
Neighbor-Sensitive Hashing

Yongjoo Park
University of Michigan
2260 Hayward Street
Ann Arbor, MI, USA

pyongjoo@umich.edu

Michael Cafarella
University of Michigan
2260 Hayward Street
Ann Arbor, MI, USA

michjc@umich.edu

Barzan Mozafari
University of Michigan
2260 Hayward Street
Ann Arbor, MI, USA

mozafari@umich.edu

ABSTRACT
Approximate kNN (k-nearest neighbor) techniques using binary
hash functions are among the most commonly used approaches for
overcoming the prohibitive cost of performing exact kNN queries.
However, the success of these techniques largely depends on their
hash functions’ ability to distinguish kNN items; that is, the kNN
items retrieved based on data items’ hashcodes, should include as
many true kNN items as possible. A widely-adopted principle for
this process is to ensure that similar items are assigned to the same
hashcode so that the items with the hashcodes similar to a query’s
hashcode are likely to be true neighbors.

In this work, we abandon this heavily-utilized principle and pur-
sue the opposite direction for generating more effective hash func-
tions for kNN tasks. That is, we aim to increase the distance be-
tween similar items in the hashcode space, instead of reducing it.
Our contribution begins by providing theoretical analysis on why
this revolutionary and seemingly counter-intuitive approach leads
to a more accurate identification of kNN items. Our analysis is fol-
lowed by a proposal for a hashing algorithm that embeds this novel
principle. Our empirical studies confirm that a hashing algorithm
based on this counter-intuitive idea significantly improves the effi-
ciency and accuracy of state-of-the-art techniques.

1. INTRODUCTION
Finding the k most similar data items to a user’s query item

(known as k-nearest neighbors or kNN) is a common building block
of many important applications. In machine learning, fast kNN
techniques boost the classification speed of non-parametric clas-
sifiers [10, 30, 49, 60]. kNN is also a crucial step in collabora-
tive filtering, a widely used algorithm in online advertisement and
movie/music recommendation systems [31,48]. Moreover, in data-
bases and data mining, finding the k-most similar items to users’
queries is the crux of image and text searching [34, 50, 52].

Unfortunately, despite thirty years of research in this area [7,
12, 19, 23, 28, 35, 58], exact kNN queries are still prohibitively ex-
pensive, especially over high-dimensional objects, such as images,
audio, videos, documents or massive scientific arrays [55]. For ex-
ample, one of the most recent approaches for exact kNN that ex-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

ploits sophisticated pruning is only 9× faster than a baseline table
scan [28]. This prohibitive cost has given rise to approximate kNN.

One of the most common approaches to finding approximate
kNN is using a set of binary hash functions that map each data
item into a binary vector, called a hashcode. The database then
finds the kNN items using the Hamming distance1 among these
(binary) hashcodes. Due to special properties of these binary vec-
tors [42], searching for kNN in the hash space (a.k.a. Hamming
space) can be performed much more efficiently than the original
high-dimensional space. These approaches are approximate be-
cause a query item’s kNN in the Hamming space may be different
than its kNN in the original space. Thus, the accuracy of hashing-
based approximations is judged by their effectiveness in preserv-
ing the kNN relationships (among the original items) in the Ham-
ming space. In other words, given a query item q and its kNN set
{v1, · · · ,vk}, a hash function h should be chosen such that most of
the hashcodes in {h(v1), · · · ,h(vk)} fall in the kNN set of h(q) in
the Hamming space.

Existing Approaches— Starting with the pioneering work of
Gionis, Indyk, and Motwani on locality sensitive hashing (LSH)
over 15 years ago [17], numerous techniques have been proposed
to improve the accuracy of the hashing-based kNN procedures
[5, 11, 13, 18, 20, 21, 26, 27, 32, 33, 36, 38, 45, 56, 57]. Implicitly or
explicitly, almost all hashing algorithms pursue the following goal:
to preserve the relative distance of the original items in the Ham-
ming space. That is, if we denote the distance between items v1 and
v2 by ‖v1− v2‖ and the Hamming distance between their respec-
tive hashcodes by ‖h(v1)−h(v2)‖H , the hash function h is chosen
such that the value of ‖h(v1)−h(v2)‖H is (ideally) a linear func-
tion of ‖v1− v2‖, as shown in Figure 1(c). Thus, while previous
techniques use different ideas, they tend to minimize the Hamming
distance of nearby items while maximizing it for far apart items.

Figure 1(a) uses a toy example with nine data items (including a
query item q) to illustrate how existing methods choose their hash-
codes. In this example, four hyperplanes h1, h2, h3, and h4 are
used to generate 4-bit hashcodes. Here, each hyperplane hi acts as
a binary separator to determine the i-th leftmost bit of the output
hashcode; the i’th bit of h(x) is 0 if the item x falls on the left side
of hi and this bit is 1 otherwise. For instance, the hashcode for v3 is
1000 because v3 falls in the region to the right of h1 and to the left
of h2, h3 and h4 hyperplanes.

To preserve the original distances, existing hashing techniques
tend to place fewer (more) separators between nearby (far apart)
items to ensure that their hashcodes differ in fewer (more) positions
and have a smaller (larger) Hamming distance. In other words,
the expected number of separators between a pair of items tends

1Hamming distance between two binary vectors of equal length is the number of po-
sitions at which the corresponding bits are different.

144

to be roughly proportional to their relative distance in the original
space.2 In this example, v5’s distance from q is twice v4’s dis-
tance from q. This ratio remains roughly the same after hashing:
‖h(v5)−h(q)‖H = ‖1100−0000‖H = 2 while ‖h(v4)−h(q)‖H =
‖1000−0000‖H = 1. Likewise, since v8 is the farthest item from q,
four separators are placed between them, causing their hashcodes
to differ in four positions (0000 versus 1111) and thus yielding a
greater Hamming distance, namely ‖h(v8)−h(q)‖H = 4.

This goal is intuitive and can capture the intra-item similarities
well. However, this approach requires a large number of hash
bits (i.e., separators) to accurately capture all pair-wise similari-
ties. Since using longer hashcodes increases the response time of
search operations, we need a better strategy than simply increas-
ing the number of separators. In this paper, we make the follow-
ing observation. Since the ultimate goal of the hashing phase is to
simply find the kNN items, preserving all pair-wise similarities is
unnecessary and wasteful. Rather, we propose to spend our hash
bits on directly maximizing the accuracy of the kNN task itself, as
described next.

Our Approach— In this work, we pursue the opposite goal of pre-
vious approaches. Instead of preserving the proximity of similar
items in the Hamming space, we maximize their Hamming dis-
tance. In other words, instead of placing fewer separators between
nearby items and more between far apart items, we do the opposite
(compare Figures 1(a) and (b)).

We argue that this seemingly counter-intuitive idea is far more
effective at solving the kNN problem, which is the ultimate goal
of hashing. The key intuition is that we should not use our limited
hash bits on capturing the distances among far apart items. Instead,
we use our hash bits to better distinguish nearby items, which are
likely to be in each other’s kNN sets. Given a fixed number of
hash bits (i.e., separators), we can achieve this distinguishing power
by placing more separators among similar items. In the previous
example, to find the 3-NN (i.e., k = 3) items for item q, we must
be able to accurately compare v3 and v4’s distances to q using their
respective hashcodes. In other words, we need to have ‖h(v3)−
h(q)‖H < ‖h(v4)−h(q)‖H in order to infer that ‖v3−q‖< ‖v4−
q‖.

However, due to the proximity of v3 and v4, existing methods are
likely to assign them the same hashcode, as shown in Figure 1(a).
In contrast, our strategy has a higher chance of correctly differen-
tiating v3 and v4, due to its higher number of separators among
nearby items. This is shown in Figure 1(b), v3 and v4’s hashcodes
differ by one bit. Obviously, our idea comes at the cost of confus-
ing far apart items. As shown in Figure 1(b), we will not be able to
differentiate q’s distance to any of v5, v6, v7, or v8. However, this
is acceptable if the user is interested in k ≤ 4.

This intuition can be applied to more general cases, where the
query item q or the value of k may not be necessarily known in
advance. If we choose a neighborhood size just large enough to
include most of the kNN items that typical users are interested in,
e.g., for k = 1 to 1000, we expect an increased accuracy in correctly
ordering such items, and hence returning the correct kNN items
to the user. Since the value of k is typically much smaller than
the total number of the items in a database, we expect significant
gains over existing techniques that seek to preserve all pair-wise
distances using a fixed number of hash bits.

The stark difference between our strategy and previous tech-
niques is summarized in Figure 1(c). The goal of existing methods
is to assign hashcodes such that the Hamming distance between
each pair of items is as close to a linear function of their original

2We provide a more precise dichotomy of previous work in Section 5.

q v1 v2 v3 v4 v5 v6 v7 v8

code:
0000 1000 1100 1110 1111

h1 h2 h3 h4

0
distance from q

(a) Existing Methods

q v1 v2 v3 v4 v5 v6 v7 v8

code:
0000 1000 1100 1110 1111

h1 h2 h3 h4

0
distance from q

(b) Our Method

original distance

H
am

m
in

g
di

st
an

ce

Ours (NSH)
Existing

(c)

Figure 1: In (a) and (b), the vertical arcs indicate the boundaries where
the Hamming distance from q increases by 1. The third figure (c) shows
the relationship between data items’ original distance and their expected
Hamming distance.

distance as possible. Our method changes the shape of this func-
tion, shown as a solid line; we impose a larger slope when the orig-
inal distance between a pair of items is small, and allow the curve
to level off beyond a certain point. This translates to a higher prob-
ability of separating the kNN items from others in our technique
(we formally prove this in Section 3.1).

The main challenge then is how to devise a hashing mechanism
that can achieve this goal. We solve this problem by proposing
a special transformation that stretches out the distance between
similar items (compared to distant items). Our method, called
Neighbor-Sensitive Hashing (NSH), uses these transformed repre-
sentations of items to achieve the goal described above.

Contributions— In this paper, we make several contributions.
1. We formally prove that increasing the distance between sim-

ilar items in the Hamming space increases the probability of
successful identification of kNN items (Section 3.1).

2. We introduce Neighbor-Sensitive Hashing (NSH), a new
hashing algorithm motivated by our seemingly counter-
intuitive idea (Sections 3.2, 3.3, and 3.4).

3. We confirm our formal results through extensive experi-
ments, showing the superiority of Neighbor-Sensitive Hash-
ing over Locality-Sensitive Hashing [5] and other state-of-
the-art hashing algorithms for approximate kNN [16, 21, 26,
36, 38, 56]. (Section 4).

In summary, our algorithm for NSH achieves 250× speedup over
the baseline, obtaining an average recall of 57.5% for 10-NN re-
trieval tasks. Compared to the state-of-the-art hashing algorithms,
our algorithm reduces the search time by up to 34% for a fixed re-
call (29% on average), and improves the recall by up to 31% for a
fixed time budget.3

We overview the end-to-end workflow of hashing-based tech-
niques in Section 2. We present our NSH strategy in Section 3.
Section 4 reports our empirical analysis and comparisons against
existing hashing algorithms. Section 5 overviews the related work,
and Section 6 concludes our paper with future work.

2. HASHING-BASED KNN SEARCH
In this section, we provide the necessary background on hashing-

based approximate kNN. Section 2.1 explains a typical workflow
in hashing-based approximate kNN. Section 2.2 reviews a well-
known principle in designing hash functions to compare with ours.

3In approximate kNN, a simple post ranking step is used to mitigate the impact of low
precision while preserving the recall [24, 25]. See Section 4.1.

145

Hash Function
b

(code size)

Hamming Search

Re-rank

database query

database
hashcodes

query
hashcodes

rNN

kNN

LSH

SH

AGH

SpH

CH

CPH

NSH (Ours)

Any of the following
methods can be plugged
in to Hash Function.

Figure 2: The workflow in hashing-based search consists of two main com-
ponents: Hash Function and Hamming Search. Re-rank is an extra step to
boost the search accuracy. This paper improves the most critical component
of this workflow, i.e., Hash Function.

2.1 Workflow
Figure 2 summarizes the prototypical workflow of a hashing-

based kNN system. Among the three componenets, Hash Func-
tion and Hamming Search are more important. Hash Function is
the component that converts the data items residing in the database
at index time into binary vectors, known as hashcodes. The same
function is used to also convert the query item provided at run time
into a hashcode. The choice of Hash Function is critical for the ac-
curacy of the kNN task. Ideally, the hashcodes should be generated
such that the kNN set retrieved based on these hashcodes is always
identical to the kNN set based on the original distances. However,
no tractable method is known for achieving this goal; even a sim-
pler problem is proven to be NP-hard [56]. As a result, hashing-
based techniques are only approximate; they aim to return as many
true kNN items as possible. In this paper, we focus on improving
the accuracy of this component (or its efficiency, given a required
level of accuracy).

The length of the hashcodes (b) is an important design parameter
that must be determined at index time. In general, there is a trade-
off between the hashcode length and the search speed. The longer
hashcodes tend to capture the original distances more accurately,
while they slow down the other runtime component, namely the
Hamming Search.

Once the hashcodes that capture the original distance informa-
tion (to some extent) are generated, Hamming Search is responsible
for time-efficient retrieval of the kNN items in the Hamming space.
The simplest approach would be a linear scan during which the
distance between the query’s hashcode and the hashcode of every
item in the database is computed. Although this simple approach
improves over a linear scan over the original data vectors, there
have been more efficient algorithms, such as Multi-Index Hash-
ing (MIH), developed for exact Hamming Search [42] in sub-linear
time complexity. Note that this search speedup is only possible
because the hashcodes are (small) binary vectors; the data structure
cannot be used to speed up the search for general multi-dimensional
data representations.

The last component of the system, Re-rank, is a post-lookup
re-ranking step designed for mitigating the negative effects of the
hashing step on accuracy. Instead of requesting exactly k data items
to Hamming Search, we can request r (≥ k) data items. Next, we
recompute the similarity of each retrieved item to the query item

(in their original representations), then sort and choose the top-k
among these r items. Naturally, the larger the value of r is, the
more accurate the final kNN items are. However, using a larger
r has two drawbacks. First, it needs more time to obtain answers
from Hamming Search. Second, the re-ranking process takes more
time.

2.2 Hash Function Design
Since the Hash Function choice in Figure 2 is independent of the

Hamming Search component, the primary objective in designing
a good hash function has been finding a hash function that pro-
duces high average recalls for a given hashcode length. The Hash
Function component is in fact composed of b bit functions, each re-
sponsible for generating an individual bit of the overall hashcode.
Next, we define the role of these bit functions more formally.

Definition 1. (Bit Function) A function h that takes a data item v
and produces h(v)∈ {−1,1} is called a bit function. Here, v can be
a novel query item or any of the existing items in the database. The
value of the bit function, h(v), is called a hash bit.

Note that in reality binary bits are stored in their {0,1} repre-
sentations. However, using signed bits {−1,1} greatly simplifies
our mathematical expressions. Thus, we will use signed binary bits
throughout the paper.

Definition 2. (Hash Function) A hash function h is a series of b bit
functions (h1, . . . ,hb). The hash bits produced by h1 through hb are
concatenated together to form a hashcode of length b.

We consider a hashcode of v as a b-dimensional vector whose el-
ements are either of {−1,1}. A natural distance measure between
two hashcodes is to count the number of positions that have differ-
ent hash bits, known as the Hamming distance. As mentioned in
Section 1, we denote the Hamming distance between data items vi
and v j by ‖h(vi)−h(v j)‖H .

Finally, we formally state the locality-sensitive property [11,13],
which is a widely accepted principle for designing hash functions.
Let q be a query, and vi, v j be two arbitrary data items. We say that
a bit function h satisfies the locality-sensitive property, if

‖q− vi‖< ‖q− v j‖⇒ Pr(h(q) 6= h(vi))< Pr(h(q) 6= h(v j)). (1)

where Pr(·) denotes the probability.
Datar et al. [13] showed that assigning hash bits based on their

relative locations with respect to a set of randomly-drawn hyper-
planes satisfies the locality-sensitive property. That is, for a b-bit
hashcode, b independent hyperplanes are drawn from a normal dis-
tribution to compose a hash function. Using an unlimited number
of hash bits using this approach could perfectly capture the orig-
inal distances. However, many recent algorithms have shown that
this simple approach does not achieve high kNN accuracy when the
hashcodes need to be short [21, 26, 27, 36, 56].

3. NEIGHBOR-SENSITIVE HASHING
This section describes our main contribution, Neighbor-Sensitive

Hashing (NSH). First, Section 3.1 formally verifies our intuition
introduced in Section 1: using more separators for nearby data
items allows for more accurate distinction of kNN items. As de-
picted in Figure 3, NSH is the combination of a hashing algorithm
and our proposed Neighbor-Sensitive Transformation (NST). Sec-
tion 3.2 lays out a set of abstract mathematical properties for NST,
and Section 3.3 presents a concrete example of NST that satisfies
those properties. Lastly, Section 3.4 describes our final algorithm
(NSH) that uses the proposed NST as a critical component.

146

q v1v2 v3 q v1v2 v3Hash

(a) Regular Hashing

q v1v2 v3 q v1 v2v3 q v1 v2v3NST
LSH-like

Hash

(b) Hashing with NST

Figure 3: The motivation behind using Neighbor-Sensitive Transformation
(NST) before hashing: applying NST to data items makes the same hash-
ing algorithm place more separators between nearby items (v1 and v2), and
place fewer separators between distant items (v2 and v3).

3.1 Formal Verification of Our Claim
In this section, we formally verify our original claim: using more

separators between data items leads to a more successful ordering
of data items based on their hashcodes. First, let us formalize the
intuitive notions of “having more separators” and “correct ordering
based on hashcodes”:
• Let q be a query point, v1, v2 be two data items where
‖q− v1‖ < ‖q− v2‖, and h be a hash function that assigns
hashcodes to these items. Then, having more separators be-
tween v1 and v2 means a larger gap in terms of their Ham-
ming distance, namely ‖h(q)−h(v2)‖H −‖h(q)−h(v1)‖H
will be larger.
• For v1 and v2 to be correctly ordered in terms of their distance

to q, v1’s hashcode must be closer to q’s hashcode compared
to v2’s hashcode. In other words, ‖h(q)−h(v2)‖H−‖h(q)−
h(v1)‖H must be a positive value.

In the rest of this paper, without loss of generality, we assume
that the coordinates of all data items are normalized appropriately,
so that the largest distance between pairs of items is one. Next, we
define the class of hash functions we will use.

Definition 3. (LSH-like Hashing) We call a bit function h LSH-
like, if the probability of two items vi and v j being assigned to
different hash bits is linearly proportional to their distance, namely
Pr(h(vi) 6= h(v j)) = c ·‖vi−v j‖ for some constant c. We call a hash
function h LSH-like if all its bit functions are LSH-like.

Note that not all existing hashing functions are LSH-like. How-
ever, there are several popular hashing algorithms that belong to
this class, such as LSH for Euclidean distance [13]. With these
notions, we can now formally state our claim.

Theorem 1. Let q be a query, and v1 and v2 two data items. Also,
let h be an LSH-like hash function consisting of b independent bit
functions h1, . . . ,hb. Then, the following relationship holds for all
v1 and v2 satisfying 0.146 < ‖q− v1‖ < ‖q− v2‖: A larger value
of E‖h(q)− h(v2)‖H −E‖h(q)− h(v1)‖H implies a larger value
of Pr(‖h(q)−h(v1)‖H < ‖h(q)−h(v2)‖H), i.e., the probability of
successful ordering of v1 and v2 based on their hashcodes.

The proof is quite involved, as it uses an integration for com-
puting the probability of successful ordering. Due to space con-
straints, we refer the reader to our technical report for the complete
proof [44]. This theorem implies that having more separators be-
tween two data items helps with their successful ordering using
their hashcodes. Since the total number of separators is a fixed
budget b, we need to borrow some of the separators that would
otherwise be used for distinguishing distant (or non-kNN) items.

0 1.0

0
1.

0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(a) Only Monotonic

0 1.0

0
1.

0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(b) No Larger Gap

0 µmax 1.0

0
1.

0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(c) Satisfies All

Figure 4: Visual demonstration of NST properties.

The following sections describe how this theorem can be used for
designing such a hash function.

3.2 Neighbor-Sensitive Transformation
As shown in Figure 3, the main idea of our approach is that

combining our Neighbor-Sensitive Transformation (NST) with an
LSH-like hash function produces a new hash function that is highly
effective in distinguishing nearby items. In this section, we first
define NST, and then formally state our claim as a theorem.

Definition 4. (Neighbor-Sensitive Transformation (NST)) Let q be
a query. A coordinate-transforming function f is a q-neighbor-
sensitive transformation for a given distance range (ηmin,ηmax), or
simply a q-(ηmin,ηmax)-sensitive transformation, if it satisfies the
following three properties:

1. Continuity: f must be continuous.4

2. Monotonicity: For all constants ti and t j where ti ≤ t j , f must
satisfy E(‖ f (q)− f (vi)‖) < E(‖ f (q)− f (v j)‖), where the
expectations are computed over data items vi and v j chosen
uniformly at random among items whose distances to q are
ti and t j, respectively.

3. Larger Gap: For all constants ti and t j where ηmin ≤ ti ≤ t j ≤
ηmax, f must satisfy E(‖ f (q)− f (v j)‖−‖ f (q)− f (vi)‖) >
t j − ti, where the expectation is computed over data items
vi and v j chosen uniformly at random among items whose
distances to q are ti and t j, respectively.

The coordinates are re-normalized after the transformation, so
that the maximum distance between data items is 1.

To visually explain the properties described above, three exam-
ple functions are provided in Figure 4. Among these three func-
tions, Figure 4(c) is the only function that satisfies all three proper-
ties — the function in Figure 4(a) is neither continuous nor satisfies
the Larger Gap property, and the function in Figure 4(b) is contin-
uous and monotonic but does not satisfy the Larger Gap property.

The third property of NST (Larger Gap) plays a crucial role in
our hashing algorithm. Recall that our approach involves an LSH-
like hashing whereby two data items are distinguished in the Ham-
ming space with a probability proportional to their distance. This
implies that if we alter the data items to stretch out their pair-
wise distances, their pairwise Hamming distances are also likely
to increase. Thus, such data items become more distinguishable in
Hamming space after the transformation.

Thus far, we have defined NST using its three abstract proper-
ties. Before presenting a concrete example of a NST, we need to
formally state our claim.

4This condition is to prevent a pair of similar items in the original space from being
mapped to radically different points in the transformed space.

147

Theorem 2. Let h be an LSH-like hash function and f be a q-
(ηmin,ηmax)-sensitive transformation. Then, for all constants ti and
t j, where ηmin ≤ ti ≤ t j ≤ ηmax, we have the following:

E(‖h(f (q))−h(f (v j))‖H −‖h(f (q))−h(f (vi))‖H)

> E(‖h(q)−h(v j)‖H −‖h(q)−h(vi)‖H)
(2)

where the expectations are computed over data items vi and v j cho-
sen uniformly at random among data items whose distances to q
are ti and t j, respectively.

The proof of this theorem can be found in our technical re-
port [44]. Now that we have established that NST can help with
constructing more effective hashcodes, our next task is to find a
concrete transformation function that satisfies NST’s three proper-
ties.

3.3 Our Proposed NST
In this section, we first propose a coordinate transformation func-

tion for a known query q, and describe its connection to NST (Def-
inition 4). Then, we extend our transformation to handle unknown
queries as well. The proposed NST is also a crucial component
of our hashing algorithm, which will be presented in the following
section.

Definition 5. (Pivoted Transformation) Given a data item p, a piv-
oted transformation fp transforms an arbitrary data item v as fol-
lows:

fp(v) = exp
(
−‖p− v‖2

η2

)
(3)

where η is a positive constant. We call p the pivot.

For a pivoted transformation fp(v) to be a q-neighbor-sensitive
transformation, we need the distance between p and q to be small
enough. The proximity of p and q is determined by the ratio of their
distance to the value of η . For example, our lemma below shows
that ‖p−q‖< η/2 is a reasonable choice.

To gain a better understanding of the connection between a piv-
oted transformation and NST, suppose that the pivot p is at the
same point as the query q, and that v1 and v2 are two data items
satisfying ‖q− v2‖ ≥ ‖q− v1‖. We consider two cases: the first
is that v1 and v2 are close to q so that their distances are less
than η , and the second case is that v1 and v2 are distant from
q so that their distances are much larger than η . In the first
case, the distance between v1 and v2 after the transformation is
exp(−‖q−v1‖2/η2)−exp(−‖q−v2‖2/η2), which tends to be rel-
atively large because the exponential function exp(−x2) decrease
fast around 1. In the second case, when the data items are far from
the query, the value of the exponential function becomes almost
zeros, and so does the distance between those data items after the
transformation. In other words, the transformation has an effect of
stretching out the space near the query while shrinking the space
distant from the query.

Next, we establish a connection between a pivoted transforma-
tion and NST. First, it is straightforward that a pivoted transfor-
mation satisfies continuity, since it only uses continuous functions.
The second property of NST, monotonicity, is shown by the follow-
ing lemma.

Lemma 1. A pivoted transformation fp satisfies the second prop-
erty of NST, i.e., monotonicity.

This lemma can be proven using the law of cosines as we present
in our technical report [44]. The next lemma is regarding the third
property of NST, namely a Larger Gap.

Lemma 2. A pivoted transformation fp with ‖p− q‖ < η/2 and
η < 0.2 satisfies the third property of NST, i.e., Larger Gap, for
(ηmin,ηmax) = (0.13η ,1.6η). That is, fp is a q-(0.13η ,1.6η)-
sensitive transformation.5

A q-(0.13η ,1.6η)-sensitive transformation implies that our in-
tended effect may not be achieved for those data items whose dis-
tances to q are smaller than 0.13η . Fortunately, a simple case study
shows that the number of such data items is negligibly small: con-
sider 100 million data points that are uniformly distributed in a 10-
dimensional space; then, the number of data items that fall within
the distance 0.13η (or 0.026) from q will be 100 · 106 · 0.02610 =
1.4×10−8. Considering that users are typically interested in a rel-
atively small number of results from their search engines, say the
top 1–1000 items, we see that this condition can cover most of the
practical cases.

Handing Novel Queries— Thus far, we have described our NST
for a known query q. However, we also need to handle queries that
are not known a priori. Note that, from Lemma 2, we know that
NST properties hold for all queries that are within a η/2 distance
from a pivot. Handling queries that are extremely far apart from
all data items in the database will therefore be difficult. However,
assuming that novel queries will be relatively close to at least one
of the data items, we can handle such queries by selecting multiple
pivots that can collectively cover the existing data items. Based on
this observation, we propose the following transformation to handle
novel queries.

Definition 6. (Multi-Pivoted Transformation) Let fp be a pivoted
coordinate transformation in Definition 5 using a pivot p. Our
extended version to handle novel queries is as follows. Choose
m pivots {p1, . . . , pm}, and compute the below to obtain a multi-
dimensional representation of a data item v:

f (v) = (fp1(v), . . . , fpm(v)) (4)

To understand how a multi-pivoted transformation works for
novel queries, assume for the moment that there is at least one
pivot pi that is close enough to a novel query q. Then, this pivot
works in the same way as in a single pivoted transformation: it
stretches out the distances between this novel query and other data
items around it. As a result, when combined with an LSH-like
hash function, more separators are used to distinguish q and its
nearby items. On the other hand, from the perspective of other (far-
apart) pivots, the distances between the q and its nearby items tend
to be very small after the transformation, due to the exponential
function used in the pivoted transformation. Consequently, those
far-apart pivots are effectively ignored by a multi-pivoted transfor-
mation when computing the distance of q and its neighbors. This
effect of the multi-pivoted transformation is examined empirically
in Section 4.2. However, one question remains: how can we ensure
that there will be at least one nearby pivot for every novel query?

Parameter η— To ensure that there is at least one pivot close
enough to each novel query, we use the assumption that each novel
query is close to at least one data item in the database. Then, it
will suffice to select pivots in such a way that every data item in
the database is close to at least one pivot. Specifically, assume that
m pivots are chosen by one of the algorithms presented in the next
section (Section 3.4), and let γ denote the average distance between
a pivot and its closest neighbor pivot. Then, to ensure that any data
item is within a η/2 distance from its closest pivot, we should set
5When working with non-normalized distances, η should be smaller than 0.2 · tmax,
where tmax is the maximum distance between data items.

148

η to a value larger than γ . This is because the maximum distance
between data items and their respective closest pivots will be larger
than γ/2. Our numerical study in Section 4.2 shows that, with our
choice of η = 1.9γ , most of the novel queries fall within a η/2
distance from their closest pivot. We also show, in Section 4.6, that
the search accuracy does not change much when η is larger than γ .

For a multi-pivoted transformation, we also need to determine
(1) the number of pivots (m) and (2) a strategy for selecting m piv-
ots. We discuss these two issues in Section 3.4 after presenting the
technical details of our algorithm.

3.4 Our NSH Algorithm
This section describes our algorithm, Neighbor-Sensitive Hash-

ing (NSH). Besides NST, another ingredient for our hashing al-
gorithm is enforcing the even distribution of data items in Ham-
ming space, which is a widely-adopted heuristic. Let h∗i represent
a column vector (hi(v1), . . . ,hi(vN))

T where v1, . . . ,vN are the data
items in a database. In other words, h∗i is a column vector of length
N that consists of all i-th bits collected from the generated hash-
codes. Then, the technical description of the even distribution of
the data points in the Hamming space is as follows:

(h∗i)
T 1 = 0 ∀i = 1, . . . ,b (5)

(h∗i)
T h∗j = 0 ∀i, j = 1, . . . ,b and i 6= j (6)

The first expression induces that the hash bits are turned on with
50% chance. The second expression induces that two hash bits in
different positions are uncorrelated so that they have different hash
bits in different positions. The second condition also means that
the conditional probability that a data item receives 1 for i-th hash
bit is independent of the probability that the data item receives 1
for j-th hash bit if i 6= j.

The primary objective NSH is to generate a hash function using
NST, while best ensuring the above requirement for the data items
that reside in the database. First, if we consider a data item v as a
d-dimensional column vector, the hash bits are determined by NSH
in the following way: hi = sign(wT

i f (v)+ ci), where f is a multi-
pivoted transformation with m pivots, wi is a m-dimensional vector,
and ci is a scalar value. Our main goal in this section is to find the
appropriate values for wi and ci that can satisfy Equations 5 and 6.
To find these values, NSH performs the following procedure:

1. Choose m pivots.
2. Convert all data items using a multi-pivoted transformation

in Definition 6, and obtain N number of m-dimensional trans-
formed items.

3. Generate a vector w1 and a bias term c1 using an (m+ 1)-
dimensional Gaussian distribution.

4. Adjust the vector w1 and the bias term c1 so that the resulting
hash bits satisfy Equation 5.

5. For each i = 2 to b (hashcode length),
(a) Generate a vector wi and a bias term ci from an (m+1)-

dimensional Gaussian distribution.
(b) Adjust wi and the bias term ci so that the resulting hash

bits h∗i satisfy Equations 5 and 6 with respect to the
already generated hash bits h∗j for j = 1, . . . , i−1.

6. Collect wi and ci for i = 1, . . . ,b, which compose our hash
function of length b.

A natural question is how to adjust the random vectors wi and
compute the bias terms so that the hash bits follow Equations 5
and 6. For this purpose, we maintain another series of (m+ 1)-
dimensional vectors z j where j = 1, . . . ,b. When we generate wi,
the set of vectors z j for j = 1, . . . i work as a basis to which wi

Algorithm 1: Neighbor Sensitive Hashing
input : V = {v1, . . . ,vN}, N data items

b, code length
η , a parameter for coodinate transformation

output: W , a (m+1)-by-b coefficient matrix

1 P← m pivots
2 F ← transform(V , P, η) // Definition 6

3 W ← []

4 Z← FT 1/norm(FT 1)
5 for k = 1 to b do
6 w← random (m+1)-by-1 vector
7 w← w−ZZT w
8 z← FT sign(Fw)
9 z← z−ZZT z

10 Z← [Z, z/norm(z)] // append as a new column

11 end
12 return W

must be orthogonal.6 From now on, we think wi for i = 1, . . . ,b
is (m+ 1)-dimensional vectors including the bias term in its last
element. Let F denote a N-by-(m+ 1) design matrix, for which
the rows are the transformed data items (f (v1), . . . , f (vN)) and the
number of the columns is the number of the pivots plus one (the
last column is one-padded to be multiplied with the bias compo-
nent of wi). Then the collection of i-th hash bits can be expressed
compactly as follows: h∗i = sign(Fwi).

When we compute the coefficient w1 for the first bit function, h∗1
must be orthogonal to 1 according to Equation 5. As a result, when
generating w1 for the first hash bits, we aim to satisfy the following
expression: sign(Fw1)

T 1 = 0. We relax this expression for effi-
cient computation as follows: wT

1 FT 1 = 0. From this expression,
we can easily see that z1 can be set to FT 1/norm(FT 1), then w1 is
obtained by first generating a random vector l and subtracting the
inner product of l and z1 from l

When we compute the coefficient vector w2 for the second bit
function, it should satisfy the following two conditions according
to Equations 5 and 6:

sign(Fw2)
T 1 = 0, sign(Fw2)

T h∗1 = 0.

For computational efficiency, these conditions are relaxed as:

wT
2 FT 1 = 0, wT

2 FT h∗1 = 0.

We can simply ignore the first requirement among the two be-
cause z1 already holds the necessary information. For the sec-
ond requirement, we set z2 to FT h∗1− (FT h∗1)

T z1 and normalize it,
which is the component of FT h∗1 that is orthogonal to z1. With those
two vectors of z1 and z2, the process of finding w2 is as straightfor-
ward as before: generate a random vector, project the vector onto
the subspace spanned by z1 and z2, and subtract the projected com-
ponent from the random vector. Computing other coefficients wi
for i = 3, . . . ,b can be performed in the same way. Our algorithm is
presented in more detail in Algorithm 1.

The resulting time complexity of the process is O(Nmd+b(mb+
Nm)), which is linear with respect to the database size. We have
empirical runtime analysis in Section 4.5.

Number of Pivots (m) and Pivot Selection Strategy— Using a
large number of pivots helps keep the ratio of η to the maximum
distance small, which is one of the conditions for Lemma 2. How-
ever, in practice, we observed that increasing the number of pivots
6More concretely, w1 must be orthogonal to z1, and w2 must be orthogonal both to z1
and z2, and so on.

149

beyond b (where b is the length of hashcodes) only marginally im-
proved the search accuracy. This is shown in Figure 9(b). On the
other hand, the technical conditions in Equations 5 and 6 and the
time complexity analysis above imply important criteria for deter-
mining the number of pivots (m):

1. m must be equal to or larger than the hashcode length (b).
2. The smaller the m, the faster the hashing computation.

For these reasons, we recommend m = c · b, where c is a small
positive integer, e.g., 1, . . . ,10. To obtain a value of m that is well
tailored to a given dataset, one can additionally employ a standard
cross validation procedure that is widely used in machine learning
literature. For this, we should first partition our original dataset
into two, which are called training set and holdout set, respectively.
Next, we generate a b-bit hash function with m pivots based on the
training set, and test the performance of the generated hash function
by using the holdout set as our queries. This procedure is repeated
with different values of m, and the value yielding the highest search
accuracy on the holdout set is chosen for the actual hashcode gen-
eration process.

Once the number of pivots is determined, we need to generate
these pivots. We consider three different strategies for this:

1. Uniform strategy: Given the min and max coordinate of ex-
isting data items along each dimension, determine the re-
spective coordinates of the pivots by picking m values from
that interval uniformly at random.

2. Random strategy: Pick m data items from the database at
random, and use them as pivots.

3. k-means strategy: Run the k-means++ algorithm on the ex-
isting items, and use the resulting centroids as pivots.

In Section 4.6, we study how these pivot selection strategies pro-
duce different search accuracies for different query workloads.

Impact of the Data Distribution— Unlike traditional hashing al-
gorithms such as LSH [5,11,13,17], different data distributions lead
to different hash functions in our approach. This effect is due to the
pivot selection process; once the m pivots are chosen, the remaining
steps of our algorithm are agnostic to the data distribution.

The random and k-means strategies tend to choose more pivots
in the dense areas. Thus, the locations of the selected pivots are bal-
anced for a balanced dataset, and are skewed for a skewed dataset.
In contrast, the uniform strategy is not affected by the skewness of
the data distribution, Rather, it is only affected by the range of the
data items (i.e., the boundary items).

Our search results are more accurate when there are data items
around queries. This is because our algorithm is more effective
when there is a pivot close to each query, and we select pivots from
areas where data items exist. Thus, when the random or k-means
strategy is used, our algorithm is more effective when queries are
mostly from the dense areas. When the uniform strategy is used,
our algorithm is effective when queries are generated uniformly at
random within the data items’ boundary.

On the other hand, since our algorithm is based on a q-
(ηmin,ηmax)-sensitive transformation, we may not be successful at
retrieving all k items when there are fewer than k items within a
ηmax distance of the query. We empirically study this observation
in Section 4.6.

Finally, note that even for uniformly distributed items, our pro-
posed approach outperforms traditional counterparts for kNN tasks.
This is because the core benefit of our approach lies in its greater
distinguishability for nearby data items, which is still valid for uni-
form distributions. Our empirical studies in Section 4.3 confirm
that our technique outperforms not only LSH but also other state-
of-the-art learning-based approaches even for uniform datasets.

Dataset # Items Dim Note
MNIST [54] 69,000 784 Bitmap datasets
80M Tiny [54] 79,301,017 384 GIST image descriptors
SIFT [25] 50,000,000 128 SIFT image descriptors
LargeUniform 1,000,000 10 Standard uniform dist.8
SmallUniform 10,000 10 Standard uniform dist.
Gaussian 10,000 10 Standard normal dist.9

LogNormal 10,000 10 A log-normal dist.10

Island 10,000 10 SmallUniform + two clus-
ters. See Section 4.6.

Table 1: Dataset Summary. Three real and five synthetic datasets in order.
For each dataset, 1,000 data items were held out as queries.

4. EXPERIMENTS
The empirical studies in this section have two following goals:

first, we aim to verify our claim (more hash bits for neighbor items)
with numerical analysis, and second, we aim to show the superior-
ity of our algorithm compared to various existing techniques. The
results of this section include the following:

1. Neighbor-Sensitive Transformation enlarges the distances
between close by data items, and the same goal is achieved
for the hashcodes generated by Neighbor-Sensitive Hashing
in terms of their Hamming distance.

2. Our hashing algorithm was robust for all settings we tested
and showed superior performance in kNN tasks. Specifically,
our method achieved the following improvements:

(a) Up to 15.6% recall improvement7 for the same hash-
code length,

(b) Up to 22.5% time reduction for the same target recall.
We start to describe our experimental results after stating our

evaluation settings.

4.1 Setup
Datasets and Existing Methods— For numerical studies and com-
parative evaluations, we use three real image datasets and five syn-
thetic datasets. A database means a collection of data items from
which the k most similar items must be identified, and a query set
means a set of query items we use to test the search performance.
As in the general search setting, the query set does not belong to the
database and is not known in advance; thus, offline computation of
kNN is impossible. Table 1 summarizes our datasets.

For a comprehensive evaluation, we compared against three
well-known approaches and five recent proposals: Locality Sen-
sitive Hashing (LSH) [13], Spectral Hashing (SH) [56], Anchor
Graph Hashing (AGH) [38], Spherical Hashing (SpH) [21], Com-
pressed Hashing (CH) [36], Complementary Projection Hashing
(CPH) [26], Data Sensitive Hashing (DSH) [16], and Kernelized
Supervised Hashing (KSH) [37]. Section 5 describes the moti-
vation behind each approach. Except for CH and LSH, we used
the source code provided by the authors. We did our best to fol-
low the parameter settings described in their papers. We exclude a
few other works that assume different settings for kNN item defi-
nitions [22]. For our algorithm, we set the number of pivots (m) to
4b and used k-means++ [6] to generate the pivots unless otherwise

7Recall improvement is computed as (NSH’s recall - competing method’s recall).
8For each dimension, the standard uniform distribution draws a value between 0 and
1, uniformly at random.
9For each dimension, a value is drawn from a Gaussian distribution with a mean value
of 0 and a standard deviation of 1.

10Log-normal is a popular heavy-tailed distribution. In our experiments, we used
(µ,σ) = (1,0).

150

0 0.5 1
0

0.2
0.4
0.6
0.8

1
Dataset: Gaussian

‖q− p‖/η

Fr
ac

tio
n

(a) Dense Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

tio
n

(b) Sparse Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

tio
n

(c) Same Dist as Data

0 0.5 1
0

0.2
0.4
0.6
0.8

1

Dataset: LogNormal

‖q− p‖/η

Fr
ac

tio
n

(d) Dense Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

tio
n

(e) Sparse Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

tio
n

(f) Same Dist as Data

Figure 5: The histogram of distances between queries q and their respective closest pivots p divided by η (the parameter from Definition 5). These histograms
are computed for a balanced and a skewed dataset under three query distributions: queries drawn from the dense area of the dataset, from its sparse area, and
from the same distribution as the dataset itself. These figures show that, in most cases, the distances between novel queries and their respective closest pivot
satisfy the condition of Lemma 2 for NSH to work effectively, namely ‖q− p‖< η/2.

mentioned. The value of η was set to 1.9 times of the average dis-
tance from a pivot to its closest pivot. (Section 4.6 provides an em-
pirical analysis of different pivot selection strategies and different
values of m and η parameters.) All our time measurements were
performed on a machine with AMD Opteron processor (2.8GHz)
and 512GB of memory. All hashing algorithms used 10 processors
in parallel.

Quality Metric— Recall that Hamming Search is the component
responsible for searching in the Hamming space. Once the Ham-
ming Search component returns r candidate items, finding the k
most similar items to a query is a straightforward process. Note
that if there exists a data item that belongs to the true kNN among
those r items returned, the data item is always included in the an-
swer set returned by Re-rank. Therefore, a natural way to evaluate
the quality of the entire system is to measure the fraction of the data
items that belong to the true kNN among the r data items returned
by Hamming Search. In other words, we compute the following
quantity:

recall(k)@r =
(# of true kNN in the retrieved)

k
×100. (7)

This is one of the most common metrics for evaluating approx-
imate kNN systems [24, 25, 46]. When choosing the r data items
with the smallest Hamming distance from a query, it is possible for
multiple items to have the same distance at the decision boundary.
In such case, a subset of them are chosen randomly. This implies
that the recall score of a trivial approach i.e., mapping all the data
items to the same hashcodes, cannot be high. Typically, r is chosen
as r = 10k or r = 100k to keep the Re-rank speed fast.11

Evaluation Methodology— Note that the choice of the Hash
Function is independent of the Hamming Search component, and
using a different algorithm for Hamming Search can only affect the
runtime. Thus, we consider two evaluation settings in this paper.

1. Hashcode Length and Recall: This setting is to purely eval-
uate the quality of hashing algorithms without any effects
from other components. This evaluation setting is to answer
the following question: “what is the best hashing algorithm if
the search speed is identical given the same hashcode size?”
This evaluation is repeated for different choices of hashcode
sizes, because the accuracy of different hashing algorithms
can differ greatly based on their hashcode size. For example,
it is not uncommon if some methods become less effective as
the hashcode size increases.

2. Search Speed and Recall: Another evaluation methodology
is to study the trade-off between search speed and resulting

11Larger values of r (e.g., close to the total number of items in the database) will im-
prove recall; however, this will also make the search process as slow as the exact kNN.

search accuracy. The search time consists of the time re-
quired to convert a query into a hashcode and the time to find
the rNN data items in the Hamming space. Usually, the time
required for hashcode generation is marginal compared to the
Hamming Search process.

Another important criteria is the memory requirement for the
generated hashcodes. This quantity can be easily inferred from the
hashcode size because the size of the bit vectors in memory is iden-
tical regardless of the hashing algorithm used. When there are N
data items in a database and we generate hashcodes of length b, the
amount of memory required to store all hashcodes is Nb/8 bytes
(since hashcodes are stored as bit vectors). Usually, this quantity
is several orders of magnitude smaller than the size of the origi-
nal database (e.g., 128-dimensional floating point type vectors will
take 128 ·4 ·N bytes), making it possible to keep all the hashcodes
in memory.

4.2 Validating Our Main Claims
In this section, we numerically verify two important claims we

have made: (i) the distance between novel queries and their closest
pivot is small, and (ii) NST and NSH achieve their intended goal of
placing more separators between closeby items.

First, to study how data items are mapped to pivots, we used
Gaussian and LogNormal as representatives of balanced and
skewed datasets, respectively. For each dataset, we considered
three different cases: (1) when queries are chosen from the dense
area of the dataset, (2) when they are drawn from the sparse area
(i.e., outlier items), and (3) when queries come from the same dis-
tribution as the original dataset. In each case, we selected 128 piv-
ots using the k-means strategy and measured the distances between
queries and their respective closest pivot. Figure 5 shows the his-
togram of these distances. The results show that, for queries from
the dense area and from the same distribution as the datasets, the
measured distances mostly belong to the range with which NSH
can work effectively, i.e., smaller than η/2. For queries from the
sparse area, there were some cases where the measured distances
were outside the desired range. This is expected since our pivot
selection strategy assumes that queries are from an area where ex-
isting data items reside. Interestingly, as shown in Section 4.6, our
final hashing algorithm still provides reasonable performance even
for those queries that are drawn from sparse areas.

We also studied whether our proposed mechanisms (NST and
NSH) achieve their intended properties, namely increasing the dis-
tance gap exclusively for close-by items. Here, we first transformed
the data items of the SmallUniform dataset using 128 pivots to see
how our multi-pivoted transformation (from Definition 6) alters the
distances between items. Figure 6(a) shows the result. When the
original distances between two items were smaller than the average

151

0 1 2
0

1

2

3

Original Distance

Tr
an

sf
or

m
ed

D
is

ta
nc

e

(a) NST’s effect for
the SmallUniform dataset

0 1 2
0

5

10

15

20

Original Distance

H
am

m
in

g
D

is
ta

nc
e

LSH

NSH

(b) Hamming distance for
the SmallUniform dataset

0 2 4 6 8
0

0.2

0.4

0.6

0.8

Hamming distance difference
between v50 and v101

Fr
ac

tio
n

LSH

NSH

(c) Hamming gap comparison
for the SmallUniform dataset

0 5 10 15
0

10

20

Original Distance

H
am

m
in

g
D

is
ta

nc
e

LSH SH

NSH

(d) Hamming distance
for the MNIST dataset

Figure 6: The effects of NST and NSH. Figure (a) shows that NST enlarges the distances among nearby data items. Figure (b) shows that NSH makes nearby
data items have larger Hamming distances compared to LSH. Figure (c) shows that there are more separators (hence, a larger Hamming distance gap) between
pairs of data items when they are close to queries. Figure (d) shows using a real dataset (MNIST) that NSH produces larger Hamming distances between nearby
data items compared to SH (a learning-based algorithm) and LSH.

16 64 256

0
20
40
60
80

100

Improvement over:

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

LSH AGH CH SH CPH SpH DSH KSH

(a) The MNIST dataset

16 64 256

0
20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

(b) The LargeUniform dataset

16 64 256

0
20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

(c) The 80M Tiny dataset

16 64 256

0
20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

(d) The SIFT dataset

Figure 7: Hashcode length and recall improvements. The recall improvement is computed as (NSH’s recall - competing method’s recall).

distance between a query and its k-th closest item (e.g., 0.53 for 10-
NN, 0.71 for 100-NN, and 0.97 for 1000-NN), their distances were
amplified by NST in the transformed space. When we generated
32-bit hashcodes using NSH and LSH, NSH also produced larger
Hamming distances (compared to its traditional counterpart, LSH),
as reported in Figure 6(b). Figure 6(c) depicts the same effect by
NSH, but using a histogram of the number of separators between
the 50th and 101st closest data items to queries. Figure 6(d) shows
NSH’s effectiveness using a real dataset (MNIST). Here, NSH again
achieved larger Hamming distance gaps than both SH (a learning-
based hashing algorithm) and LSH. Note that while the difference
between NSH and SH may seem small, it translates to a significant
difference in search performance (see Sections 4.3 and 4.4).

4.3 Hashcode Length and Search Accuracy
Recall that the hashcode length (b) is an important design param-

eter that determines the accuracy of approximate kNN and runtime
of Hamming Search. In general, those two factors (search accuracy
and runtime) are in a trade-off relationship, i.e., larger hashcodes
result in a more accurate but also slower search, and vice versa.

This subsection compares the search accuracies of various hash-
ing algorithms with fixed hashcode lengths. For this experiment,
we used the four datasets (MNIST, LargeUniform, 80M Tiny, and
SIFT) and generated different lengths of hashcodes ranging from
16 to 256. Next, we examined how accurately different algo-
rithms capture 10-NN data items for novel queries. For this, we
report recall(10)@100 for the two relatively small datasets (MNIST
and LargeUniform) and recall(10)@1000 for the other two large
datasets. We present the experimental results for different choices
of k in Section 4.7.

Figure 7 shows the results. we report the recall improvements
over other competing hashing algorithms. In most cases, the sec-
ond best methods were SpH and KSH. However, the other recently
developed algorithms (such as SH and CPH) worked relatively well
too. AGH and CH showed surprisingly bad performance. In all

cases, our proposed algorithm showed significant search accuracy
gains, showing up to 15.6% improvement of recall over SpH and
up to 39.1% over LSH.

4.4 Search Time and Search Accuracy
The second setting for performance evaluation is seeing the re-

call scores by different hashing algorithms when the search time is
bounded. For the Hamming Search module, we used Multi-Index
Hashing (MIH) [42], a recently developed data structure for exact
kNN search in Hamming space. MIH has a parameter that deter-
mines the number of internal tables, and the search speed varies
depending on the parameter setting. We followed a few different
options based on the suggestions by its author, and reported the
best results for each hashing algorithm.12

There are two ways we can improve the search accuracy at the
cost of search speed. The first is to increase the hashcode length,
and the second is to increase the number of data items returned by
Hamming Search (r) and let Re-rank find the k most similar an-
swers. When we tested the first approach, however, we observed
that MIH’s performance degrades rapidly whenever the hashcode
length is over 128, and MIH did not show considerable speed boost
compared to a linear scan over hashcodes. For this reason, we used
the second approach — increasing the value of r — to adjust the
search accuracy and search speed. Then, we collected all 64-bit
hashcodes generated by different hashing algorithms, configured
MIH to return different number (r) of data items as answers, and
measured the recall scores of those answers as well as the time MIH
took to return them. Note that even if we use the same data structure
(MIH) for Hamming Search, systems with different hashing algo-
rithms produce very different results since the hashing mechanism
is key in producing high search accuracies.

Figure 8 reports recall improvements for a target time bound us-
ing two large datasets of 80M Tiny and SIFT. In most cases, NSH
showed significant improvements over existing methods. Also, it

12We set the number of tables to either 2 or 3.

152

10 30 50
−10

0
10
20
30
40
50

Improvement over:

Search Time (ms)

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

LSH AGH CH SH CPH SpH DSH KSH

10 30 50
−20

0
20
40
60
80

100

Target Recall (%)

Ti
m

e
R

ed
uc

tio
n

(%
)

(a) The 80M Tiny dataset

10 20 30
−10

0
10
20
30
40
50

Search Time (ms)

R
ec

al
l

Im
pr

ov
em

en
t(

%
)

10 30 50
−20

0
20
40
60
80

100

Target Recall (%)

Ti
m

e
R

ed
uc

tio
n

(%
)

(b) The SIFT dataset

Figure 8: Search time and recall improvements. The recall improvement is computed as (NSH’s recall - competing method’s recall). Time reduction is
(competing method’s search time - NSH’s search time) / (competing method’s search time) ×100.

Method Hash Gen (sec) Compression (min)
32bit 64bit 32bit 64bit

LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Table 2: Time requirement for hash function generation and database com-
pression, i.e., converting 79 million data items in a database to hashcodes.

is impressive that the system with our algorithm achieved as high
as 50% average recall for 80M Tiny within only 49 ms search time
requirement. Note that a simple linear scan over the original data
items took more than 17 seconds.

4.5 Indexing Speed
As we generate hashcodes of different lengths in the above ex-

periments, we also measured the times they took to generate hash
functions and to convert the whole database (80M Tiny) to hash-
codes. The result is summarized in Table 2. CPH uses expensive
statistical optimization to generate hash functions, so it took a much
longer time than other methods. All other methods, including NSH,
reported reasonable indexing time.

4.6 The Effect of Parameters on NSH
This section studies the effect of various parameters on the

search accuracy of NSH. The parameters we consider are pivoting
(the number of pivots and the selection strategy), the neighborhood
parameter (η), the type of query workloads, and the data distribu-
tion.

Pivot Selection— As discussed after presenting Definition 6, the
goal of choosing pivots is to ensure that the average distance of ev-
ery data item in the database to its closest pivot is minimized. We
studied the three different strategies described in Section 3.4: uni-
form strategy, random strategy, and k-means. For each strategy, we
generated 32-bit hashcodes and used the Gaussian dataset with
two different sets of queries: one set from the dense area (center
of the normal distribution) and the other from the sparse area (tail
of the distribution). Figure 9(a) shows the results. Both uniform
and k-means strategies produced almost the same search accuracy,
regardless of the query workload. However, the random strategy
failed for queries from the spare area. This is because most of the
randomly-chosen pivots are naturally from dense areas; thus, the

pivots cannot cover the queries from sparse areas. Also, in our ex-
periments, k-means strategy exhibited slightly better performance
than the uniform one.

The number of pivots (m) is also important. To empirically study
the effect of m on search accuracy, we generated 32-bit hashcodes
for three datasets (Gaussian, SmallUniform, and LogNormal)
and varied m between 3 and 512. Figure 9(b) shows the results.
The results suggest that our algorithm is not very sensitive to the
value of m, as long as m≥ b.

Neighborhood Parameter (η)— The value of η is closely related
to the size of the neighborhood for which we want to amplify the
Hamming gap. To see η’s effect on our algorithm’s performance,
we generated 32-bit hashcodes for the MNIST dataset and measured
the recall while varying η between 0 and 5γ , where γ was the aver-
age distance between pairs of closest pivots. The results, plotted in
Figure 9(c), indicate that our algorithm yields high accuracy when
η > γ , and its accuracy curve improves unto η ≈ 2γ . Note that this
empirical result is consistent with our discussion in Section 3.3.

Data Distribution— To study the effect of data distribution, we
generated two datasets from standard distributions: Gaussian and
LogNormal. Note that LogNormal has a skewed distribution with
a heavy tail. In addition, to see how our kNN search accuracy is
affected when there are fewer than k data items around a query, we
created another dataset, called Island. In Island, we added two
small clusters to the SmallUniform dataset, where each clusters
consisted of 3 data items, and they were placed far away (a distance
of 1 and 5, respectively) from other data items.

For each dataset, we generated three different queries. For the
Gaussian dataset, the first query was from its mode.13 The second
and the third queries were twice and three times the standard de-
viation away from the mode, respectively. The three queries were
similarly generated for LogNormal. For Island, the first query
was from the area where the SmallUniform dataset resides, and
the second and the third queries were from the two small clusters
we added. Due to the placements of the two clusters, the third
query was much far away from the other data items compared to
the second query. For every dataset, we refer to these three queries
as ‘Q from Dense’, ‘Q from Sparse’, and ‘Q from Very Sparse’,
respectively.

We repeated each experiment 30 times, each time with a different
random seed, and reported the average recall scores in Figure 9(d).
In general, the performance drops were more significant for queries
drawn from ‘Very Sparse’ areas. One reason is the lack of nearby
pivots around such queries. The second reason (especially for the
Island dataset) is that the distance to kNN items were outside the
neighborhood size for which NSH can work effectively.

13A mode is the point at which a probability distribution function takes its maximum.

153

Dense Area Sparse Area
0

20
40
60
80

100

Queries are from

re
ca

ll
(1

0)
@

10
0

Uniform strategy
Random strategy
k-means strategy

(a) Pivoting Strategy

3 16 32 64 128 256 512
0

20
40
60
80

100

m

re
ca

ll
(1

0)
@

10
0

The Gaussian dataset
The SmallUniform dataset

The LogNormal dataset

(b) Numbers of Pivots

0 γ 2γ 3γ 4γ 5γ
0

20
40
60
80

100

η

re
ca

ll
(1

0)
@

r

k = 10 k = 20
k = 50 k = 100

(c) Neighborhood Size

NormalLogNormal Island
0

20
40
60
80

100

Dataset Name

re
ca

ll
(1

0)
@

10
0

Q from Dense
Q from Sparse

Q from Very Sparse

(d) Data distribution

Figure 9: We study our method’s search performance by varying four important parameters: (a) the pivot selection strategy, (b) the number of pivots, (c)
neighborhood parameter η , and (d) the data distribution.

1 10 100 1000
40

60

80

100

k

re
ca

ll
(k
)@

10
k

LSH SH SpH NSH

(a) The MNIST dataset

1 10 100 1000
0

20

40

60

k

re
ca

ll
(k
)@

10
0k

(b) The 80M Tiny dataset

Figure 10: kNN Accuracies with different values of k.

4.7 Neighbor Sensitivity
Since our motivation was moving separators (or equivalently, bit

functions) to have higher power in distinguishing neighbor items,
it is likely that our algorithm loses its power to capture the similar-
ities to the distant items. This potential concern leads to a natural
question: up to what value of k does our algorithm have advantage
over other algorithms?

To answer this question, we varied the value of k while fixing
r = 10 · k (Recall r is the number of the items returned by Ham-
ming Search, and Re-rank module returns final k answers) and ob-
served how the search accuracy changed. More concretely, we gen-
erated 128-bit and 64-bit hashcodes respectively for MNIST and 80M
Tiny, and varied k from 1 to 1,000. See Figure 10 for the results.

Interestingly, for MNIST, we observed that our algorithm out-
performed other methods only up to until k = 100 (0.14% of the
database). The reason that our method showed superior perfor-
mance only up to k = 100 was that due to the small size of the
dataset (only 69K items in the database). When we ran the same
experiment with a big dataset (80M Tiny), we did not observe the
performance decrease until k = 1000, and our algorithm consis-
tently outperformed other methods regardless of the choice of k.
Considering that the dataset sizes in the real-world are large — the
reason of approximate kNN— our algorithm can achieve superior
performance in most practical cases.

5. RELATED WORK
The growing market for ‘Big Data’ and interactive response

times has created substantial interest in Approximate Query Pro-
cessing both from academia [3,14,43,59] as well as the commercial
world [1, 2, 4]. While these techniques focus on general aggregate
queries, this work focuses on approximating kNN queries as an im-
portant sub-class of them (see [41] and the references within).

Method Year Motivation / Intuition
LSH [13] 2004 Random hyperplanes tend to preserve locality
SH [56] 2009 Minimize Hamming distance in proportion to

the similarity between items
AGH [38] 2011 Speed up SH by approximation
SpH [21] 2012 Spheres for capturing similarities
CH [36] 2013 Adopt sparse coding theory
CPH [26] 2013 Hash functions should go through sparse areas
DSH [16] 2014 Keep kNN items together using Adaptive

Boosting

Table 3: Several Notable Hashing Algorithms.

Gionis et al. [17] were the first to apply Locality Sensitive Hash-
ing to approximate search problems. In their work, unary repre-
sentation of integers were used as hash functions to generate bi-
nary hash codes. Later, Charikar [11] proposed to use random
hyperplanes as hash functions. These random hyperplanes were
drawn from multi-dimensional Gaussian distributions, and gener-
ated hashcodes that could retain the locality sensitive property for
cosine similarity. Datar et al. [13] proposed a variant of random hy-
perplane method for the Euclidean distance. Athitsos et al. [8] em-
ployed L1-embedding for a similar purpose. Distance-based Hash-
ing [9] generalizes this technique to non-Euclidean distances.

Recent work in this area, however, has started to exploit sta-
tistical optimization techniques to learn more intelligent hash
functions. These techniques, known as learning-based or data-
dependent hashing, take the distribution of data into account in or-
der to obtain more effective hash functions. A notable approach
in this category is Spectral Hashing [56], which motivated others
including Binary Reconstructive Embedding [32], Anchor Graph
Hashing [38], Random Maximum Margin Hashing [27], Spheri-
cal Hashing [21], Compressed Hashing [36], Complementary Pro-
jection Hashing [26], and Data Sensitive Hashing [16]. All these
methods use different motivations to learn more accurate hashcodes
for the kNN task. See Table 3 for a summary.

There are several techniques developed for efficient indexing and
querying of the hashcodes generated by LSH [15,39,47,51,53,58].
As explained in Section 2.1 these methods belong to the Hamming
Search stage; thus, they are orthogonal to our contribution. In our
implementation, we employed Multi-Index Hashing (MIH) [42], as
the state-of-the-art in this area.

Finally, it is important to note that using alternative represen-
tations of the original data points for hashing is not a new topic.
Different approaches have used different representations to achieve
their own motivations. For instance, AGH [38] used one to speed-
up SH [56], and CH [36] used one to obtain sparse representations.
When we used their representations in place of ours, the resulting

154

algorithm produced a much worse performance. Finally, in ma-
chine learning, non-linear transformations have also been used for
learning distance metrics for kNN classifiers [29, 40].

6. CONCLUSION AND FUTURE WORK
We have proposed Neighbor-Sensitive Hashing, a mechanism for

improving approximate kNN search based on an unconventional
observation that magnifying the Hamming distances among neigh-
bors helps in their accurate retrieval. We have formally proven the
effectiveness of this novel strategy. We have also shown empir-
ically that NSH yields better recall than its state-of-the-art coun-
terparts given the same number of hash bits. NSH is a “drop-in
replacement” for existing hashing methods. As a result, any appli-
cation that chooses NSH can either enjoy an improved search qual-
ity, or trade NSH’s recall advantage for a significant speed-up (i.e.,
reduced time and memory footprint by using shorter hashcodes).

We have several goals for future work. First, we aim to build a
highly-parallel in-memory database system that supports extremely
fast kNN operations. Second, we plan to develop a hashing tech-
nique that can handle more generic distance metrics including
cosine-similarity and earth mover’s distance.

7. ACKNOWLEDGEMENTS
We would like to thank Jia Deng and Suchee Shah for their help-

ful feedback and suggestions. This work was funded by NSF grants
IIS-1064606 and ACI-1342076.

8. REFERENCES
[1] Presto: Distributed SQL query engine for big data.

https://prestodb.io/docs/current/release/release-0.61.html.
[2] SnappyData. http://www.snappydata.io/.
[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden,

B. Mozafari, and I. Stoica. Knowing when you’re wrong: Building fast and
reliable approximate query processing systems. In SIGMOD, 2014.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: queries with bounded errors and bounded response times on very
large data. In EuroSys, 2013.

[5] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In FOCS, 2006.

[6] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
In SODA, 2007.

[7] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient time series
search and retrieval. In EDBT, 2008.

[8] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff. Query-sensitive
embeddings. TODS, 2007.

[9] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest neighbor
retrieval using distance-based hashing. In ICDE, 2008.

[10] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based
image classification. In CVPR, 2008.

[11] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, 2002.

[12] B. Cui, B. C. Coi, J. Su, and K.-L. Tan. Indexing high-dimensional data for
efficient in-memory similarity search. TKDE, 2005.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SoCG, 2004.

[14] A. Dobra, C. Jermaine, F. Rusu, and F. Xu. Turbo-charging estimate
convergence in dbo. PVLDB, 2(1), 2009.

[15] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based
on dynamic collision counting. In SIGMOD, 2012.

[16] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. Dsh: data sensitive hashing for
high-dimensional k-nnsearch. In SIGMOD, 2014.

[17] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via
hashing. In VLDB, 1999.

[18] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to
learning binary codes. In CVPR, 2011.

[19] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, 1984.

[20] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Compact hashing with
joint optimization of search accuracy and time. In CVPR, 2011.

[21] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hashing. In
CVPR, 2012.

[22] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang. Locally linear hashing for extracting
non-linear manifolds. In CVPR, 2014.

[23] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An
adaptive b+-tree based indexing method for nearest neighbor search. TODS,
2005.

[24] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. TPAM, 2011.

[25] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion
vectors: re-rank with source coding. In ICASSP, 2011.

[26] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, and X. Li. Complementary
projection hashing. In ICCV, 2013.

[27] A. Joly and O. Buisson. Random maximum margin hashing. In CVPR, 2011.
[28] S. Kashyap and P. Karras. Scalable knn search on vertically stored time series.

In SIGKDD, 2011.
[29] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger. Non-linear

metric learning. In NIPS, 2012.
[30] D. Keysers, C. Gollan, and H. Ney. Local context in non-linear deformation

models for handwritten character recognition. In ICPR, 2004.
[31] Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender

Systems Handbook. 2011.
[32] B. Kulis and T. Darrell. Learning to hash with binary reconstructive

embeddings. In NIPS, 2009.
[33] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. TPAM, 2012.
[34] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia

information retrieval: State of the art and challenges. TOMCCAP, 2006.
[35] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An index structure for

high-dimensional data. The VLDB Journal, 1994.
[36] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li. Compressed hashing. In CVPR, 2013.
[37] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with

kernels. In CVPR, 2012.
[38] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In ICML,

2011.
[39] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh:

efficient indexing for high-dimensional similarity search. In VLDB, 2007.
[40] R. Min, D. Stanley, Z. Yuan, A. Bonner, Z. Zhang, et al. A deep non-linear

feature mapping for large-margin knn classification. In ICDM, 2009.
[41] B. Mozafari and N. Niu. A handbook for building an approximate query engine.

IEEE Data Engineering Bulletin, 2015.
[42] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with

multi-index hashing. In CVPR, 2012.
[43] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for

large mapreduce jobs. PVLDB, 4, 2011.
[44] Y. Park. Supplementary material for neighbor-sensitive hashing.

http://www-personal.umich.edu/~pyongjoo/vldb2016sup.pdf.
[45] R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of

Approximate Reasoning, 2009.
[46] H. Sandhawalia and H. Jégou. Searching with expectations. In ICASSP, 2010.
[47] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for fast

similarity search. PVLDB, 2012.
[48] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative filtering

recommender systems. In The adaptive web. 2007.
[49] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with

parameter-sensitive hashing. In ICCV, 2003.
[50] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based

image retrieval at the end of the early years. TPAM, 2000.
[51] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. Srs: Solving c-approximate

nearest neighbor queries in high dimensional euclidean space with. PVLDB,
2014.

[52] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden,
and P. Dubey. Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. PVLDB, 2013.

[53] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, 2009.

[54] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. TPAM, 2008.

[55] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In VLDB, 1998.

[56] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2009.
[57] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary hashing for

approximate nearest neighbor search. In ICCV, 2011.
[58] C. Yu, B. C. Ooi, K.-L. Tan, and H. Jagadish. Indexing the distance: An

efficient method to knn processing. In VLDB, 2001.
[59] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new

method for fast error estimation in approximate query processing. In SIGMOD,
2014.

[60] H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest
neighbor classification for visual category recognition. In CVPR, 2006.

155

https://prestodb.io/docs/current/release/release-0.61.html
http://www.snappydata.io/
http://www-personal.umich.edu/~pyongjoo/vldb2016sup.pdf

	Introduction
	Hashing-based kNN Search
	Workflow
	Hash Function Design

	Neighbor-Sensitive Hashing
	Formal Verification of Our Claim
	Neighbor-Sensitive Transformation
	Our Proposed NST
	Our NSH Algorithm

	Experiments
	Setup
	Validating Our Main Claims
	Hashcode Length and Search Accuracy
	Search Time and Search Accuracy
	Indexing Speed
	The Effect of Parameters on NSH
	Neighbor Sensitivity

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

