
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Sledgehammer: Cluster-Fueled Debugging
Andrew Quinn, Jason Flinn, and Michael Cafarella, University of Michigan

https://www.usenix.org/conference/osdi18/presentation/quinn

Sledgehammer: Cluster-fueled debugging

Andrew Quinn, Jason Flinn, and Michael Cafarella
University of Michigan

Abstract
Current debugging tools force developers to choose

between power and interactivity. Interactive debuggers
such as gdb let them quickly inspect application state
and monitor execution, which is perfect for simple bugs.
However, they are not powerful enough for complex bugs
such as wild stores and synchronization errors where de-
velopers do not know which values to inspect or when to
monitor the execution. So, developers add logging, insert
timing measurements, and create functions that verify in-
variants. Then, they re-run applications with this instru-
mentation. These powerful tools are, unfortunately, not
interactive; they can take minutes or hours to answer one
question about a complex execution, and debugging in-
volves asking and answering many such questions.

In this paper, we propose cluster-fueled debugging,
which provides interactivity for powerful debugging
tools by parallelizing their work across many cores in a
cluster. At sufficient scale, developers can get answers to
even detailed queries in a few seconds. Sledgehammer is
a cluster-fueled debugger: it improves performance by
timeslicing program execution, debug instrumentation,
and analysis of results, and then executing each chunk
of work on a separate core. Sledgehammer enables pow-
erful, interactive debugging tools that are infeasible to-
day. Parallel retro-logging allows developers to change
their logging instrumentation and then quickly see what
the new logging would have produced on a previous ex-
ecution. Continuous function evaluation logically evalu-
ates a function such as a data-structure integrity check
at every point in a program’s execution. Retro-timing
allows fast performance analysis of a previous execu-
tion. With 1024 cores, Sledgehammer executes these
tools hundreds of times faster than single-core execution
while returning identical results.

1 Introduction
Debugging is onerous and time-consuming, compris-

ing roughly half of all development time [24]. It involves
detective work: using the tools at her disposal, a devel-
oper searches a program execution for clues about the
root cause of correctness or performance problems.

Current debugging tools force developers to choose
between power and interactivity. Tools such as gdb
are interactive: developers can inspect program values,

follow execution flow, and use watchpoints to monitor
changes to specific locations. For many simple bugs, in-
teractive debuggers like gdb allow developers to quickly
identify root causes by asking and answering many low-
level questions about a particular program execution.

Yet, complex bugs such as wild stores, synchroniza-
tion errors, and other heisenbugs are notoriously hard
to find. Consider a developer trying to uncover the
root cause of non-deterministic data corruption in a Web
server. She cannot use gdb because she does not yet
know which values to inspect or which part of the server
execution to monitor. So, she employs more heavy-
weight tools. She adds logging message and sprinkles
functions to verify invariants or check data structures at
various points in the server code.

Custom tools like logging and invariant checks are
powerful, but they are definitely not interactive. First, the
developer must execute a program long enough for a bug
to occur. Complex bugs may not be evinced with a sim-
ple test case; e.g., rare heisenbugs may require lengthy
stress testing before a single occurrence. Second, de-
tailed logging and custom predicates slow down program
execution, sometimes by an order of magnitude. This
means that each new question requires a long wait until
an answer is delivered, and diagnosing a root cause often
requires asking many questions.

Ideally, our developer would have tools that are both
powerful and interactive. Then, she could ask complex
questions about her server execution and receive an an-
swer in a few seconds. Yet, the tradeoff seems fundamen-
tal: these powerful tools are time-consuming precisely
because they require substantial computation to answer
complex questions about long program executions.

Cluster-fueled debugging solves this dilemma: it pro-
vides interactivity for complex tools by parallelizing
their work across many cores in a compute cluster. With
sufficient scale, developers see answers to even detailed
queries in a few seconds, so they can quickly iterate to
gather clues and identify a root cause.

Sledgehammer is the first general cluster-fueled de-
bugger. It is designed to mirror current debugging work-
flows: i.e., adding logging [38] or invariant checks, re-
compiling, re-executing to reproduce the problem, and
analyzing the output of the additional instrumentation.
However, Sledgehammer produces results much faster

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 545

through parallelization of instrumentation and analysis.
Like prior academic [17, 32, 34] and commercial [27, 31]
tools, Sledgehammer is replay-based; i.e., it can deter-
ministically reproduce any previously-recorded execu-
tion on demand for debugging. Replay facilitates itera-
tive debugging because each question is answered by ob-
serving the same execution, ensuring consistent answers.

Sledgehammer uses deterministic replay for another
purpose: it time-slices a recorded program execution into
distinct chunks called epochs, and it runs each epoch on a
different core. It uses ptrace to inject debugging code,
called tracers into program execution. Vitally, Sledge-
hammer provides isolation so that tracers do not modify
program behavior, guaranteeing that each replayed exe-
cution is consistent with the original recording. Because
tracers are associated with specific points in the program
execution and the execution is split across many cores,
the overhead of both tracer execution and isolation is mit-
igated through parallelization.

Tracers may produce large amounts of data for com-
plex debugging tasks, and processing this data could be-
come a bottleneck. So, Sledgehammer also provides
several options to parallelize data analysis. First, local
analysis of each epoch can be performed on each core.
Second, stream-based analysis allows information to be
propagated from preceding epochs to subsequent epochs,
allowing further refinement on each core. Finally, tree-
based aggregation, terminating in a global analysis step,
produces the final result.

Cluster-fueled debugging makes existing tools faster.
Retro-logging [6, 15, 36] lets developers change logging
in their code and see the output that would have been
produced if the logging had been used with a previously-
recorded execution. Retro-logging requires isolating
modified logging code from the application to guaran-
tee correct results. Both isolation and voluminous log-
ging add considerable overhead. We introduce parallel
retro-logging, which hides this overhead through cluster-
fueled debugging to make retro-logging interactive.

Cluster-fueled debugging enables new, powerful de-
bugging tools that were previously infeasible due to per-
formance overhead. To demonstrate this, we have cre-
ated continuous function evaluation, which lets devel-
opers define a function over the state of their execution
that is logically evaluated after every instruction. The
tool returns each line of code where the function return
value changes. Continuous function evaluation mirrors
the common debugging technique of adding functions
that verify invariants or check data structure integrity at
strategic locations in application code [9], but it frees de-
velopers from having to carefully identify such locations
to balance performance overhead and the quality of in-
formation returned.

We have also created parallel retro-timing, which lets

developers retroactively measure timing in a previously-
recorded execution (a feature not available in prior
replay-based debugging tools). Sledgehammer returns
timing measurements as a range that specifies minimum
and maximum values that could have been returned dur-
ing the original execution.

This paper makes the following contributions:
• We present a general framework for parallelizing

complex debugging tasks across a compute cluster
to make them interactive.
• Parallelization makes scalability a first-class de-

sign constraint for debugging tools, and we explore
the implications of this constraint.
• We introduce continuous function evaluation as a

new, powerful debugging tool made feasible by
Sledgehammer parallelization and careful use of
compiler instrumentation and memory protections.
• We explore the fundamental limits of paralleliza-

tion and show how to alleviate the bottlenecks ex-
perienced when trying to scale debugging.

We evaluate Sledgehammer with seven scenarios de-
bugging common problems in memcached, MongoDB,
nginx, and Apache. With 1024 compute nodes, Sledge-
hammer returns the same results as sequential debug-
ging, but parallelization lets it return answers 416 times
faster on average. This makes very complex debugging
tasks interactive.

2 Usage

To use Sledgehammer, a developer records the exe-
cution of a program with suspect behavior for later de-
terministic replay. Recording could occur during testing
or while reproducing a customer problem in-house. De-
terministic replay enables parallelization. It also makes
results from successive replays consistent, since each re-
play of the application executes the same instructions and
produces the same values on every replay.

Next, the developer specifies a debugging query by
adding tracers to the application source code. A tracer
can be any function that observes execution state and
produces output. Examples of tracers are logging func-
tions, functions that check invariants, and functions for
measuring timing. A tracer can be inserted at a single
code location, inserted at multiple locations, or evaluated
continuously. Thus, tracers are added in much the same
way that developers currently add logging messages or
invariant checks to their code.

A developer can also add analyzers to aggregate tracer
output and produce the final result; e.g., an analyzer
could filter log messages or correlate events to iden-
tify use-after-free bugs. Sledgehammer provides several
ways to parallelize analysis. Developers can write local
analyzers that operate only on output from one epoch of

546 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

program execution, stream analyzers that propagate data
between epochs in the order of program execution, and
tree-based analyzers that combine per-epoch results to
generate the final result over the entire execution.

In summary, the interface to Sledgehammer is de-
signed to be equivalent to the current practice of adding
logging/tracing code and writing analysis code to process
that output. However, Sledgehammer uses a compute
cluster to parallelize application execution, instrumenta-
tion, and analysis, and, in our setup, produces answers in
a few seconds, instead of minutes or hours.

3 Debugging tools

We have created three new parallel debugging tools.

3.1 Parallel retro-logging

Retro-logging [6, 15, 36] lets developers modify ap-
plication logging code and observe what output would
have been generated had that logging been used during
a previously-recorded execution. We implement parallel
retro-logging by adding tracers to the application code
that insert new log messages; often tracers use the exist-
ing logging code in the application with new variables.
Log messages are deleted via filtering during analysis,
and log messages are modified by both inserting a new
log message and filtering out old logging.

Parallelizing retro-logging has several benefits. First,
the application being logged may run for a long time, and
verbose logging causes substantial performance over-
head. Second, even carefully-written logging code per-
turbs the state of the application in subtle ways, e.g.,
by modifying memory buffers and advancing file point-
ers. If left unchecked, these subtle differences cause the
replayed execution to diverge from the original, which
can prevent the replayed execution from completing or
silently corrupt the log output with incorrect values. Iso-
lation is required for correctness, and the cost of isolation
is high. This cost is not unique to Sledgehammer: tools
such as Pin [22] and Valgrind [26] that also isolate de-
bugging code from the application have high overhead.
Sledgehammer hides this overhead via parallelization.

3.2 Continuous function evaluation

Continuous function evaluation logically evaluates
the output of a specified function after every instruction.
It reports the output of the function each time the output
changes and the associated instruction that caused the
change. Continuous function evaluation can be used to
check data structure invariants or other program proper-
ties throughout a recorded execution.

Actually evaluating the function after each instruction
would be prohibitively expensive, even with paralleliza-
tion. Sledgehammer uses static analysis to detect values
read by the function that may affect its output and mem-

ory page protections to detect when those values change.
This reduces performance overhead to the point where
parallelization can make this debugging tool interactive.

3.3 Retro-timing

Many debugging tasks require developers to under-
stand the timing of events within an execution. Replay
debugging recreates the order of events, but not event
timing. Thus, a recorded execution is often useless for
understanding timing bugs.

Sledgehammer systematically captures timing data
while recording an execution. To reduce overhead of
frequent time measurements, it integrates time record-
ing with the existing functionality for recording non-
deterministic program events. When debugging, devel-
opers call RetroTime, a Sledgehammer provided func-
tion that returns bounds on the clock value that would
have been read during the original execution. These
bounds are determined by finding the closest time mea-
surements in the replay log.

4 Scenarios

We next describe seven scenarios that show how
Sledgehammer aids debugging. We use these scenarios
as running examples throughout the paper and measure
them in our evaluation.

4.1 Atomicity Violation

Concurrency errors such as atomicity violations are
notoriously difficult to find and debug [21]. In this sce-
nario, a memcached developer finds an error message in
memcached’s production log indicating an inconsistency
in an internal cache. Memcached uses parallel arrays,
heads, tails and sizes, to manage items within the
cache. For each index, heads[i] and tails[i] point
to the head and tail of a doubly-linked list, and size[i]

holds the number of list items.
To use Sledgehammer, the developer first records an

execution of memcached that exhibits the bug. Next, she
decides to use continuous function evaluation and writes
tracers to identify the root cause of the bug. To illustrate
this process, we used existing assert statements in the
memcached code to write the sample tracer in Figure 1.
The is corrupt function validates the correctness of a
single list. The check all lists function returns “1”
if any list is corrupt and “0” otherwise.

By adding SH Continuous(check all lists) to
the memcached source, the developer specifies that
check all lists should be evaluated continuously.
This outputs a line whenever the state of the lists
transitions from valid to invalid, or vice versa. The
CFE RETURN macro prepends to each line the thread id
and instruction pointer where the transition occurred.

The developer then writes an analysis function; we

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 547

1 bool is corrupt (item ∗head, item ∗tail, int size) {
2 int count = 0;
3
4 while (tail−>prev != NULL)
5 tail = tail−>prev;
6 if (tail != head) return true;
7
8 while (head != NULL) {
9 head = head−>next;

10 count++;
11 }
12 return (count != size);
13 }
14
15 char ∗check all lists () {
16 for (int i = 0; i < SIZE; ++i)
17 if (is corrupt (heads[i], tails[i], sizes[i]))
18 CFE RETURN (‘‘1’’);
19 CFE RETURN (‘‘0’’);
20 }

Figure 1: Tracer for the first memcached query.

1 void analyze (int in, int out) {
2 FILE ∗inf = fdopen(in), outf = fdopen(out);
3 map<int, int> invalid count;
4 char line[128];
5 int location, tid, count;
6
7 while (getline(&line, NULL) > 0) {
8 sscanf(‘‘%x:%x:%x\n’’, &location, &tid, &count);
9 if (count) invalid[location] += count;

10 }
11 for (auto &it : invalid)
12 fprintf(outf, ‘‘%x:%x\n’’, it.first, it.second);
13 }

Figure 2: Analyzer for the first memcached query.

show the function she would write in Figure 2. This
function reports all code locations where a transition to
invalid occurs. We wrote this function so that the same
code can be used for local and tree analysis.

Running this query doesn’t reveal the root cause of the
bug, as each transition to invalid occurs at a code loca-

1 char∗ check all lists () {
2 for (int i = 0; i < SIZE; ++i)
3 if (check(heads[i], tails[i], sizes[i]))
4 CFE APPEND (‘‘invalid:%x\n’’, locks[i]);
5 else
6 CFE APPEND (‘‘valid:%x\n’’, locks[i]);
7 CFE RETURN();
8 }
9

10 void hook lock (pthread mutex t ∗mutex) {
11 tracerLog(‘‘0:%x:lock:%x\n’’, tracerGettid(), mutex);
12 }
13
14 void hook unlock (pthread mutex t ∗mutex) {
15 tracerLog(‘‘0:%x:unlock:%x\n’’, tracerGettid(), mutex);
16 }

Figure 3: Tracer for the second memcached query.

tion that is supposed to update the cache data structures.
So, the developer next suspects a concurrency bug. The
cache is updated in parallel; for each index i, a lock,
locks[i], should be held when updating the parallel ar-
rays at index i. Thus, there are two invariants that should
be upheld: whenever the arrays at index i become invalid,
locks[i] should be held, and whenever locks[i] is
released, the arrays should be valid.

Figure 3 shows how the developer would modify the
tracer for a second query. The check all lists func-
tion now appends the validity and lock for each item in
the list to a string and returns the result. The developer
also adds two functions that report when cache locks are
acquired and released. She adds two more statements to
the memcached source code to specify that these func-
tions should run on each call to pthread mutex lock

and pthread mutex unlock.
Figure 4 shows the new analysis routine that the de-

veloper would write. The analyzer is structured like a
state-machine; each line of input is a transition from one
state to the next. lockset tracks the locks currently held
and needed locks tracks which locks must be held until
lists are made valid again. Line 14 checks the first invari-
ant mentioned above, and line 28 checks the second.

We again use the same analyzer for both local and
tree-based analysis. Since local analysis occurs in par-
allel, a needed lock may have been acquired in a prior
epoch, and locks held at the end of an epoch may be
needed in a future epoch. Thus, the analyzer outputs
all transitions that it can not prove to be correct based
on local information, as well as information that may be
needed to prove transitions in subsequent epochs correct.
The global analyzer at the root of the tree has all infor-
mation, so any transition it outputs is incorrect.

In our setup, the query returns in a few seconds and
identifies two instructions where an array becomes in-
valid while the lock is not held. One occurs during ini-
tialization (and is correct because the data structure is not
yet shared). The other is the atomicity bug.

4.2 Apache 45605

In this previously reported bug [3], a Apache devel-
oper noted that an assertion failed during stress testing.
The assertion indicated that a thread pushed too many
items onto a shared queue. Without Sledgehammer, de-
velopers spent more than two months resolving the bug.
They even proposed an incorrect patch, suggesting that
they struggled to understand the root cause.

Four unsigned integers, nelts, bounds, idlers

and max idlers, control when items are pushed onto
the queue. By design, nelts should always be less
than bounds, and idlers should always be less than
max idlers. We emulated a developer using Sledge-
hammer to debug this problem by writing a tracer that

548 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 void analyzer (int in, int out) {
2 FILE ∗inf = fdopen (in), outf = fdopen (out);
3 map<int, set<int>> lockset;
4 map<int, set<int>> needed locks;
5 char line[128], type[8];
6 int thread, ip, lock;
7
8 while (getline (&line, NULL) > 0) {
9 sscanf (‘‘%x:%x:%s:%x’’, ip, thread, type, lock);

10
11 if (!strcmp (type, ‘‘lock’’))
12 lockset[thread].insert (lock);
13 } else if (!strcmp(type, ‘‘invalid’’)) {
14 if (lockset[thread].contains (lock))
15 needed locks[thread].insert (lock);
16 else
17 fprintf (outf, line);
18 } else if (!strcmp (type, ‘‘valid’’)) {
19 if (needed locks[thread].contains (lock))
20 needed locks[thread].remove (lock);
21 else
22 fprintf (out, line);
23 } else if (!strcmp (type, ‘‘unlock’’) {
24 if (lockset[thread].contains (lock))
25 lockset[thread].remove (lock);
26 else
27 fprintf (outf, ‘‘%s’’, line);
28 if (needed locks[thread].contains (lock))
29 fprintf (outf, ‘‘BUG: atomicity violation: %x\n’’, ip);
30 } else {
31 fprintf(outf, ‘‘%s’’, line);
32 }
33 }
34
35 for (const auto &l set : lockset)
36 for (lock : l set.second)
37 fprintf (outf, ‘‘lock:%x:%x\n’’, l set.first, lock);
38 for (const auto &l set : needed locks)
39 for (lock : l set.second)
40 fprintf (outf, ‘‘invalid:%x:0:%x\n’’, l set.first, lock);
41 }

Figure 4: Analyzer for the second memcached query.

uses continuous function evaluation to check these rela-
tionships and an analyzer that lists instructions that cause
a relationship to no longer hold.

The query returns a single instruction that decrements
idlers. As this result is surprising, we modified the
query to also output the value of each integer when the
transition occurs. This shows that the faulty instruction
causes an underflow by decrementing idlers from 0 to
UINT MAX. From this information, the developer can re-
alize that idlers should never be 0 when the instruction
is executed and that the root cause is that the preceding
if statement should be a while statement.

4.3 Apache 25520

In another previously-reported bug [2], an Apache
developer found that the server log was corrupted af-
ter stress testing. Apache uses an in-memory buffer to
store log messages and flushes it to disk when full. With
Sledgehammer, a developer could debug this issue by

writing a tracer that uses continuous function evalua-
tion to validate the format of log messages in the buffer.
The analyzer identifies instructions that transition from
a correctly-formatted buffer to an incorrectly-formatted
one. Running this query returns only an instruction that
updates the size of the buffer after data has been copied
into the buffer. This indicates that the buffer corruption
occurs during the data copy before the size is updated.

Thus, the developer next writes a query to detect such
corruption by validating the following invariant: each
byte in the buffer should be written no more than once
between flushes of the buffer to disk. The continuous
function evaluation tracer returns a checksum of the en-
tire buffer region (so that all writes to the buffer re-
gion are detected irrespective of the value of the size
variable) and the memory address triggering the tracer
(see tracerTriggerMemory() in Section 5.2). The
developer also writes a tracer that hooks calls to the
buffer flush function. The analyzer outputs when mul-
tiple writes to the same address occur between flushes.
The output shows that such writes come from different
threads, identifying a concurrency issue in which the in-
structions write to the buffer without synchronization.

4.4 Data corruption

Memory corruption is a common source of software
bugs [20] that are complex to troubleshoot; often, the
first step in debugging is reproducing the problem with
more verbose logging enabled. In this scenario, an nginx
developer learns that the server very infrequently reports
corrupt HTTP headers during stress testing, even though
no incoming requests have corrupt headers. Without
Sledgehammer, he would enable verbose logging and run
the server for a long time to try to produce a similar error.
Reproduction is painful; verbose logging adds consider-
able slowdown and produces gigabytes of data.

With Sledgehammer, the developer uses parallel
retro-logging to enable the most verbose existing nginx
logging level over the failed execution recorded during
testing. In nginx, this requires adding tracepoints in two
dedicated logging functions. Each tracer calls a low-level
nginx log function after specifying the desired level of
verbosity. The developer also filters by regular expres-
sion to only collect log messages pertaining to HTML
header processing. The same filter code can be run as
a local analyzer without modification, so parallelization
is trivial. In our setup, the Sledgehammer query returns
results in a few seconds, and the developer notes that cor-
ruption occurs between two log messages. This provides
a valuable clue, but the developer must iteratively add
more logging to narrow down the problem. Fortunately,
these messages can be added retroactively to the same
execution; the resulting output is seen in a few seconds.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 549

4.5 Wild store

Wild stores, i.e., stores to invalid addresses that cor-
rupt memory, are another common class of errors that are
reportedly hard to debug [20]. In this scenario, Mongodb
crashes and reports an error due to a corruption in its key
B-tree data structure. Mongodb has an existing debug-
ging function that walks the B-tree and checks its valid-
ity. Without Sledgehammer, the developer must sprinkle
calls to this function throughout the code, re-run the ap-
plication to reproduce the rare error, and try to catch the
corruption as it happens. Unfortunately, the corruption
was introduced during processing of a much earlier re-
quest and lay dormant for over 10 seconds. Further, the
wild store was performed by an unrelated thread, so it
takes numerous guesses and many iterations of running
the program to find the bug.

With Sledgehammer, the developer specifies that the
existing Mongodb debugging function should be evalu-
ated continuously. Since the B-tree is constantly being
modified, its validity changes often in the code that adds
and deletes elements. The developer therefore writes a
simple analyzer that counts the number of transitions that
occur at each static instruction address. The same code is
used for both local and tree-based analyzers. The query
returns in under a minute. It reports three code locations
where the data structure becomes invalid exactly once:
two are initialization and the third is the wild store.

4.6 Memory leak

Memory leaks, double frees, and use-after-free bugs
require reasoning about an execution’s pattern of alloca-
tions and deallocations. In this scenario, an nginx devel-
oper notes that a large code change has introduced very
infrequent memory leaks that lead to excessive memory
usage for long-running servers. One option for tracking
down this bug is to run a tool like Valgrind [26] over a
long execution with varied requests. Due to the overhead
of Valgrind instrumentation, this takes many minutes to
return a result over even a relatively short execution.

With Sledgehammer, the developer adds three tracers
and hooks the entry and exit of routines such as malloc
and free. The analyzer matches allocations and deallo-
cations and reports remaining unallocated memory. Par-
allelizing the analyzer is straightforward: the sequential
analyzer can be used for tree-based and local analysis
without modification. Stream analysis requires adding
10 lines of code to pass a list of allocated memory re-
gions that have not yet been deallocated from epoch to
epoch. In our setup, a Sledgehammer query identifies
leaked memory in nginx in a few seconds.

4.7 Lock Contention

Rare performance anomalies are hard to debug. One
common source of performance anomalies is lock con-

Epoch i -1 Epoch i Epoch i +1

Stream Analysis

Tree Analysis

Local Analysis

Stream Analysis

Local Analysis

Stream Analysis

Local Analysis

A A AT T A A AT T A A AT T TT T

Core i - 1 Core i Core i + 1

Figure 5: Sledgehammer architecture overview. A replay
is divided into n epochs. Each core runs an epoch by execut-
ing the original application (A boxes) and injecting tracers (T
boxes). Local analysis runs on each core with output from a
single epoch, stream analysis takes input from previous epochs
and sends output to subsequent ones. Tree analyzers combine
output from multiple epochs.

tention [33]. Low-level timing data is informative, but
gathering such data has high overhead and may pre-
vent the anomaly from occurring. In this scenario, a
memcached developer sees infrequent requests that have
much longer latencies than expected. She runs a pro-
filer, but the tool reports only average behavior, which
obscures the occasional outlier. So, she sprinkles timing
measurements at key points in her code and re-runs the
application many times to drill down to the root cause:
lock contention with a background thread. Each run re-
quires a long time to exhibit an anomaly and difficult
analysis to determine which requests are outliers in each
new execution.

With Sledgehammer, the developer runs a query that
gathers RetroTime data at key points in request pars-
ing, starting with existing timing code originally dis-
abled during recording. Because queries are fast, she
retroactively adds even more timing code, and she can
iterate quickly to drill down to the suspect lock acqui-
sition. Her analysis function tracks time taken in each
specified request phase, and compares breakdowns for
the five longest requests with average behavior. A final
query identifies the thread holding the contended lock by
combining retro-timing with tracers that hook mutex ac-
quisition and release. Analysis of the tracelog identifies
the background thread that holds the lock on which the
anomalous requests wait.

5 Design and implementation

Figure 5 shows how Sledgehammer parallelizes de-
bugging. The developer specifies (1) a previously-
recorded execution to debug, (2) tracers that run during
a replay of that execution, and optionally, (3) analysis
functions that aggregate tracer output to produce a final
result. Sledgehammer parallelizes the replayed execu-
tion, tracers, and analysis across many cores in a cluster.

550 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Section 5.2 discusses how developers specify tracers
by annotating their source code to add logging and in-
strumentation. Sledgehammer parses the source code to
extract the tracers, the arguments passed to each tracer,
and the locations where tracers should be invoked.

Section 5.3 describes how Sledgehammer prepares
for query execution by distributing generic (non-query-
specific) information needed to replay the execution to
available compute nodes. It divides the execution into
epochs of roughly-equal duration, where the number of
epochs is determined by the number of cores available.
Read-only data shared across epochs, e.g., the replay log,
application binaries, and shared libraries, are read from a
distributed file system. Sledgehammer caches these files
on local-disk for improved performance on subsequent
queries. The per-epoch state, e.g., application check-
points at the beginning of each epoch, is generated in
parallel, with each core generating its own state.

As discussed in Section 5.4, Sledgehammer runs a
query by executing each epoch in parallel on a separate
core. Epoch execution starts from a checkpoint and re-
plays non-deterministic operations from the replay log to
reproduce the recorded execution. Sledgehammer uses
ptrace to insert software breakpoints at code locations
where tracers should run. When a breakpoint is trig-
gered, it runs the tracer in an isolated environment that
rolls back any perturbation to application state after the
tracer finishes. To support continuous function evalu-
ation, Sledgehammer uses page protections to monitor
memory addresses that may affect the return value of the
function; it triggers a tracer when one of those addresses
is updated.

Section 5.5 discusses how analyzers process the
stream of output from tracers. As shown in Figure 5,
Sledgehammer supports three types of analysis routines:
local, stream, and tree. Local analysis (e.g., filtering) op-
erates on tracer output from a single epoch. Stream anal-
ysis allows information to be propagated from epochs
earlier in the application execution to epochs later in
the execution. Sledgehammer runs a stream analyzer on
each compute node; each analyzer has sockets for read-
ing data from its predecessor epoch and sending data
to its successor. A tree analyzer combines input from
many epochs and writes its output to stdout. For a large
number of cores, these analyzers are structured as a tree
with the root of the tree producing the final answer to
the query. Thus, a purely sequential analysis routine can
always run as the root tree analyzer.

5.1 Background: Deterministic record and replay

Sledgehammer uses deterministic record and replay
both to parallelize the execution of a program for debug-
ging, and also to ensure that successive queries made
by a developer return consistent results. Determinis-

tic replay [11] allows the execution of a program to
be recorded and later reproduced faithfully on demand.
During recording, all inputs from nondeterministic ac-
tions are written to a replay log; these values are supplied
during subsequent replays instead of performing the non-
deterministic operations again. Thus, the program starts
in the same state, executes the same instructions on the
same data values, and generates the same results.

Epoch parallelism [35] is a general technique for us-
ing deterministic replay to partition a fundamentally se-
quential execution into distinct epochs and then exe-
cute each epoch in parallel, typically on a different core
or machine. Determinism guarantees that the result of
stitching together all epochs is equivalent to a sequential
execution of the program. Replay also allows an execu-
tion recorded on one machine to be replayed on a differ-
ent machine. There are few external dependencies, since
interactions with the operating system and other external
entities are nondeterministic and replayed from the log.

Sledgehammer uses Arnold [10] for deterministic
record and replay due to its low overhead (less than 10%
for most workloads) and because Arnold supports epoch
parallelism [29]. We modified Arnold to support ptrace-
aware replay, in which Sledgehammer sets breakpoints
and catches signals. We also modified Arnold to run
tracers in an isolated environment where they can allo-
cate memory, open files, generate output, etc. Our mod-
ifications roll back the effects of these actions after the
tracer finishes to guarantee that the replay of the original
execution is not perturbed, similar to prior systems that
support inspection of replayed executions [6, 15, 16]. In
other words, the same application instructions are exe-
cuted on the same program values, but Sledgehammer
inserts additional tracer execution into replay and the in-
strumentation needed to support that execution. We also
modified Arnold to capture additional timing data during
recording to support retro-timing.

5.2 Sledgehammer API

Developers debug a replayed execution by specify-
ing tracers that observe the program execution, defining
when those tracers should execute, and supplying analy-
sis functions that aggregate tracer output. This is analo-
gous to placing log functions in source code and writing
programs to process log output.

5.2.1 Tracers
Tracers are functions that execute in the address space

of the program being debugged, allowing them to ob-
serve the state of the execution. Tracers are compiled
into a shared library that is loaded dynamically during
query execution. Tracers write output to a logging stream
called the tracelog; this output is sent to analysis routines
for aggregation. Tracers can write to the tracelog directly
by calling a Sledgehammer-supplied function or they can

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 551

specify that all output from a specific set of file descrip-
tors should be sent to the tracelog.

Isolation Tracers must not perturb program state. Even
a subtle change to application memory or kernel state can
cause the replay to diverge from the recording, leading to
replay failure, or even worse, silent errors introduced into
the debugging output. None of the queries in our sce-
narios run without isolation. As Section 5.4.1 describes,
Sledgehammer isolates tracers in a sandbox during exe-
cution; any changes to application state are rolled back
on tracer completion. Sledgehammer has two methods
of isolation with different tradeoffs between performance
and code-generality: fork-based and compiler-based.

With fork-based isolation, tracers run as separate pro-
cesses. Developers have great flexibility. A tracer can
make arbitrary modifications to the program address
space, and it can make system calls that write to the
tracelog or that affect only child process state. A tracer
may link to any application code or libraries and invoke
arbitrary functionality within that code, provided it does
not make system calls that externalize state. However,
we found that fork-based isolation was very slow to use
with frequently-executed tracers.

Thus, we added support for compiler-based isolation,
in which tracers can execute more limited functional-
ity. This isolation is enabled by compiling tracers with
a custom LLVM [18] pass. Tracers can modify any ap-
plication memory or register. However, they must use
a Sledgehammer-provided library to make system calls.
This library prevents these calls from perturbing appli-
cation state. A tracer may call functions in application
code or libraries only if that code is linked into the tracer
and compiled with LLVM. Since LLVM cannot compile
glibc by default, Sledgehammer provides many low-level
functions for tracer usage. Our compiler pass verifies
that all functions linked into a tracer call only other func-
tions compiled with the tracer or Sledgehammer library
functions. Our results in Section 6.5 show that compiler-
based isolation executes queries 1–2 orders of magnitude
faster than fork-based isolation.

The tracestore Tracers must execute independently.
Since tracers run in parallel in different epochs, a tracer
cannot rely on state or output produced by any tracer ex-
ecuted earlier in the program execution. Yet, there are
often many tracers executed during a single epoch, and
sharing data between them can be a useful optimization.
For instance, it is wasteful for each tracer to indepen-
dently determine the file descriptor used for logging by
an application.

Sledgehammer provides a tracestore for opportunistic
sharing of state within an epoch. If data in the tracestore
is available, a tracer uses it; if not available, it obtains the
data elsewhere. Sledgehammer allocates the tracestore

by scanning the replay log to find an address region never
allocated by the execution being debugged; it maps the
tracestore into this region. This prevents tracestore data
from perturbing application execution.

Sledgehammer initializes the tracestore at the begin-
ning of each epoch, prior to executing any application
instructions. The developer can supply an initialization
routine that inspects application state and sets variables
to initial values. If compiler-based isolation is being
used, the LLVM compiler pass automatically places all
static tracer function variables in the trace store and ini-
tializes them at the start of each epoch.

Tracers read and write tracestore values, and updates
are propagated to all subsequent tracer executions until
the end of the epoch. Tracers may dynamically allocate
and deallocate memory in the tracestore; the memory re-
mains allocated until the end of the epoch. All of our sce-
narios use the tracestore to cache file descriptors, which
avoids the overhead of opening and closing files in each
tracer. The continuous function evaluation scenarios also
cache lists of memory addresses accessed by the func-
tion.

Tracer Library Sledgehammer provides several func-
tions that implement common low-level tasks, including:
• tracerTriggerAddress(), which returns the in-

struction pointer that triggered the tracer.
• tracerStack(), which returns the stack pointer

when the tracer was called.
• tracerTriggerMemory(), which returns the

memory address that triggered a continuous func-
tion evaluation tracer.

5.2.2 Tracepoints
Sledgehammer inserts tracers at tracepoints, which

are user-defined locations in the application being de-
bugged. There are several ways to add tracepoints. First,
a location-based tracepoint executes a tracer each time
the program execution reaches a given location. Our data
corruption scenario uses this method to add tracers to
nginx log routines. These tracepoints are specified by
adding annotations to the application source code at the
desired locations.

Second, a user can hook a specific function to invoke
a tracer each time a given function is called or whenever
a function exits. The tracer receives all arguments passed
to the function by default. For example, the memory leak
scenario hooks the entry and exit of malloc and free to
track memory usage.

Third, a continuous function evaluation logically in-
serts a tracepoint to evaluate the function after every pro-
gram instruction. In practice, Sledgehammer tracks the
values read by the function and uses memory page pro-
tection to detect when those values change. It only runs
the function at these instances. Hooks and continuous

552 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

functions can be specified by annotations anywhere in
the application source code since their effects are global
to the entire execution.

When running a query, developers specify which
C/C++ source files contain their modified source code.
The Sledgehammer parser scans these files and extracts
all tracepoint annotations. It correlates each tracer with
a line or function name in the application source code
as appropriate. Next, it uses the same method as gdb
to convert source code lines and function symbols to in-
struction addresses. For each parameter passed to a tra-
cepoint, the parser determines the location of the symbol,
i.e., its memory address or register.

Developers who lack source code or use other pro-
gramming languages can instead use gdb-like syntax to
specify tracepoints, or they can specify all functions re-
siding in a particular binary, or matching some regex. In
this case, Sledgehammer leverages UNIX command-line
utilities and gdb scripts to associate tracepoints with in-
struction pointers and symbols.

5.3 Preparing for debugging queries

Much of the work required to run a parallel debug-
ging tool is query-independent: it can be done once, be-
fore running the first query, and reused for future queries.
To prepare a recorded execution for debugging, a master
node parses the replay log and splits the execution into
distinct epochs, where the number of epochs is set to
the number of cores available. Each core is assigned a
distinct epoch. Currently, Sledgehammer requires each
epoch to start and end on a system call. The master di-
vides epochs so that each has approximately the same
number of system calls in the replay log.

Next, the master distributes or creates the data needed
to replay execution. Arnold replay requires a determin-
istic replay log, application binaries and libraries, and
snapshots of any read-only files [10]. These files are
read-only and accessed by many epochs, so the master
places them in a distributed file system and sends a mes-
sage to compute cores informing them of the location.

Each epoch starts at a different point in the program
execution. Prior to instrumenting and running the epoch,
Sledgehammer must re-create the application state at the
beginning of the epoch. A simple approach would replay
the application up to the beginning of the epoch. How-
ever, for the last epoch, this process takes roughly as long
as the original execution of the program. To avoid this
performance overhead, Sledgehammer starts each epoch
from a unique checkpoint.

During recording, Sledgehammer takes periodic
checkpoints every few seconds. This creates a relatively
small set of checkpoints that are distributed to com-
pute nodes by storing them in the distributed file system.
Prior to running the query, the master asks each compute

core to create an epoch-specific checkpoint. Each core
starts executing the application from the closest previ-
ous recording checkpoint, pauses at the beginning of its
epoch, and takes a new checkpoint. This process effec-
tively parallelizes the work of creating hundreds or thou-
sands of epoch-specific checkpoints, and it avoids having
to store and transfer many large checkpoints.

Sledgehammer hides the cost of checkpoint creation
in two ways. First, it overlaps per-epoch checkpoint cre-
ation with parsing of source code. Second, it caches
checkpoints on each core so that they can be reused by
subsequent queries over the same execution.

5.4 Running a parallel debugging tool

To run a query, the master sends a message to each
compute core specifying the shared libraries that contain
the compiled tracers and analysis functions. It also sends
a list of tracepoints, each of which consists of an instruc-
tion address in the application being debugged, a tracer
function, and arguments to pass to that function.

Upon receiving the query start message, a compute
core restores its per-epoch checkpoint and loads the
tracer dynamic library into the program address space
via dlopen. Sledgehammer uses dlsym to get pointers
to tracer functions. Unfortunately, the dynamic loader
modifies program state and causes divergences in replay.
Sledgehammer therefore checkpoints regions that will
be modified before invoking the loader and restores the
checkpointed values after the loader executes.

Prior to starting an epoch, each core also maps the
tracestore into the application address space and calls the
tracestore initialization routine. Each compute core starts
a control process that uses the ptrace interface to man-
age the execution and isolation of tracer code. For each
location-based tracepoint or function hook, the control
process sets a corresponding software breakpoint at the
specified instruction address by rewriting the binary code
at that address with the int 3 instruction.

Each core replays execution from the beginning of its
epoch. When a software breakpoint is triggered, replay
stops and the control process receives a ptrace signal.
The control process rewrites the application binary to call
the specified tracer with the given arguments. It uses one
of the isolation mechanisms described next to ensure that
the tracer does not perturb application state. After the
tracer executes, the control process rewrites the binary to
restore the software breakpoint.

5.4.1 Isolation
Tracer execution must be side-effect free: any per-

turbations to the state of the original execution due to
tracer execution can cause the replay to diverge and fail
to complete, or such perturbation can lead to incorrect
debugging output. Sledgehammer supports fork-based
and compiler-based isolation.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 553

Fork-based isolation When a tracepoint is triggered,
the control process forks the application process to clone
its state. The parent waits until the child finishes exe-
cuting. The control process rewrites the child’s binary
to call the tracer. As the tracer executes, it may call
arbitrary code in the application and its libraries, but
it must be single-threaded. The kernel sandboxes the
system calls called by the child process. It allows sys-
tem calls that are read-only or perturb only state local
to the child process (e.g., its address space). To avoid
deadlocks, Sledgehammer ignores synchronization op-
erations made by the tracer; this is safe only because
the tracer itself is single-threaded. The kernel also redi-
rects output from any file descriptors specified by the
developer to the tracelog; this is convenient for captur-
ing unmodified log messages. Tracelog output can also
be generated by system calls made by the Sledgeham-
mer library. System calls that modify state external to
the process (e.g., writing to sockets or sending signals)
are disallowed. System calls that observe process state,
e.g., getpid(), return results consistent with the original
recording.

At the end of tracer execution, the child process exits
and the tracer restarts application execution. If a tracer
fails, the control process receives the signal via ptrace
and resumes application execution.

Compiler-based isolation Our early results showed
that fork-based isolation was often too slow for
frequently-executed tracers. So, we created compiler-
based isolation, which improves performance at the cost
of losing some developer flexibility. With compiler-
based isolation, tracer libraries must be self-contained;
i.e., rather than calling application or library code from
a tracer, that code must be copied or compiled into the
tracer library. This means that tracers must use a set of
standard library functions provided by Sledgehammer in-
stead of calling those functions directly. Tracers must
also be single-threaded and written in C/C++.

Sledgehammer compiles tracers with LLVM. A cus-
tom compiler pass inserts code into the tracer that in-
struments all store instructions and dynamically logs the
memory locations modified by tracer execution and the
original values at those locations to an undo log. The
compiler pass inserts code before the tracer returns that
restores the original values from the undo log. It also
checkpoints register state before executing a tracer and
restores that state on return. To avoid deadlocks, the
compiler pass omits any synchronization instructions in
the tracer; this is safe only because the tracer itself is
single-threaded and all its effects are rolled back. The
compiler pass verifies that the tracer is self-contained;
e.g., that it does not make any system calls.

We noticed that most addresses in tracer undo logs
were stack locations. Rather than log all of these stores,

Sledgehammer allocates a separate stack for tracer exe-
cution and switches the stack pointer at the beginning and
end of tracer execution. The compiler pass statically de-
termines instructions that write to the stack via an intra-
procedural points-to analysis, and it omits these stores
from the undo log. Some variables are passed to the
tracer on the stack, so Sledgehammer explicitly copies
this data when switching stacks.

If a tracer fails, the control process catches the signal,
runs the code to undo memory modifications, restores
register state, and continues the application execution.
5.4.2 Support for continuous function evaluation

Continuous function evaluation must use compiler-
based isolation. When a tracer runs, the compiler pass
tracks the set of memory addresses read. The tracer is
guaranteed to be deterministic because it cannot call non-
deterministic system calls and must be single-threaded.
Therefore, the value produced by the tracer cannot
change unless one of the values that it has read changes.

Sledgehammer uses memory page protections to de-
tect if any value read by a tracer changes. The control
process causes the continuous function to be evaluated
at the beginning of the epoch, before any application in-
struction executes. Tracer execution generates an initial
set of addresses to monitor; the compiler adds instrumen-
tation to record this monitor set in the tracestore. Sledge-
hammer executes the tracer only to initialize the monitor
set, so tracer output is not logged to the tracelog. The
control process asks the kernel to mark all pages contain-
ing at least one address in the monitor set as read-only.

When a page fault occurs due to the application writ-
ing to one of these pages, the kernel alerts the control
process. The control process unprotects the page and
single-steps the application. Then, the control process
checks if the the faulting address is in the monitor set.
If the address is not in the set, the page fault is due to
false sharing, so Sledgehammer re-protects the page and
continues execution.

If the address is in the monitor set, Sledgehammer
runs the tracer again, and records its output in the
tracelog. If the tracer faults on a page in the monitor set,
the control process unprotects the page and resumes ex-
ecution of the tracer. Since tracers do not write to many
of the pages in the monitor set, unprotecting on demand
is much more efficient than unprotecting all pages before
tracer execution.

After the tracer completes, Sledgehammer updates the
monitor set. If a page is added to the monitor set, Sledge-
hammer protects it. However, if a page is removed from
the monitor set, Sledgehammer does not unprotect the
page until the next page fault; this optimization improves
performance by deferring work.

The stack switching optimization used for compiler-
based isolation is also useful for continuous function

554 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

evaluation. Reads of addresses on the stack are detected
via an intra-procedural points-to analysis and not instru-
mented. Any remaining stack reads are detected dynam-
ically from their addresses.

5.4.3 Support for retro-timing
To support retro-timing, we modified Arnold to query

the system time when a replay event occurs: such events
include all system calls, signals delivered, and synchro-
nization operations, including low-level synchronization
in glibc. The timing information is written into the re-
play log for efficiency. Since Arnold is already paying
the cost of interrupting the application and logging its
activity, the additional performance cost of querying the
system time is minimal (1%, as measured in Section 6.6).

A typical replay log will have tens of millions of
events even for a few seconds of execution. Logging all
this data would introduce substantial slowdown, so we
compress the timing data by only logging the time if the
difference from the last logged time is greater than 1 us.

Sledgehammer provides a library function to query
time retroactively. Starting from the application’s cur-
rent location in the replay log, Sledgehammer finds and
returns the immediately preceding and succeeding time
recorded in the log. Reading the clock at this point in the
execution would have returned a value in this range.

5.5 Aggregating results

Tracelog output can be quite large, so Sledgehammer
allows developers to write analysis routines that aggre-
gate the tracelog data. It provides several options for
parallelizing analysis to improve performance.

There are three types of analysis routines. A local an-
alyzer runs on each compute core and operates only over
the tracelog data produced by a single epoch. For exam-
ple, the data corruption scenario uses a local analyzer to
filter undesired messages from verbose logging. If a lo-
cal analyzer is specified, Sledgehammer creates an anal-
ysis process that loads and executes the local analyzer
from a dynamic library. Local analyzers receive tracelog
data on an input file descriptor and write to an output file
descriptor. Sledgehammer uses shared memory to imple-
ment high-performance data sharing.

A stream analyzer passes information from epoch to
epoch along the direction of program execution. The
memory leak scenario passes allocated chunks of mem-
ory to succeeding epochs so that they can be matched
with corresponding frees. This allows each core to re-
duce the amount of output data it produces.

Each epoch’s stream analyzer has an input file de-
scriptor on which it receives the output of the local an-
alyzer (or the tracelog data if no local analyzer is being
used). The stream analyzer has an additional file descrip-
tor on which it receives data from its predecessor epoch.
It has two output file descriptors: one to which it writes

analysis output and another by which it passes data to
its successor epoch. Data is passed between epochs via
TCP/IP sockets. Each stream analyzer closes the output
socket when it is done passing data to its successor, and
each learns that no more data will be forthcoming by ob-
serving that the input socket has been closed.

A tree analyzer combines the output of many epochs.
Each compute core sends its output to the node running
the tree analyzer via a TCP/IP socket. Sledgehammer re-
ceives the data, buffers and reorders the data, then passes
the output of the prior stage to the tree analyzer in the or-
der of program execution. The tree analyzer aggregates
the data and writes its output to a file descriptor.

By default, Sledgehammer allows a tree analyzer to
combine up to 64 input streams. Therefore, if there are
less than 64 epochs, a single tree analyzer performs a
global aggregation.

Since use of these analyzers is optional, the simplest
form of aggregation is NULL tree aggregation, in which
Sledgehammer concatenates all tracelog output into a file
in order of application execution. Alternatively, a devel-
oper may take any existing sequential analysis routine
and run it as a tree analyzer at the root of the tree. How-
ever, Section 6.4 reports substantial performance benefits
for many queries from using local, stream, and tree ag-
gregation to parallelize analysis.

6 Evaluation
Our evaluation answers the following questions:
• How much does Sledgehammer reduce the time to

get debugging results?
• What are the challenges for further scaling?
• What is the benefit of parallelizing analysis?
• Does compiler-based isolation reduce overhead?

6.1 Experimental Setup
We evaluated Sledgehammer using a CloudLab [30]

cluster of 16 r320 machines (8-core Xeon E5-2450
2.1 GHz processors, 16 GB RAM, and 10 Gb NIC). Since
several applications we evaluate use at least 2 GB of
RAM, we only use 4 cores on each machine, yielding 64
total cores for parallelization. To investigate scaling, we
emulate more cores by splitting the execution into 64-
epoch subtrees, each with their own tree analyzer, and
running the subtrees iteratively. We calculate the time
for the final tree aggregation by distributing subtree out-
puts across the cores and measuring the time to send all
outputs to a root node and run the global analyzer. We
add this time to the maximum subtree execution time.
This estimate is pessimistic since no output is sent until
the last byte has been generated by the last tree analyzer.
We also do not run stream analyzers beyond 64 cores.

Our results assume that the query-independent prepa-
ration of Section 5.3 (e.g., parallel checkpoint genera-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 555

Benchmark Application Replay Tracer calls 1 Core 64 Cores 1024 Cores
time(s) (millions) query time(s) query time(s) speedup query time(s) speedup

Data corruption nginx 2.0 7.7 324.8 (±2.2) 7.2 (±0.2) 45 (±1.0) 1.0 (±0.0) 330 (±13)
Wild store MongoDB 30.1 3.4 7688.4 (±13.5) 181.3 (±6.0) 42 (±2.0) 17.2 (±1.0) 446 (±15)
Atomicity violation memcached 98.5 42.8 7852.4 (±20.1) 173.1 (±1.2) 45 (±0.3) 13.7 (±0.7) 573 (±15)
Memory leak nginx 76.0 3.6 1575.2 (±8.1) 30.3 (±0.2) 52 (±0.3) 2.8 (±0.2) 559 (±25)
Lock contention memcached 93.4 75.5 3281.8 (±17.5) 68.3 (±0.6) 48 (±0.5) 10.9 (±1.2) 301 (±16)
Apache 45605 Apache 50.7 1.9 249.9 (±1.1) 5.2 (±0.5) 48 (±0.5) 1.0 (±0.6) 255 (±15)
Apache 25520 Apache 60.1 3.7 717.3 (±1.6) 12.9 (±0.0) 55 (±0.2) 1.2 (±0.0) 601 (±4.4)

Table 1: Sledgehammer performance. This table shows how Sledgehammer speeds up the time to run a debug query with 64 and
1024 cores, as compared to sequential (1 core) execution. For reference, we also show the time to replay the application without
debugging and the number of tracers executed during each query. Figures in parentheses are 95% confidence intervals.

tion) is already completed. Preparation is only done once
for each execution and can be done in the background as
the developer constructs a query. We measured this time
to be proportional to the recording checkpoint frequency;
e.g., preparation takes an average of 2.1 seconds when
the record checkpoint interval is every 2 seconds.

6.2 Benchmarks

We reproduce the 7 scenarios described in Section 4
by injecting the described bug into each application and
running the specified Sledgehammer query. In each sce-
nario, our query correctly identifies the bug. All reported
results are the mean of 5 trials; we show 95% confidence
intervals. Queries use compiler-based isolation and par-
allelize analysis as described in each scenario. We use
the following workloads:
• Data corruption We send nginx 100,000 static

Web requests.
• Wild store We send MongoDB workload A from

the YCSB benchmarking tool [7].
• Atomicity violation We use memtier [25] to send

memcached 10,000 requests and execute the final
query described in the scenario.
• Memory leak We send nginx 2 million static Web

requests. By default, nginx leaks memory with this
workload, so we did not inject a bug.
• Lock contention We use memtier [25] to send

memcached 10,000 requests and execute the final
query that hooks pthread functions and mea-
sures timing at 5 tracepoints.
• Apache 45605 We recreate the bug by stress test-

ing using scripts from a collection of concurrency
bugs [37] and run the final query.
• Apache 25520 We recreate the bug by stress test-

ing Apache and run the final query.

6.3 Scalability

Table 1 shows results for the 7 scenarios. The first col-
umn shows the time to replay the execution with no de-
bugging. The next column shows the number of tracers
executed during the query. The remaining columns com-
pare sequential (1 core) query time with performance at
64 and 1024 cores, respectively.

1 2 4 16 64 256 1024
Number of epochs

1

2

4

16

64

256

1024

Q
u
e
ry

ti
m

e
s
p
e
e
d
u
p

Data corruption
Wild store
Atomicity violation
Memory leak
Lock contention
Apache 45605
Apache 25520
ideal

Figure 6: Sledgehammer Scalability. This figure shows how
query time improves as the number of cores increases.

The wild store and atomicity violation scenarios take
over 2 hours to return a result with sequential execution.
The simplest scenario, Apache 45605, still takes over
4 minutes when executed sequentially. With 64 cores,
Sledgehammer speeds up these queries by a factor of
42–55 (with a geometric mean of 48). With 1024 cores,
the speedup is 255–601 with a mean of 416. Queries
that take hours when executed sequentially return in less
than 20 seconds. The data corruption and Apache 45605
queries returns results in one second. At 1024 cores, the
result is returned faster than the time to replay the execu-
tion sequentially without debugging in all cases.

Figure 6 shows how Sledgehammer performance
scales as the number of cores increases from 1 to 1024.
The diagonal line through the origin shows ideal scaling.
Most queries approach ideal scaling, and all continue to
scale up to 1024 cores. However, some start to scale less
well as the number of cores approaches 1024.
6.3.1 Scaling bottlenecks

We next investigated which factors hinder Sledge-
hammer scaling. One minor factor is disk contention.
Arnold stores replay logs on local disk, which leads to
contention when 4 large server applications each read
their logs during epoch execution on separate cores. We
measured this overhead as ranging from 0 to 41% at 4
cores per node, with an average of 15%. This accounts
for some of the dip in scalability from 1 to 4 cores.

556 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 64 1024
1 64 1024

1 64 1024
1 64 1024

1 64 1024
1 64 1024

1 64 1024

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d

w
o
rk

Data
corruption

Wild
store

Atomicity
violation

Memory
leak

Lock
contention

Apache
45605

Apache
25520

Initialization
Epoch execution
Analysis

Figure 7: Total work. Each bar sums initialization time, epoch
execution time, and analysis time overs all epochs. This shows
how much extra work is created by parallelization.

The last step in tree analysis is sequential; its perfor-
mance does not improve with the number of cores. At
1024 cores, this step is only 0.1–7% of total query time
in our benchmarks. While it could be a factor for higher
numbers of cores, it has little impact at 1024 cores.

For each query, Figure 7 totals individual execution
time over all cores when using 64 and 1024 cores, nor-
malized to execution time for single-core execution. Ini-
tialization includes restoring checkpoints and mapping
tracers into the application address space. Epoch exe-
cution is the time to run the application and its tracers,
Analysis includes all local, stream, and tree-based anal-
ysis. As expected, the cost of per-node initialization in-
creases as the number of cores increases; this is espe-
cially noticeable in the Apache 45605, data corruption
and lock contention scenarios. Initialization overhead is
the primary factor inhibiting the scalability of Apache
45605. Initialization will eventually bound Sledgeham-
mer scalability in other scenarios as well, but it is not the
most important factor at 1024 cores.

Interestingly, the total work for the wild store sce-
nario actually decreases slightly as we increase the num-
ber of cores. Continuous function evaluation defers work
when pages are deleted from the monitor set. For shorter
epochs, deleted pages are more likely to never be ac-
cessed again; work deferred is never done. At 1024
cores, this effect is dwarfed by increasing per-node ini-
tialization work, so total work increases again.

In most scenarios, the most significant barrier to scal-
ability is workload skew. As Sledgehammer partitions
epochs into smaller chunks, we see more imbalance in
the work done by different epochs. Outlier epochs lead
to high tail latency [8]. We quantify skew in Table 2 as
the ratio of maximum epoch execution time over mean
epoch execution time. Perfect partitioning would yield a

Skew
Benchmark 64 cores 1024 cores
Data corruption 1.13 (±0.04) 1.72 (±0.07)

Wild store 1.78 (±0.07) 2.38 (±0.14)

Atomicity violation 1.28 (±0.02) 1.40 (±0.08)

Memory leak 1.06 (±0.01) 1.40 (±0.14)

Lock contention 1.17 (±0.01) 2.16 (±0.24)

Apache 45605 1.07 (±0.03) 1.27 (±0.03)

Apache 25520 1.01 (±0.00) 1.17 (±0.00)

Table 2: Skew. The reported values are the longest epoch exe-
cution time divided by the average execution time.

S P S P S P S P S P S P S P
0

50

100

150

200

250

300

Q
u
e
ry

ti
m

e
(s

e
c
o
n
d
s
)

Data
corruption

Wild
store

Apache
25520

Lock
contention

Memory
leak

Atomicity
violation

Apache
45605

Initialization
Epoch execution
Analysis

Figure 8: Analysis. We compare query time with sequential
(S) and parallel (P) analysis using 64 cores. The regions in
each bar show how much time is spent in each phase along the
critical path of query processing.

skew of 1, but Sledgehammer sees average skew of 1.19
at 64 scores and 1.60 at 1024 cores. Skew is the most im-
portant factor in the decreased scaling seen in Figure 6.

6.4 Benefit of parallel analysis

We next quantify how much benefit is achieved by
parallelizing analysis. Figure 8 compares query response
time for sequential analysis and parallel analysis using
the analyzers for each query described in Section 4. We
show results with 64 cores, i.e., the largest number of
cores we can support without emulation.

All scenarios except the wild store and Apache sce-
narios achieve substantial speedup by parallelizing anal-
ysis. The atomicity violation, lock contention, and mem-
ory leak analyses traverse large tracelogs and track com-
plex interactions across log messages. Many of these
interactions are contained within a single epoch, so lo-
cal analysis can resolve them. Using parallel analysis
speeds up analysis by up to a factor of 96, with a mean
improvement of 31. Overall, parallel analysis accelerates
total query time by up to a factor of 4, with a mean im-
provement of 2. Sequential analysis does not scale, so we
expect this speedup to increase as the cluster size grows.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 557

Fork-based Compiler-based
Benchmark query time(s) query time(s) Speedup
Data corruption 7.5 (±0.9) .79 (±0.1) 9.6 (±1.4)
Memory leak 32.5 (±0.2) 2.30 (±0.1) 14.2 (±0.5)
Lock contention 632.2 (±5.0) 6.01 (±0.0) 105.3 (±1.0)

Table 3: Isolation performance. We compare the time to
execute the first 64 out of 1024 epochs using fork-based and
compiler-based isolation.

6.5 Isolation

Table 3 compares the performance of compiler-
based and fork-based isolation for all queries that do
not use continuous function evaluation (which requires
compiler-based isolation). On average, compiler-based
isolation speeds up epoch execution by a factor of 24,
making it the best choice unless its restrictions on what
can be included in a tracer become too onerous.

6.6 Recording Overhead

We measured recording overhead on a server with an
8-core Xeon E5620 2.4 GHz processor, 6 GB mem-
ory, and two 1 TB 7200 RPM hard drives. The aver-
age recording overhead for our application benchmarks
was 6%. Checkpointing every two seconds increases the
average overhead to 8%, and adding additional logging
for retro-timing increases average overhead to 9%. The
additional space overhead for retro-timing is 17% com-
pared to the base Arnold logging.

7 Related Work

Sledgehammer is the first general-purpose framework
for accelerating debugging tools by parallelizing them
across a cluster. It has frequently been observed that de-
terministic replay [11] is a great help in debugging [5,
17, 27, 32, 36]. Sledgehammer leverages Arnold [10]
replay both to ensure that results of successive queries
are consistent and also to parallelize work via epoch
parallelism [35]. JetStream [29] uses epoch parallelism
for a different task: dynamic information flow tracking
(DIFT). Sledgehammer’s tracer isolation has less over-
head and scales much better than the dynamic binary in-
strumentation used by JetStream, making it better suited
for tasks like debugging that need not monitor every in-
struction executed.

Many tools aim to simplify and optimize the dynamic
tracing of program execution. Dtrace and SystemTap re-
duce overhead when tracing is not being used, but are
expensive when gathering large traces [4, 28]. Execution
mining [19] treats executions as data streams that can
be dynamically analyzed and supports iterative queries
by indexing and caching streams. Other tools introspect
distributred systems. Fay [12] lets users introspect at the
start and end of functions but injected code must be side-
effect free. Pivot tracing [23] lets users specify queries
in an SQL-like language. These tools help debug par-

allel programs, but, unlike Sledgehammer, they are not
themselves parallelized for performance.

Several prior systems support retro-logging. Most
isolate all code added to an execution using fork-based
approaches [6, 15]; this comes with high overhead. Oth-
ers use binary rewriting approaches for isolation such as
Pin and Valgrind; these tools do not scale to thousands
of cores [29]. Sledgehammer reduces isolation over-
head through compiler-based isolation and hides remain-
ing overhead through parallelization. Like Sledgeham-
mer, rdb [14] allows users to modify source code and
executes the modifications during replay; however, rdb
prohibits program state modifications instead of isolating
them. Dora [36] allows the added code to perturb appli-
cation state and uses mutable replay to make a best effort
to keep replaying the application correctly after the per-
turbation. This eliminates isolation overhead, but there
is no guarantee that the debugging output will be correct.
Mutable replay is a good choice when output is simple
and can be verified by inspection, but incorrect results
could prove frustrating for complex debugging tasks.

As documented in the wild store scenario, develop-
ers commonly write debug functions to verify invariants.
Researchers have advocated running similar functions at
strategic code locations to repair structures [9] or detect
likely invariants [13]. Continuous function evaluation
takes this to an extreme by logically running a function
after every instruction. X-Ray [1] systematically mea-
sures timing during recording to support profiling of re-
played executions; Sledgehammer’s more general inter-
face allows debuggers to define the events being mea-
sured and understand the uncertainty in timing results.

8 Conclusion

Sledgehammer is a cluster-fueled debugger: it makes
powerful debugging tools interactive by parallelizing ap-
plication and tool execution, as well as analysis, across
many cores in a cluster. This makes tools such as parallel
retro-logging, continuous function evaluation, and retro-
timing practical by running them an average of 416 times
faster than sequential execution on a 1024-core cluster.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Rebecca Isaacs, for their thoughtful comments. This
work has been supported by the National Science Foun-
dation under grants CNS-1513718 and CNS-1421441,
and by NSF GRFP and MSR Ph.D Fellowships. Any
opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

558 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-

ray: Automating root-cause diagnosis of perfor-
mance anomalies in production software. In Pro-
ceedings of the 10th Symposium on Operating Sys-
tems Design and Implementation (Hollywood, CA,
October 2012).

[2] Bug 25520. https://bz.apache.org/

bugzilla/show_bug.cgi?id=25520.

[3] Bug 45605. https://bz.apache.org/

bugzilla/show_bug.cgi?id=45605.

[4] CANTRILL, B. M., SHAPIRO, M. W., AND LEV-
ENTHAL, A. H. Dynamic instrumentation of
production systems. In Proceedings of the 2004
USENIX Annual Technical Conference (Boston,
MA, June 2004), pp. 15–28.

[5] CHEN, P., AND NOBLE, B. When Virtual is Better
Than Real. In Proceedings of the 8th IEEE Work-
shop on Hot Topics in Operating Systems) (Schloss
Elmau, Germany, May 2001).

[6] CHOW, J., GARFINKEL, T., AND CHEN, P. M.
Decoupling dynamic program analysis from execu-
tion in virtual environments. In Proceedings of the
2008 USENIX Annual Technical Conference (June
2008), pp. 1–14.

[7] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmark-
ing cloud serving systems with ycsb. In Proceed-
ings of the 1st ACM symposium on Cloud comput-
ing (2010), pp. 143–154.

[8] DEAN, J., AND BARROSO, L. A. The tail at
scale. Communications of the ACM 56, 2 (February
2013), 74–80.

[9] DEMSKY, B., ERNST, M. D., GUO, P. J., MC-
CARMANT, S., PERKINS, J. H., AND RINARD,
M. Inference and enforcement of data structure
consistency specifications. In Proceedings of the
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analaysis (July 2006).

[10] DEVECSERY, D., CHOW, M., DOU, X., FLINN,
J., AND CHEN, P. M. Eidetic systems. In Proceed-
ings of the 11th Symposium on Operating Systems
Design and Implementation (Broomfield, CO, Oc-
tober 2014).

[11] DUNLAP, G. W., KING, S. T., CINAR, S., BAS-
RAI, M. A., AND CHEN, P. M. ReVirt: Enabling
intrusion analysis through virtual-machine logging

and replay. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation
(Boston, MA, December 2002), pp. 211–224.

[12] ERLINGSSON, U., PEINADO, M., PETER, S.,
AND BUDIU, M. Fay: Extensible distributed trac-
ing from kernels to clusters. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (October 2011), pp. 311–326.

[13] ERNST, M. D., COCKRELL, J., GRISWOLD,
W. G., AND NOTKIN, D. Dynamically discovering
likely program invariants to support program evolu-
tion. IEEE Transactions on Software Engineering
27, 2 (February 2001).

[14] HONARMAND, N., AND TORRELLAS, J. Re-
play debugging: Leveraging record and replay for
program debugging. In 2014 ACM/IEEE 41st In-
ternational Symposium on Computer Architecture
(ISCA) (June 2014), pp. 455–456.

[15] JOSHI, A., KING, S. T., DUNLAP, G. W., AND
CHEN, P. M. Detecting past and present intrusions
through vulnerability-specific predicates. In Pro-
ceedings of the 20th ACM Symposium on Operat-
ing Systems Principles (Brighton, United Kingdom,
October 2005), pp. 91–104.

[16] KIM, T., CHANDRA, R., AND ZELDOVICH, N.
Efficient patch-based auditing for Web application
vulnerabilities. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implemen-
tation (Hollywood, CA, October 2012).

[17] KING, S. T., DUNLAP, G. W., AND CHEN,
P. M. Debugging operating systems with time-
traveling virtual machines. In Proceedings of the
2005 USENIX Annual Technical Conference (April
2005), pp. 1–15.

[18] LATTNER, C., AND ADVE, V. LLVM: A com-
pilation framework for lifelong program analysis
and transformation. In Proceedings of the 2004
IEEE/ACM International Symposium on Code Gen-
eration and Optimization (2004).

[19] LEFEBVRE, G., CULLY, B., HEAD, C., SPEAR,
M., HUTCHINSON, N., FEELEY, M., AND
WARFIELD, A. Execution Mining. In Proceed-
ings of the 2012 ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environ-
ments (VEE) (March 2012).

[20] LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y.,
AND ZHAI, C. Have things changed now?: an
empirical study of bug characteristics in modern

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 559

https://bz.apache.org/bugzilla/show_bug.cgi?id=25520
https://bz.apache.org/bugzilla/show_bug.cgi?id=25520
https://bz.apache.org/bugzilla/show_bug.cgi?id=45605
https://bz.apache.org/bugzilla/show_bug.cgi?id=45605

open source software. In Proceedings of the 1st
workshop on Architectural and system support for
improving software dependability (2006), ACM,
pp. 25–33.

[21] LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learn-
ing from mistakes — a comprehensive study on real
world concurrency bug characteristics. In Proceed-
ings of the 13th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (2008), pp. 329–339.

[22] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S.,
REDDI, V. J., AND HAZELWOOD, K. Pin: Build-
ing customized program analysis tools with dy-
namic instrumentation. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Lan-
guage Design and Implementation (Chicago, IL,
June 2005), pp. 190–200.

[23] MACE, J., ROELKE, R., AND FONSECA, R. Pivot
tracing: Dynamic causal monitoring for distributed
systems. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles (2015).

[24] MCCONNELL, S. Code complete. Pearson Educa-
tion, 2004.

[25] memtier benchmark: A high-throughput bench-
marking tool for redis & memcached, June
2013. https://redislabs.com/blog/

memtier_benchmark-a-high-throughput-

benchmarking-tool-for-redis-memcached/.

[26] NETHERCOTE, N., AND SEWARD, J. Valgrind: A
framework for heavyweight dynamic binary instru-
mentation. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language De-
sign and Implementation (San Diego, CA, June
2007).

[27] O’CALLAHAN, R., JONES, C., FROYD, N.,
HUEY, K., NOLL, A., AND PARTUSH, N. En-
gineering record and replay for deployability. In
Proceedings of the 2017 USENIX Annual Techni-
cal Conference (Santa Clara, CA, July 2017).

[28] PRASAD, V., COHEN, W., EIGLER, F. C., HUNT,
M., KENISTON, J., AND CHEN, B. Locating sys-
tem problems using dynamic instrumentation. In
Proceedings of the Linux Symposium (Ottawa, ON,
Canada, July 2005), pp. 49–64.

[29] QUINN, A., DEVECSERY, D., CHEN, P. M., AND
FLINN, J. JetStream: Cluster-scale parallelization
of information flow queries. In Proceedings of the

12th Symposium on Operating Systems Design and
Implementation (Savannah, GA, November 2016).

[30] RICCI, R., EIDE, E., AND THE CLOUDLAB
TEAM. Introducing CloudLab: Scientific infras-
tructure for advancing cloud architectures and ap-
plications. USENIX ;login: 39, 6 (Dec. 2014).

[31] rr: lightweight recording and deterministic debug-
ging. http://www.rr-project.org.

[32] SRINIVASAN, S., ANDREWS, C., KANDULA, S.,
AND ZHOU, Y. Flashback: A light-weight ex-
tension for rollback and deterministic replay for
software debugging. In Proceedings of the 2004
USENIX Annual Technical Conference (Boston,
MA, June 2004), pp. 29–44.

[33] TALLENT, N. R., MELLOR-CRUMMEY, J. M.,
AND PORTERFIELD, A. Analyzing lock contention
in multithreaded applications. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (New York, NY,
USA, 2010), PPoPP ’10, ACM, pp. 269–280.

[34] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J.,
AND NARAYANASAMY, S. Detecting and surviv-
ing data races using complementary schedules. In
Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles (Cascais, Portugal, Octo-
ber 2011).

[35] VEERARAGHAVAN, K., LEE, D., WESTER, B.,
OUYANG, J., CHEN, P. M., FLINN, J., AND
NARAYANASAMY, S. DoublePlay: Parallelizing
sequential logging and replay. In Proceedings of
the 16th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (Long Beach, CA, March 2011).

[36] VIENNOT, N., NAIR, S., AND NIEH, J. Trans-
parent mutable replay for multicore debugging and
patch validation. In Proceedings of the 18th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(March 2013).

[37] YU, J., AND NARAYANASAMY, S. A case for
an interleaving constrained shared-memory multi-
processor. In Proceedings of the 36th International
Symposium on Computer Architecture (June 2009),
pp. 325–336.

[38] YUAN, D., PARK, S., AND ZHOU, Y. Character-
ising logging practices in open-source software. In
Proceedings of the 34th International Conference
on Software Engineering (ICSE) (Zurich, Switzer-
land, June 2012).

560 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
http://www.rr-project.org

	Introduction
	Usage
	Debugging tools
	Parallel retro-logging
	Continuous function evaluation
	Retro-timing

	Scenarios
	Atomicity Violation
	Apache 45605
	Apache 25520
	Data corruption
	Wild store
	Memory leak
	Lock Contention

	Design and implementation
	Background: Deterministic record and replay
	Sledgehammer API
	Tracers
	Tracepoints

	Preparing for debugging queries
	Running a parallel debugging tool
	Isolation
	Support for continuous function evaluation
	Support for retro-timing

	Aggregating results

	Evaluation
	Experimental Setup
	Benchmarks
	Scalability
	Scaling bottlenecks

	Benefit of parallel analysis
	Isolation
	Recording Overhead

	Related Work
	Conclusion

