obtain from
WEBTABLES are both relatively clean and very expres-
sive. First, the tabular structure makes individual ele-
ments easy to extract, and hence provides a very rich
collection of entities for the Web knowledge base. Other
data sources (such as the text collections used in TEX-
TRUNNER) require that we demarcate entities, relations,
and values in a sea of surrounding text. In contrast, a
good relational table explicitly declares most label end-
points through use of the table structure itself. Further,
a relational table carries many pieces of metadata at
once: each tuple has a series of dimensions that usually
have attribute labels, and the mere presence of tuples
in a table indicate set membership. However, unlike a
TEXTRUNNER tuple, the label of the relation is rarely
explicit. Finally, unlike the HTML form interfaces to
deep-web databases (described in the next section), but
like tuples derived by TEXTRUNNER, all of the dimen-
sions in a relational table can be queried directly (forms
may allow queries on only a subset of the emitted data’s
attributes).

Interestingly, in [25] it is shown that tables extracted
by WEBTABLES can be used to successfully expand in-
stance sets that were originally extracted from free text
using techniques similar to those in TEXTRUNNER. We
also have initial results indicating that entities in the
extracted tables can be used to improve the segmenta-
tion of HTML lists — another source for structured data
on the Web.

4. ACCESSING DEEP-WEB DATABASES

Not all the structured data on the Web is published
in easily-accessible HTML tables. Large volumes of
data stored in backend databases are often made avail-
able to web users only through HTML form interfaces.
For example, US census data can be retrieved by zip-
code using the HTML form on the US census web-
site?. Users retrieve data by performing valid form sub-
missions. HTML forms either pose structured queries
over relational databases or keyword queries over text
databases, and the retrieved contents are published in
structured templates, e.g., HI'ML tables, on web pages.

While the tables harvested by WEBTABLES can po-
tentially be reached by users by posing keyword queries
on search engines, the contents behind HTML forms
were for a long time believed to be beyond the reach of
search engines — there are not many hyperlinks point-
ing to web pages that are results of form submissions
and web crawlers did not have the ability to automat-
ically fill out forms. Hence, the names Deep, Hidden,
or Invisible Web have been used to collectively refer to
the contents accessible only through forms. It has been

2http ://factfinder.census.gov/

speculated that the data in the Deep Web far exceeds
that currently indexed by search engines [6, 16]. We
estimate that there are at least 10 million potentially
useful forms [20].

Our primary goal was to make the data in deep-web
databases more easily accessible to search engine users.
Our approach has been to surface the contents into web
pages that can then be indexed by search engines (like
any other web page). As in the cases of TEXTRUN-
NER and WEBTABLES our goal was to develop tech-
niques that would apply efficiently on large numbers of
forms. This is in contrast with much prior work that
have either addressed the problem by constructing me-
diator systems one domain at a time [12, 13, 26], or
have needed site-specific wrappers or extractors to ex-
tract documents from text databases [5, 22]. As we
discuss, the pages we surface contain tables from which
additional data can be extracted for the Web knowledge
base.

Over the past few years we have developed and de-
ployed a system that has surfaced the contents of over a
million of such databases, which span over 50 languages
and over 100 domains. The surfaced pages contribute
results to over a thousand web search queries per second
on Google.com. In the rest of this section, we present
an overview of our system. Further details about our
system can be found in [21].

4.1 Surfacing Deep-Web databases

There are two complementary approaches to offering
access to deep-web databases. The first approach, es-
sentially a data integration solution, is to create vertical
search engines for specific domains (e.g., cars, books,
real-estate). In this approach we could create a media-
tor form for the domain at hand and semantic mappings
between individual data sources and the mediator form.
At web-scale, this approach suffers from several draw-
backs. First, the cost of building and maintaining the
mediator forms and the mappings is high. Second, it is
extremely challenging to identify the domain (and the
forms within the domain) that are relevant to a keyword
query. Finally, data on the web is about everything
and domain boundaries are not clearly definable, not to
mention the many different languages — creating a me-
diated schema of everything will be an epic challenge,
if at possible.

The second approach, surfacing, pre-computes the
most relevant form submissions for all interesting HTML
forms. The URLs resulting from these submissions can
then be indexed like any other HTML page. Impor-
tantly, this approach leverages the existing search en-
gine infrastructure and hence allows the seamless inclu-
sion of Deep-Web pages into web search results; we thus
prefer the surfacing approach.

The primary challenge in developing a surfacing ap-
proach lies in pre-computing the set of form submissions
for any given form. First, values have to be selected
for each input in the form. Value selection is trivial
for select menus, but is very challenging for text boxes.
Second, forms have multiple inputs and using a simple

strategy of enumerating all possible form submissions
can be very wasteful. For example, the search form on
cars.com has 5 inputs and a Cartesian product will yield
over 200 million URLs, even though cars.com has only
650,000 cars on sale [11]. We present an overview of how
we address these challenges in the rest of this section.

An overarching challenge in developing our solution
was to make it scale and be domain independent. As al-
ready mentioned, there are millions of potentially useful
forms on the Web. Given a particular form, it might be
possible for a human expert to determine through la-
borious analysis the best possible submissions for that
form, but such a solution would not scale. Our goal
was to find a completely automated solution that can
be applied to any form in any language or domain.

Selecting Input Values: A large number of forms
have text box inputs and require valid inputs values for
any data to be retrieved. Therefore, the system needs to
choose a good set of values to submit in order to surface
the most useful result pages. Interestingly, we found
that it is not necessary to have a complete understand-
ing of the semantics of the form in order to determine
good candidate values for text inputs. We note that
text inputs fall in one of two categories: generic search
inputs that accept most keywords and typed text inputs
that only accept values in a particular domain.

For search boxes, we start by making an initial pre-
diction for good candidate keywords by analyzing the
text on pages from that the form site that might be al-
ready indexed by the search engine. We use the initial
set of keywords to bootstrap an iterative probing pro-
cess. We test the form with candidate keywords and
when valid form submissions result, we extract more
keywords from the resulting pages. This iterative pro-
cess continues until either new candidate keywords can-
not be extracted or a pre-specified target is reached.
The set of all candidate keywords can then be pruned
to select a smaller subset that ensures diversity of the
exposed database contents. Similar iterative probing
approaches have been used in the past to extract text
documents from specific databases [5, 10, 18, 22].

For typed text boxes, we attempt to match the type
of the text box against a library of types that are ex-
tremely common across domains, e.g., zip codes in the
US. Note that probing with values of the wrong type
results in invalid submissions or pages with no results.
We observed that even a library of just a few types can
cover a significant number of text boxes.

Selecting Input Combinations: For HTML forms
with more than one input, a simple strategy of enu-
merating the entire Cartesian product of all possible
inputs will result in a very large number of URLs being
generated. Crawling too many URLs will drain the re-
sources of a search engine web crawler while also posing
an unreasonable load on web servers hosting the HTML
forms. Interestingly, when the Cartesian product is very
large, it is likely that a large number of the form sub-
missions result in empty result sets that are useless from
an indexing standpoint.

To only generate a subset of the Cartesian product,
we developed an algorithm that intelligently traverses
the search space of possible input combinations to iden-
tify only the subset of input combinations that are likely
to be useful to the search engine index. We introduced
the notion of an input template: given a set of bind-
ing inputs, the template represents that set of all form
submissions using only the Cartesian product of val-
ues for the binding inputs. We showed that only input
templates that are informative, i.e., generate web pages
with sufficiently distinct retrieved contents, are useful
to a search engine index. Hence, given a form, our al-
gorithm searches for informative templates in the form,
and only generates form submissions from them.

Based on the algorithms outlined above, we find that
we only generate a few hundred form submissions per
form. Furthermore, we believe the number of form
submissions we generate is proportional to the size of
the database underlying the form site, rather than the
number of inputs and input combinations in the form.
In [21], we also show that we are able to extract large
fractions of underlying deep-web databases automat-
ically (without any human supervision) using only a
small number of form submissions.

4.2 Extracting the extracted databases

By creating web pages, surfacing does not preserve
the structure and hence the semantics of the data ex-
posed from the underlying deep-web databases. The
loss in semantics is also a lost opportunity for query
answering. For example, suppose a user were to search
for “used ford focus 1993”. Suppose there is a surfaced
used-car listing page for Honda Civics, which has a 1993
Honda Civic for sale, but with a remark “has better
mileage than the Ford Focus”. A simple IR index can
very well consider such a surfaced web page a good re-
sult. Such a scenario can be avoided if the surfaced
page had the annotation that the page was for used-car
listings of Honda Civics and the search engine were able
to exploit such annotations. Hence, the challenge in the
future will be to find the right kind of annotation that
can be used by the IR-style index most effectively.

When contents from a deep-web database are surfaced
onto a web page, they are often laid out into HTML ta-
bles. Thus, a side-effect of surfacing is that there are
potentially many more HTML tables that can then be
recovered by a system like WEBTABLES. In fact, HTML
tables generated from the deep-web can potentially be
recovered in a more informed way than in general. Sur-
facing leads to not one, but multiple pages with over-
lapping data laid out in identical tables. Recovering
the tables collectively, rather than each one separately,
can potentially lead to a complete extraction of the the
deep-web database. In addition, mappings can be pre-
dicted from inputs in the form to columns in the recov-
ered tables thereby resulting in recovering more of the
semantics of the underlying data. Such deeper extrac-
tion and recovery is an area of future work.

In addition, the forms themselves contribute to in-
teresting structured data. The different forms in a do-

main, just like different tables, are alternate representa-
tions for metadata within a domain. The forms can be
aggregated and analyzed to yield interesting artifacts.
Resources such as the ACSDb [9] can be constructed
based on the metadata in forms. For example, as works
such as [15, 23, 28] have shown, mediated schemas can
be constructed for domains by clustering forms belong-
ing to that domain. Likewise, form matching within a
domain can be improved by exploiting other forms in
the same same domain [19].

S. WEB-SCALE AGGREGATES

So far our discussion has focused on a knowledge base
of facts from the Web. However, our experience has
shown that significant value can be obtained from an-
alyzing collections of metadata on the Web. Specifi-
cally, from the collections we have been working with
(forms and HTML tables) we can extract several arti-
facts, such as: (1) a collection of forms (input names
that appear together, values for select menus associ-
ated with input names), (2) a collection of several mil-
lion schemata for tables, i.e., sets of column names that
appear together, and (3) a collection of columns, each
having values in the same domain (e.g., city names, zip-
codes, car makes).

We postulate that we can build from these artifacts a
set of semantic services that are useful for many other
tasks. In fact, these are some of the services we would
expect to build from a Web knowledge base, but we ar-
gue that we do not need a complete Web knowledge base
in order to do so. Examples of such services include:

e Given an attribute name (and possibly values for

its column or attribute names of surrounding columns)

return a set of names that are often used as syn-
onyms. In a sense, such a service is a component
of a schema matching system whose goal is to help
resolve heterogeneity between disparate schemata.
A first version of such a service was described in [9].

e Given a name of an attribute, return a set of values
for its column. An example of where such a service
can be useful is to automatically fill out forms in
order to surface deep-web content.

e Given an entity, return a set of possible proper-
ties (i.e, attributes and relationships) that may be
associated with the entity. Such a service would
be useful for information extraction tasks and for
query expansion.

e Given a few attributes in a particular domain, re-
turn other attributes that database designers use
for that domain (akin to a schema auto-complete).
A first version of such a service was described in [9].
Such a service would be of general interest for
database developers and in addition would help
them choose attribute names that are more com-
mon and therefore avoid additional heterogeneity
issues later.

6. CONCLUSION

We described three systems that perform information
extraction in a domain-independent fashion, and there-
fore can (and have been) applied to the entire Web. The
first system, TEXTRUNNER, extracts binary relation-
ships between entities from arbitrary text and therefore
obtains a very wide variety of relationships. TEXTRUN-
NER exploits the power of redundancy on the Web by
basing its extractions on multiple occurrences of facts
on the Web. The WEBTABLES system targets tabular
data on the Web and extracts structured data that typ-
ically requires multiple attributes to describe and often
includes numerical data that would be cumbersome to
describe in text. In WEBTABLES, the fact that we have
multiple rows in a table can provide further clues about
the semantics of the data. Our deep-web crawl extracts
an additional type of structured data that is currently
stored in databases and available behind forms. The
data extracted by the deep-web crawl requires addi-
tional effort to be fully structured, but the potential
arises from the fact that we have multiple tables result-
ing from the same form. In all three cases, a side result
of the extraction is a set of entities, relationships and
schemata that can be used as building blocks for the
Web knowledge base and for additional semantic ser-
vices.

7. REFERENCES

[1] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and

A. Voskoboynik. Snowball: A Prototype System for

Extracting Relations from Large Text Collections. In

SIGMOD, 2001.

[2] M. Banko. Personal Communication, 2008.

3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open Information Extraction from the
Web. In IJCAI, 2007.

[4] M. Banko and O. Etzioni. The Tradeoffs Between Open
and Traditional Relational Extraction. In ACL, 2008.

(5] L. Barbosa and J. Freire. Siphoning hidden-web data
through keyword-based interfaces. In SBBD, 2004.

6] M. K. Bergman. The Deep Web: Surfacing Hidden Value.

Journal of Electronic Publishing, 2001.

S. Brin. Extracting Patterns and Relations from the World

Wide Web. In WebDB, 1998.

[8] M. J. Cafarella, A. Halevy, Y. Zhang, D. Z. Wang, and

E. Wu. Uncovering the Relational Web. In WebDB, 2008.

[9] M. J. Cafarella, A. Halevy, Y. Zhang, D. Z. Wang, and

E. Wu. WebTables: Exploring the Power of Tables on the
Web. In VLDB, 2008.

[10] J. P. Callan and M. E. Connell. Query-based sampling of
text databases. ACM Transactions on Information
Systems, 19(2):97-130, 2001.

[11] Cars.com FAQ.
http://siy.cars.com/siy/qsg/faqGenerallnfo.jsp#howmanyads.

[12] Cazoodle Apartment Search.
http://apartments.cazoodle.com/.

[13] K. C.-C. Chang, B. He, and Z. Zhang. MetaQuerier over
the Deep Web: Shallow Integration across Holistic Sources.
In VLDB-1IWeb, 2004.

[14] O. Etzioni, M. Cafarella, D. Downey, S. Kwok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in KnowItAll
(preliminary results). In WWW, 2004.

[15] B. He and K. C.-C. Chang. Statistical Schema Matching
across Web Query Interfaces. In SIGMOD, 2003.

S

[7

(16]

(17]

(18]

(19]

20]

21]

(22]

23]
[24]

25]

[26]
27]

28]

B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing
the Deep Web: A survey. Communications of the ACM,
50(5):95-101, 2007.

M. A. Hearst. Automatic Acquisition of Hyponymns from
Large Text Corpora. In COLING, 1992.

P. G. Ipeirotis and L. Gravano. Distributed Search over the
Hidden Web: Hierarchical Database Sampling and
Selection. In VLDB, 2002.

J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy.
Corpus-based Schema Matching. In ICDE, 2005.

J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu,
and A. Halevy. Web-scale Data Integration: You can only
afford to Pay As You Go. In CIDR, 2007.

J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Google’s Deep-Web Crawl. In VLDB, 2008.
A. Ntoulas, P. Zerfos, and J. Cho. Downloading Textual
Hidden Web Content through Keyword Queries. In JCDL,
2005.

A. D. Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD, 2008.
F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, 2007.

P. P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran,
R. Bhagat, and F. Pereira. Weakly Supervised Acquisition
of Labeled Class Instances using Graph Random Walks. In
EMNLP, 2008.

Trulia. http://www.trulia.com/.

F. Wu and D. S. Weld. Autonomously Semantifying
Wikipedia. In CIKM, 2007.

W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive
Clustering-based Approach to Integrating Source Query
Interfaces on the Deep Web. In SIGMOD, 2004.

