Visualization-Aware Sampling
for Very Large Databases

Yongjoo Park, Michael Cafarella, Barzan Mozafari
University of Michigan, Ann Arbor, USA
pyongjoo@umich.edu, michjc @umich.edu, mozafari@umich.edu

Abstract—Interactive visualizations are crucial in ad hoc
data exploration and analysis. However, with the growing num-
ber of massive datasets, generating visualizations in interactive
timescales is increasingly challenging. One approach for improv-
ing the speed of the visualization tool is via data reduction in order
to reduce the computational overhead, but at a potential cost in
visualization accuracy. Common data reduction techniques, such
as uniform and stratified sampling, do not exploit the fact that
the sampled tuples will be transformed into a visualization for
human consumption.

We propose a visualization-aware sampling (VAS) that guar-
antees high quality visualizations with a small subset of the
entire dataset. We validate our method when applied to scatter
and map plots for three common visualization goals: regression,
density estimation, and clustering. The key to our sampling
method’s success is in choosing a set of tuples that minimizes
a visualization-inspired loss function. While existing sampling
approaches minimize the error of aggregation queries, we focus
on a loss function that maximizes the visual fidelity of scatter
plots. Our user study confirms that our proposed loss function
correlates strongly with user success in using the resulting
visualizations. Our experiments show that (i) VAS improves
user’s success by up to 35% in various visualization tasks, and
(ii) VAS can achieve a required visualization quality up to 400x
faster.

I. INTRODUCTION

Data scientists frequently rely on visualizations for analyz-
ing data and gleaning insight. For productive data exploration,
analysts should be able to produce ad hoc visualizations in
interactive time (a well-established goal in the visualization
and human-computer interaction (HCI) community [1]-[10]).
However, with the rise of big data and the growing number of
databases with millions or even billions of records, generating
even simple visualizations can take a considerable amount of
time. For example, as reported in Figure 2, we found that
the industry standard Tableau visualization system takes over
4 minutes on a high-end server to generate a scatterplot for
a 50M-tuple dataset that is already resident in memory. (see
Section VI-A for experimental details.) On the other hand, HCI
researchers have found that visualizations must be generated in
500ms to 2 seconds in order for users to stay engaged and view
the system as interactive [11]-[13]. Unfortunately, dataset sizes
are already growing faster than Moore’s Law [14] (the rate at
which our hardware is speculated to improve), so technology
trends will likely exacerbate rather than alleviate the problem.

This paper addresses the problem of interactive visualiza-
tion in the case of scatterplots and map plots. Scatterplots are
a well-known visualization technique that represent database
records using dots in a 2D coordinate system. For example, an

PREPRESS PROOF FILE

(a) Stratified Sampling
(overview)

(b) Stratified Sampling
(zoom-in)

latitude
latituce

(c) VAS (overview)

(d) VAS (zoom-in)

Fig. 1: Samples generated by fined-grained stratified sampling
and our approach respectively. When the entire range is visual-
ized, both methods seem to offer the visualization of the same
quality. However, when zoomed-in views were requested, only
our approach retained important structures of the database.

engineer may investigate the relationship between time-of-day
and server-latency by processing a database of Web server
logs, setting time-of-day as the scatterplot’s X-axis and the
server-latency as its Y-axis. Map plots display geographically-
tied values on a 2D plane. Figure 1(a) is an example of a map
plot, visualizing a GPS dataset from OpenStreetMap project
with 2B data points, each consisting of a latitude, longitude,
and altitude triplet (altitude encoded with color).

One approach for reducing the time involved in visualiza-
tion production is via data reduction [15]. Reducing the dataset
reduces the amount of work for the visualization system (by
reducing the CPU, I/O, and rendering times) but at a potential
cost to the quality of output visualization. Effective data
reduction will shrink the dataset as much as possible while still
producing an output that preserves all important information
of the original dataset. Sampling is a popular database method
for reducing the amount of data to be processed, often in
the context of approximate query processing [16]-[24]. While
uniform (random) sampling and stratified sampling are two

CAUSAL PRODUCTIONS

o E
E]
= —A— MathGL
N .
= —e— Tableau H
| L L |

10M 100M 500M

Dataset Size (Number of data points)

Fig. 2: The latency for generating scatter plot visualizations
using Tableau and MathGL (a library for scientific graphics).

of the most common and effective approaches in approximate
query processing [25], they are not well-suited for generating
scatter and map plots: they can both fail to capture important
features of the data if they are sparsely represented [4].

Figure 1 depicts an example using the Geolife dataset [26].
This dataset contains GPS-recorded locations visited by the
people living in and around Beijing. In this example, we
visualized 100K datapoints using both stratified sampling and
our approach. For stratified sampling, we created a 316-by-
316 grid and set the strata sizes (the number of datapoints in
each cell) as balanced as possible across the cells created by
the grid. In the zoomed-out overview plots, the visualization
quality of the two competing methods seem nearly identical;
however, when a zoomed-in plot is generated, one can observe
that our proposed method delivers significantly richer informa-
tion.

Previous Approaches — Architecturally, our system is similar
to ScalaR [15], which interposes a data reduction layer be-
tween the visualization tool and a database backend; however,
that project uses simple uniform random sampling. Researchers
have attempted a number of approaches for improving visu-
alization time, including binned aggregation [3]-[5], parallel
rendering [9], [10], and incremental visualization [7], [8].
These methods are orthogonal to the one we propose here.

Our Goals — This paper tackles the technical challenge of
creating a sampling strategy that will yield useful and high-
quality scatter and map plots at arbitrary zooming resolutions
with as few sampled tuples as possible. Figure 1(d) shows
the plot generated by our proposed method, which we call
Visualization-Aware Sampling (VAS). Using the same number
of tuples as random and stratified sampling, VAS yields a
much higher-fidelity result. The use of VAS can be specified
as part of the queries submitted by visualization tools to the
database. Using VAS, the database returns an approximate
query answer within a specified time bound using one of
multiple pre-generated samples. VAS chooses an appropriate
sample size by converting the specified time bound into the
number of tuples that can likely be processed within that
time bound. VAS is successful because it samples data points
according to a visualization-oriented metric that correlates well
with user success across a range of scatter and map plot tasks.

Contributions — We make the following contributions:

e We define the notion of VAS as an optimization problem
(Section III).

e We prove that the VAS problem is NP-hard and an offer
efficient approximation algorithm. We establish a worst-

Interactive Tool-

Visualization Generated
RequestsI Queries >
Visualization Relational
1 < Application Database
Visualization Relational
User Bitmap Query Results

Fig. 3: Standard model of user interaction with the combined
visualization and database system.

case guarantee for our approximate solution (Section IV).

o In a user study, we show that our VAS is highly correlated
with the user’s success rate in various visualization tasks.
We also evaluate the efficiency and effectiveness of our
approximation algorithm over several datasets. We show
that VAS can deliver a visualization that has equal quality
with competing approaches, but using up to 400x fewer
data points. Alternatively, if VAS can process an equal
number of data points as competing methods, it can
deliver a visualization with a significantly higher quality
(Section VI).

Finally, we cover related work in Section VII and conclude
with a discussion of future work in Section VIII.

II. SYSTEM OVERVIEW
A. Software Architecture Model

Figure 3 shows the software architecture model that we
focus on in this paper. This is a standard architecture supported
by the popular Tableau system [27]. It is also similar to
ScalaR’s “dynamic reduction” software architecture [15]. The
user interacts with a visualization tool to describe a desired
visualization — say, a scatterplot of Web server time vs
latency. This tool has been configured to access a dedicated
RDBMS, and the schema information from the RDBMS is
visible in the user’s interaction with the tool. For example, in
Tableau, a user can partially specify a desired scatterplot by
indicating a column name (say, server latency) from a list of
options populated from the RDBMS metadata. The user must
not only choose just which fields and ranges from the database
are rendered, but also choose image-specific parameters such
as visualization type, axis labels, color codings, and so on.

Once the user has fully specified a visualization, the tool
requests the necessary data by generating the appropriate
SQL query and submitting it to the remote RDBMS. The
RDBMS then returns the (relational) query results back to the
visualization tool. Finally, the tool uses the fetched records to
render the final visualization bitmap, which is displayed to the
user. During these last three steps, the user waits idly for the
visualization tool and the RDBMS.

When large datasets are being visualized, extremely long
waits can negatively affect the analyst’s level of engagement
and ability to interactively produce successive visualizations
[2], [6], [11]-[13]. As reported in Figure 2, our own experi-
ments show that the industry-standard Tableau tool can take
more than four minutes to produce a scatterplot on just S0M
tuples fetched from an in-memory database.

Note that our sampling approach is not limited to the
software architecture in Figure 3, as reducing the number of
visualized records almost always brings performance benefits.
Thus, even if engineers decide to combine the visualization and
data management layers in the future, sampling-based methods
will still be useful.

B. Data Sampling

Approximate query processing via sampling is a popular
technique [17], [19]-[24], [28] for reducing the number of
returned records, and random sampling or stratified sampling
are two well-known methods for this. When using these
methods, the visualization tool’s query is run over a sampled
table(s) (or simply, a sample) that is smaller than, and derived
from, the original table(s). The sample(s) can be maintained
by the same RDBMS. Since sampling approaches incur an ad-
ditional overhead to produce the sample(s), these are typically
performed in an offline manner [16], [21]: Once the sample is
created and stored in the database, they can be interactively
queried and visualized many times. (A sample can also be
periodically updated when new data arrives [28].)

There is, of course, a tradeoff between output result quality
and the size of the sample1 (and thus, runtime). In the limit,
a random sample of 100% of the original database will
produce results with perfect fidelity, but will also not yield
any reduction in runtime. Conversely, a sample of 0% of the
database will yield a result with no fidelity, albeit very quickly.
The exact size of the sample budget will be determined by
deployment-specific details: the nature of the application, the
patience of the user base, the amount of hardware resources
available, and so on. As a result, the usefulness of a sampling
method must be evaluated over a range of sample budgets,
with a realistic measure of final output quality. Choosing a
correct sampling budget is a known issue in the approximate
query processing literature [16]. Of course, in any specific real-
world deployment, we expect that the application will have a
fixed maximum runtime or the size of a sample that the system
must observe.

C. Visualization Quality

In this work, we focus on the production of scatterplots
(including map plots, such as Figure 1) as one of the most
popular visualization techniques. We leave other visualization
types (such as bar charts, line charts, chloropleths, and so on)
to future work.

Since the final value of a visualization is how much
it helps the user, evaluating any sampling method means
examining how users actually employ the visualizations they
produce. Schneiderman, et al. proposed a taxonomy for infor-
mation visualization types [29] and compiled some of common
visualization-driven goals/tasks. Their list of goals included
(i) regression, (ii) density estimation, and (iii) clustering. Our
system aims to yield visualizations that help with each of
these popular goals. We make no claim about other user goals
and tasks for visualization, such as pattern finding and outlier
detection, which we reserve for future work (although we have

Here, the size of a sample means the number of the data points contained
in the sample.

anecdotal evidence to suggest our system can address some of
these tasks, t0o).

In this context, regression is the task of (visually) esti-
mating the value of dependent variables given the value of
independent variables. For example, if we want to know the
temperature of the location specified by a pair of latitude
and longitude coordinates, it belongs to the regression task.
Density estimation is the task of understanding the distribution
of the original data. For instance, one can use a map plot
to understand the geometric area with the most cell phone
subscribers. Clustering is a task that assigns data elements
into distinct sets such that the data in the same group tend
to be close to one another, while data in different groups are
comparatively far apart.

Schneiderman, et al.’s list also included goals/tasks that
are either poor fits for scatter plots, or are simply outside
the scope of what we aim to accomplish in this paper: shape
visualization (DNA or 3D structures), classification, hierarchy
understanding, and community detection in networks. We
explicitly do not attempt to produce visualizations that can
help users with these tasks.

D. Our Approach

Our proposed method proceeds in two steps: (1) during
offline preprocessing, we produce a sample that enable fast
queries later, and (2) at query time, we choose a sample whose
size is appropriate for the specific query.

Similar to any offline indexing technique, VAS also re-
quires (1) the user to make choices about indexed columns and
(2) an upfront computational work to speed up future queries.
In other words, VAS can be considered as a specialized
index designed for visualization workloads (e.g., Tableau).
Note that, currently, even if users want to use offline indexing,
there is no indexing technique that ensures fast and accurate
visualizations, a problem solved by VAS.

Indexed columns can be chosen in three ways:

1) manually, by the DBA;

2) based on the most frequently visualized columns [16],
[30]; or

3) based on statistical properties of the data [31].

Among these approaches, the second one is the simplest, works
reasonably well in practice, and can be made resilient against
workload changes [32]. Furthermore, note that visualization
workloads, especially those supported by BI tools and SQL
engines, are similar to exploratory SQL analytics (i.e., group-
ing, filtering, aggregations). Real-world traces from Facebook
and Conviva [16] reveal that 80-90% of exploratory queries
use 5-10% of the column combinations. Moreover, VAS only
requires frequently visualized column pairs, not groups or
filters.

The core innovation of our work is that we generate a
sample according to a visualization-specific metric. That is, we
believe that when a sample is generated according to the metric
we propose in Section III below, the user will be able to ac-
complish their goals from Section II-C above (i.e., regression,
density estimation, clustering) using the resulting visualization,
even with a small number of rendered data points. We do not

claim that our method will work for other visualization types,
or even for other visualization goals. Indeed, our method of
generating a sample could in principle be harmful to some
goals (such as community detection tasks that require all
members of a latent set to be sampled). However, scatter
plots, map plots, and the three visualization goals we focus
on are quite widespread and useful. Furthermore, modifying
a visualization tool to only use our sampling method if a
user declares an interest in one of these goals would be a
straightforward task.

III. PROBLEM FORMULATION

The first step in our approach to obtain a good sample
for scatter plot visualizations is defining a mathematical loss
function that is closely correlated with the loss of visualization
quality/utility from the user’s perspective. Once we define a
function that captures the visualization utility, our goal will be
to solve an optimization problem; that is, finding a sample of a
given size that has the minimum value for the loss function. In
the rest of this section, we formally define our loss function and
optimization problem. The algorithm for solving the derived
optimization problem will be presented in Section IV. Also,
in Section VI-B, we will report a comprehensive user study
confirming that minimizing our loss function does indeed yield
more useful visualizations for various user tasks.

We start our problem formulation by defining notations.
We denote a dataset D of N tuples by D = {t1,ta,...,tN}.
Each tuple ¢; encodes the coordinate at which the associated
point is displayed. For example, ¢; is a pair of longitude and
latitude in a map plot. A sample S is a subset of the dataset D
and is denoted by S = {s1, s9,..., Sk }. Naturally, s; is one
of t; where j = 1,..., N. The size of the sample S' (which
is denoted by K) is pre-determined based on the interactive
latency requirement (see Section II-B) and is given as an input
to our problem.

In designing our loss function, the objective is to mea-
sure the visualization quality degradation originating from the
sampling process. The traditional goal of sampling in database
systems is to maximize the number of tuples that match a selec-
tion predicate, particularly those on categorical attributes [16].
In contrast, the selection predicates of a scatter/map plot are
on a continuous range, for which traditional approaches (e.g.,
uniform or stratified sampling) may not lead to high quality
visualizations.

Therefore, to develop a more visualization-focused sam-
pling technique, we first imagine a 2D space on which a scatter
plot is displayed, and let denote any of the points on the
space. To measure the visualization quality loss, we make the
following observations:

1) The visualization quality loss occurs, as the sample S
does not include all tuples of D.

2) The quality loss at x is reduced as the sample includes
points at or near z — two plots drawn using the original
dataset (D) and the sample (S) might not look identical
if S does not include a point at x whereas D includes
one at x, but they will look similar if the sample contains
points near x.

3) When there are already many points at or near x, choosing
more points in that neighborhood does not significantly
enhance a visualization.

To express the above observations in a formal way, we
consider the following measure for visualization quality degra-
dation at the point x:

1
Zsies K’(‘T7 Si) .

where k(x,s;) is the function that captures the proximiry
between the two points, z and s;. In this paper, we use
k(x, 8;) = exp(—||x — s;]|%/€?) (see footnote? for ¢) although
other functions can also be used for x if the function is a
decreasing convex function of ||z — s;|| — the convexity is
needed due to the third observation we described above. The
equivalent quality metric can also be obtained by considering
the problem as the regression problem that aims to approximate
the original tuples in D using the sample S. See our technical
report for an alternative derivation [34]. Note that the above
loss value is reduced if there exists more sampled points near
x where the proximity to x is captured by x(z,s;). In other
words, the visualization quality loss at x is minimized if .S
includes as many points as possible at and around z.

point-loss(z) =

Note that the above loss function is defined for a single
point x on the space on which a scatter/map plot is visualized,
whereas the space on which a scatter plot is drawn has many of
those points. As a result, our goal should be to obtain a sample
S that minimizes the combined loss of all possible points on
the space. Due to the reason, our objective is to find a sample
S that minimizes the following expression:

Loss(S) = /point-loss(a:) dx = /w dz (1)

Here, the integration is performed over the entire 2D space.

Now, we perform several mathematical tricks to obtain an
effectively equivalent but a more tractable problem, because
the exact computation of the above integration requires an
computationally expensive method such as a Monte Carlo
experiment with a large number of points. Using a second-
order Taylor expansion, we can obtain a simpler form that
enables an efficient algorithm in the next section:

min / m da

- min/ 1= (3wl s0) = 1)+ (X hla, 50) — 1)? da
- min/(z Ao, 50))? =33 K(w, 51) de

> k(@ si)k(x, s;) da

Si,Sj es

= min

To obtain the last expression, we used the fact that the
term [> r(z,s;) dz is constant since £ (x, s;) is a similarity
function and we are integrating over every possible z, i.e.,
J > k(x,s;) dx has the same value regardless of the value of
s;. For the same reason, [>"[k(x, s;)]* du is also constant. By

2In our experiments, we set € &~ max(||z; —x|)/100 but there is a theory
on how to choose the optimal value for € as the only unknown parameter [33].

changing the order of integration and summation, we obtain
the following optimization formulation, which we refer to as
Visualization-Aware Sampling (VAS) problem in this paper.

Definition 1 (VAS). Given a fixed K, VAS is the problem of
obtaining a sample S of size K as a solution to the following
optimization problem:

min E
SCD; |S|=K iy
5;,5;€8;1<]

R(Si, Sj)

where 7(s;, ;) = /fi(x,si)m(x,sj)dx

In the definition above, we call the summation term
> (s, s;) the optimization objective. With our choice of
the proximity function, (s;, s;) = exp(—||s; — s;||*/€%), we
can obtain a concrete expression for &(s;,s;): exp(—||s; —
s;]1?/2€?), after eliminating constant terms that do not affect
the minimization problem. In other words, &(s;, s;) is in the
same form as the original proximity function. In general,
K(si,s;) is another proximity function between the two points
s; and s; since the integration for &(s;, s;) tends to have a
larger value when the two points are close. Thus, in practice,
it is sufficient to use any proximity function directly in place
of ;‘%(Si, S j).

In the next section, we show that the VAS problem defined
above is NP-hard and we present an efficient approximation
algorithm for solving this problem. Later in Section VI-B we
show that by finding a sample S that minimizes our loss
function, we obtain a sample that, when visualized, best allows
users to perform various visualization tasks.

IV. SOLVING VAS

In this section, we focus on solving the optimization
problem derived in the previous section to obtain an optimal
sample S. In the following section, we also describe how to
extend the sample obtained by solving VAS to provide a richer
set of information.

A. Hardness of VAS
First, we analyze the hardness of VAS formally.
Theorem 1. VAS (Problem 1) is NP-hard.

Proof: We show the NP-hardness of Problem 1 by reduc-
ing maximum edge subgraph problem to VAS.

Lemma 1. (Maximum Edge Subgraph) Given a undirected
weighted graph G = (V, E), choose a subgraph G’ = (V', E’)
with |V’| = K that maximizes

Z w(u,v)

(u,v)CE’

This problem is called maximum edge subgraph, and is NP-
hard [35].

To reduce the above problem to VAS, the following
procedure is performed: map ¢-th vertex v; to i-th instance
x;, and set the value of R (z;,2;) to Wpas — w(v;,v;), Where
Wmar = MaXy, ;v W(v;,v;). The reduction process takes

O(|E| + |V]). Once the set of data points that minimize
> si,s;x Fi(si, 57) is obtained by solving VAS, we choose
a set of corresponding vertices, and return them as an answer
to the maximum edge subgraph problem. Since the maximum
edge subgraph problem is NP-hard, and the reduction process
takes a polynomial time, VAS is also NP-hard. []

Due to the NP-hardness of VAS, obtaining an exact solu-
tion to VAS is prohibitively slow, as we will empirically show
in Section VI-D. Thus, in the rest of this section, we present
an approximation algorithm for VAS (Section IV-B), followed
by additional ideas for improvement (Section IV-B).

B. The Interchange Algorithm

In this section, we present our approximation algorithm,
called Interchange. The Interchange algorithm starts from a
randomly chosen set of size K and performs a replacement
operation with a new data point if the operation decreases the
optimization objective (i.e., the loss function). We call such a
replacement, i.e., one that decreases the optimization objective,
a valid replacement. In other words, Interchange tests for valid
replacements as it sequentially reads through the data points
from the dataset D.

One way to understand this algorithm theoretically is by
imagining a Markov network in which each state represents a
different subset of D where the size of the subset is K. The
network then has a total of (IE()) states. The transition between
the states is defined as an exchange of one of the elements in
the current subset S with another element in D — S. It is easy
to see that the transition defined in this way is irreducible, i.e.,
any state can reach any other states following the transitions
defined in such a way. Because Interchange is a process that
continuously seeks a state with a lower optimization objective
than the current one, Interchange is a hill climbing algorithm
in the network.

Expand/Shrink procedure — Now we state how we can
efficiently perform valid replacements. One approach to finding
valid replacements is by substituting one of the elements in S
with a new data point whenever one is read in, then computing
the optimization objective of the set. For this computation, we
need to call the proximity function O(K?) times as there are
K elements in the set, and we need to compute a proximity
function for every pair of elements in the set. This computation
should be done for every element in S. Thus, to test for valid
replacements, we need O(K?®) computations for every new
data point.

A more efficient approach is to consider only the part of
the optimization objective for which the participating elements
are responsible. We formally define the notion of responsibility
as follows.

Definition 2. (Responsibility) The responsibility of an element
s; in set S is defined as:

tpss) =5 O

s;E€S, j#i

I%(Si, Sj).

Using the responsibility, we can speed up the tests for
valid replacements in the following way. Whenever considering
a new data point ¢, take an existing element s; in S, and

Algorithm 1: Interchange algorithm.

input : D = {t1,t2,...,tn}
output: A sample S of size K

// set for pairs of (item, responsibility)
R+ o
foreach t; € D do
if |R| < K then R <+ Expand (R,t;)
else
R <+ Expand (R,t;)
R < Shrink (R)
end
end
S < pick the first item of every pair in R
return S

R NN N R W N

[
<

11 subroutine Expand (R,t)

12 rsp < 0 // responsibility
13 foreach (s;, ;) € R do

14 l < R(t,s:)

15 ri < T + l

16 rsp < rsp+1

17 end

18 insert (¢,rsp) into R

19 return R

20 end

21 subroutine Shrink (R)

22 remove (t,r) with largest r from R
23 foreach (s;, ;) € R do

24 ‘ Ti < T — Fi(t, Si)

25 end
26 return R
27 end

compute the responsibility of ¢ in the set S — {s;} + {t}.
This computation takes O(K) times. It is easy to see that
if the responsibility of ¢ in S — {s;} + {t} is smaller than
the responsibility of s; in the original set S, the replacement
operation of s; with the new data point ¢ is a valid replacement.
In this way, we can compare the responsibilities without
computing all pairwise proximity functions. Since this test
should be performed for every element in S, it takes a total of
O(K?) computations for every new data point.

However, it is possible to make this operation even faster.
Instead of testing for valid replacements by substituting the
new data point ¢ for one of the elements in S, we simply
expand the set S by inserting ¢ into the set, temporarily
creating a set of size K + 1. In this process, the responsibility
of every element in S is updated accordingly. Next, we find
the element with the largest responsibility in the expanded set
and remove that element from the set, shrinking the set size
back to K. Again, the responsibility of every element in S
should be updated. Algorithm 1 shows the pseudo-code for
this approach. The theorem below proves the correctness of
the approach.

Theorem 2. For s; € S, if replacing s; with a new element
t reduces the optimization objective of S, applying Expand
followed by shrink in Algorithm 1 replaces s; with t.
Otherwise, S remains the same.

Proof: Let &(S) indicate 3 . . g, ;R(si;s;). Also,
define S_ = S — {s;} and S, = S + {t}. We show that

if the optimization objective before the replacement, namely
R(S_ + {s;}), is larger than the optimization objective after
the replacement, namely %(S_ + {t}), then the responsibility
of the existing element s; in an expanded set, rspg, (si), is
also larger than the responsibility of the new element ¢ in the
expanded set, rspg, (¢). The proof is as follows:

R(S_ + {si}) > &(S_ + {t})
<~ Z I%(Si75j)> Z IZJ(t,Sj)
s;E€ES_ s; €8
= R(sit)+ > F(siys;) > A(sit)+ Y At s))

SjES, SjES,
<= 18pg, (8i) > 15pg, (1)

Since the responsibility of s; is larger than that of ¢ in the
expanded set S, the shrink routine will remove s;. If no
element exists whose responsibility is larger than that of ¢,
then ¢ is removed by this routine and S remains the same. B

In both the Expand and Shrink routines, the responsibility
of each element is updated using a single loop, so both
routines take O(K) computations whenever a new data point
is considered. Thus, scanning the entire dataset and applying
these two routines will take O(NK) running time.

The Interchange algorithm, if it runs until no replacement
decreases the optimization objective, has the following theo-
retical bound.

Theorem 3. Let’s say that the sample obtained by Interchange
is Sint, and the optimal sample is S,p;. The quality of Sy,
or the optimization objective, has the following upper bound:

1
- R(Siasl)
K(K - 1) SijG%ﬁ 1<j ’
1 1 R
SitRmon. 2)

5i,8;€Sopt; 1<J

In the expression above, we compare the difference between
the averaged optimization objectives.

Proof: Due to the submodularity of VAS, which we
show in our technical report [34], we can apply the result of
Nembhauser, et al. [36] and obtain the result above.]

Ideally, Interchange should be run until no more valid
replacements are possible. However, in practice, we observed
that even running the algorithm for half an hour produces
a high quality sample. When more time is permitted, the
algorithm will continuously improve the sample quality until
convergence.

Speed-Up using the Locality of Proximity function — Prox-
imity functions such as exp(—||z — y||?/€2) have a property
called locality. The locality property of a proximity function
indicates that its value becomes negligible when the distance
between the two data points is not close—an idea also used in
accelerating other algorithms [37]. For example, our proximity
function value is 1.12 x 107 when the distance between the
two points is 4e; thus, even though we ignore pairs whose
distance is larger than a certain threshold, it will not affect
the final outcome much. Exploiting this property, we can
make the Expand and Shrink operations much faster by only

considering the data points that are close enough to new data
points. For a proximity check, our implementation used R-tree.

V. EXTENDING VAS: EMBEDDING DENSITY

VAS aims to minimize a visualization-driven quality loss,
yielding scatter/map plots that are highly similar to those
generated by visualizing the entire dataset. However, we need
a different strategy if the user’s intention is to estimate the
density or find clusters from the scatter plot. This is because
humans cannot visually distinguish multiple data points on a
scatter plot if they are duplicates or extremely close to one
another. This can make it hard to visually estimate the number
or density of such data points. One way to address this is to
account for the number of near-duplicate points in each region.
For example, points drawn from a dense area can be plotted
with a larger legend size or some jitter noise can be used
to provide additional density in the plot. In other words, the
font size of each point or the amount of jitter noise will be
proportional to the original density of the region the point is
drawn from. VAS can be easily extended to support such an
approach, as follows:

1) Obtain a sample using our algorithm for VAS.
2) Attach a counter to every sampled point.

3) While scanning the dataset once more, increase a counter
if its associated sampled point is the nearest neighbor of
the data point that was just scanned.

With these extra counters, we can now visualize the density
of areas (each of which is represented by its nearest sampled
point), e.g., using different dot sizes or by adding jitter noise
in proportion to each point’s density. (See Section VI-B for a
scatter plot example.)

Note that the above process only adds an extra column
to the database and, therefore, does not alter our basic In-
terchange algorithm for VAS. Also, this extension does not
require any additional information from users.

Note that, for the above density embedding process, a
special data structure such as a k-d tree [38] can be used to
make the nearest neighbor tests more efficient. This is done
by using the sample obtained in the first pass to build a k-d
tree, then using the tree to identify the nearest data points in
the sample during the second pass. Since k-d trees perform
the nearest neighbor search in O(log K), the overall time
complexity for the second pass is O(N log K).

VI. EXPERIMENTS

We run four types of experiments to demonstrate that VAS
and VAS with density embedding can produce high-quality
plots in less time than competing methods.

1) We study the runtime of existing visualization systems
that were introduced in Figure 2.

2) In a user study, we show that users were more successful
when they used visualizations produced by VAS than
with other methods. We also show that user success and
our loss function were negatively correlated (that is, users
were successful when our loss function is minimized).

3) We show that VAS could obtain a sample of a fixed
quality level (that is, loss function level) with fewer data

103

s E E| ET T T I
g = . = -
< 107 E E E
o E E E E
g r] r 1
ST = = = —x— Geolife E
g F g F -4- SPLOM |
10° | | | | | . . .

M 5M 10M 50M M 5M 10M 50M

Sample Size Sample Size

(a) Tableau (b) MathGL

Fig. 4: Time to produce plots of various sizes using existing
visualization systems.

points than competing methods. We demonstrate this over
a range of different datasets and sample quality levels.

4) We empirically study the Interchange algorithm: we com-
pare its quality and runtime to those of the exact method,
examine the relationship between runtime and sample
quality, and investigate the impact of our optimization
on runtime.

All of our experiments were performed using two datasets:
the Geolife dataset and the SPLOM dataset. The Geolife
dataset was collected by Microsoft Research [26]. It contained
latitude, longitude, elevation triples from GPS loggers, recorded
mainly around Beijing. Our full database contained 24.4M
tuples. We also used SPLOM, a synthetic dataset generated
from several Gaussian distributions that had been used in
previous visualization projects [4], [39]. We used parameters
identical to previous work, and generated a dataset of five
columns and 1B tuples. We performed our evaluations on an
Amazon EC2 memory instance (r3.4xlarge) which contained
16 cores and 122G memory.

A. Existing Systems are Slow

Our discussions in this paper are based on the idea that
plotting a scatter plot using an original dataset takes an
unacceptably long period of time. We tested two state-of-the-
art systems: Tableau [40] and MathGL [41]. Tableau is one of
the most popular commercial visualization software available
on Windows, and MathGL is an open source scientific plotting
library implemented in C++. We tested both the Geolife and
SPLOM datasets. The results are shown in Figure 4.

In both systems, the visualization time includes (1) the time
to load data from SSD storage (for MathGL) or from memory
(for Tableau) and (2) the time to render the data into a plot. We
can see that even when the datasets contained just 1M records,
the visualization time was more than the 2-second interactive
limit. Moreover, visualization time grew linearly with sample
size.

B. User Success and Sample Quality

In this section we make two important experimental claims
about user interaction with visualizations produced by our
system. First, users are more successful at our specified goals
when using VAS-produced outputs than when using outputs
from uniform random sampling or stratified sampling. Second,
user success and our loss function — that is, our measure

- . 1200 X 1200
34t : 1050 34 Ry 1050

g

~
2 [¥t 150 2 A 150
N e
PO N N I -~
104 105 106 107 108 109 110 111 112
longitude

24
104 105 106 107 108 109 110 111 112
fongitude

(a) Stratified Sampling (b) VAS

Fig. 5: Example figures used in the user study for the regres-
sion task. We asked the altitude of the location pointed by “X’.
The left was generated by stratified sampling and the right was
generated by VAS.

48 T a8
e ~ p
. L]
46 » a6 B -
-~ 7 o 7
04 j A, L4 L,
° ©
2 2
g4 /_/! 1 5@ //
= . #
40 / 40 -7
A -
g P D
A
38 381
Jplme | i i plme H
120 121 122 123 124 125 126 127 128 120 121 122 123 124 125 126 127 128
longitude longitude

Fig. 6: An example figure used in the user study for the density
estimation task. This figure was generated using VAS with
density embedding. The left-hand image is the original figure.
The right-hand image contains four test markers, used to ask
users to choose the densest area and the sparsest areas.

of sample quality — are correlated. We validate these claims
with a user study performed using Amazon’s Mechanical Turk
system.

1) User Success: We tested three user goals: regression,
density estimation, and clustering.

Regression — To test user success in the regression task,
we gave each user a sampled visualization from the Geolife
data. We asked the users to estimate the altitude at a specified
latitude and longitude. Naturally, the more sampled data points
that are displayed near the location in question, the more
accuracy users are likely to achieve. Figure 5 shows two
examples of test visualizations given to users for the regression
task (users were asked to estimate the altitude of the location
marked by ‘X’). We gave each user a list of four possible
choices: the correct answer, two false answers, and “I’m not
sure”.

We tested VAS, random uniform sampling, and stratified
sampling. We generated a test visualization for each sampling
method at four distinct sample sizes ranging from 100 to 100K.
For each test visualization, we zoomed into six randomly-
chosen regions and picked a different test location for each
region. Thus, we had 72 unique test questions (3 methods
* 4 sample sizes * 6 locations). We gave each package of
72 questions to 40 different users and averaged the number
of correct answers over each distinct question. To control for
worker quality, we filtered out users who failed to correctly
answer a few trivial “trapdoor” questions.

TABLE I: USER PERFORMANCE IN THREE TASKS

Sample size | Uniform | Stratified | VAS

100 0.213 0.225 | 0.428

1,000 0.260 0.285 | 0.637

10,000 0.215 0.360 | 0.895

100,000 0.593 0.644 | 0.989

Average 0.319 0.378 | 0.734

(a) Regression

Sample size | Uniform | Stratified VAS | VAS w/ density
100 0.092 0.524 | 0.323 0.369
1,000 0.628 0.681 | 0.311 0.859
10,000 0.668 0.715 | 0.499 0.859
100,000 0.734 0.627 | 0.455 0.869
Average 0.531 0.637 | 0.395 0.735

(b) Density Estimation

Sample size | Uniform | Stratified | VAS | VAS w/ density
100 0.623 0.486 | 0.521 0.727

1,000 0.842 0.412 | 0.658 0.899
10,000 0.931 0.543 | 0.845 0.950
100,000 0.897 0.793 | 0.864 0.965
Average 0.821 0.561 | 0.722 0.887

(c) Clustering

The uniform random sampling method chooses K data
points purely at random, and as a result, tends to choose
more data points from dense areas. We implemented the
single-pass reservoir method for simple random sampling.
Stratified sampling divides a domain into non-overlapping
bins and performs uniform random sampling for each bin.
Here, the number of the data points to draw for each bin is
determined in the most balanced way. For example, suppose
there are two bins and we want a sample of size 100. If
there are enough data points to sample from those two bins,
we sample 50 data points from each bin. Otherwise, if the
second bin only has 10 available data points, then we sample
90 data points from the first bin, and 10 data points from the
second bin. Stratified sampling is a straightforward method that
avoids uniform random sampling’s major shortcoming (that
is, uniform random sampling draws most of its data points
from the densest areas). In our experiment, stratified sampling
divided the domain of Geolife into 100 exclusive bins and
performed uniform random sampling for each bin using the
reservoir method.

Table I(a) summarizes user success in the regression task.
The result shows that users achieved the highest accuracy
in the regression task when they used VAS, significantly
outperforming other sampling methods.

Density Estimation — For the density estimation task, we
created samples whose sizes ranged 100-100K using four
different sampling methods: uniform random sampling, strati-
fied sampling, VAS, and VAS with density embedding. Using
those samples, we chose 5 different zoomed-in areas. For each
zoomed-in area, we asked users to identify the densest and the
sparsest areas among 4 different marked locations. Figure 6

shows an example visualization shown to a test user. As a
result, we generated 80 unique visualizations. We again posed
the package of 80 questions to 40 unique users, and again
filtered out users who failed to answer easy trapdoor questions.

The result of the density estimation task is shown in
Table I(b). Interestingly, the basic VAS method without den-
sity estimation yielded very poor results. However, when we
augmented the sample with density embedding, users obtained
even better success than with uniform random sampling. One
of the reasons that “VAS with density’ was superior to uniform
random sampling was because we not only asked the users
to estimate the densest area, but also asked them to estimate
the sparsest area of those figures. The figures generated by
uniform random sampling typically had few points in sparse
areas, making it difficult to identify the sparsest area.

Clustering — Lastly, we compared user performance in
the clustering task. Since the Geolife dataset did not have
ground-truth for clustering, we used synthetic datasets that
we generated using Gaussian distributions instead. Using two-
dimensional Gaussian distributions with different covariances,
we generated 4 datasets, 2 of which were generated from 2
Gaussian distributions and the other 2 were generated from
a single Gaussian distribution. (This dataset was similar to
SPLOM, which unfortunately has a single Gaussian cluster,
making it unsuitable for this experiment.)

Using the same 4 sampling methods that were used in the
density estimation task, we created samples whose sizes ranged
100-100K, and tested if users could correctly identify the
number of underlying clusters given the figures generated from
those samples. In total, we created 64 questions (4 methods, 4
datasets, and 4 sample sizes). We again asked 40 Mechanical
Turk users (or simply Turkers) and filtered out bad workers.

Table I(c) summarizes the result of the clustering task. As
in the density estimation task, ‘VAS with density’ allowed
users to be more successful than they were with visualizations
from uniform random sampling. Although VAS without den-
sity did not perform as well as uniform random sampling, it
produced a roughly comparable score.

We think the reason VAS without density estimation
showed comparable performance was that we used no more
than 2 Gaussian distributions for data generation, and the
Turkers could recognize the number of the underlying clusters
from the outline of the sampled data points. For example, if
the data were generated from two Gaussian distributions, the
data points sampled by VAS would look like two partially
overlapping circles. The Turkers would have shown poorer
performance if there was a cluster surrounded by other clusters.

On the other hand, stratified sampling did poorly in this
clustering task because it performed a separate random sam-
pling for each bin, i.e., the data points within each bin tend
to group together, and as a result, the Turkers found that there
were more clusters than actually existed.

2) Correlation with Sample Quality: In this section, we
test whether the VAS’s optimization criterion of Loss(.S) had
a close relationship to our visualization users’ success in
reaching their end goals. If they were highly correlated, we
have some empirical evidence that samples which minimize
the VAS loss function will yield useful plots.

1 T T T T T T T T T T
[]
0.8 —
0.6 0% © .
0.4 ° o L] -
0.2 ° ® o o |
0 Ll Lol Lol L1
10° 10! 10%

User Success Ratio

Error (log-loss-ratio)

Fig. 7: The relationship between the loss and user performance
on the regression task. The samples with smaller losses resulted
in better success ratios in general in the regression task.

In particular, we examined this relationship for the case of
regression. For each combination of sample size and sampling
method, we produced a sample and corresponding visualiza-
tion. We computed Loss(.S) using the expression in Equation 1.
We then measured the correlation between the loss and average
user performance on the regression task for that visualization.

To compute the loss (Equation 1), which includes integra-
tion, we used the Monte Carlo technique using 1,000 randomly
generated points in the domain of the Geolife dataset. For
this process, we determined that randomly generated points
were within the domain if there existed any data point in the
original dataset whose distance to the randomly generated data
points was no larger than 0.1. Now, the integral expression was
replaced with a summation as follows:

1 1000 1

1000 & X5, e hl(wis)

This loss computed above is the mean of one thousand values.
One problem we encountered in computing the mean was that
the point-loss often became so large that double precision
could not hold those quantities. To address this, we used the
median instead of the mean in this section because the median
is less sensitive to outliers. Note that the median is still valid
for a correlation analysis because we did not observe any case
where a sample with a larger mean has a smaller median
compared to another sample.

Loss(S)

Next, to compare loss in a more consistent way, we
computed the following quantity:

L
log-loss-ratio(S) = log;, [osS(S)}

Loss(D)

where D is the original dataset. Loss(D) is the lowest loss
that a sample can achieve; thus, samples with log-loss-ratios
close to zero can be regarded as good samples based on this
metric.

Next we examined the relationship between a sample’s
log-loss-ratio and the percentage of the questions that were
correctly answered in the regression task using the sample’s
corresponding visualization. If the two metrics yield similar
rankings of the sampled sets, then the VAS optimization
criterion is a good guide for producing end-user visualizations.
If the two metrics yield uncorrelated rankings, then our VAS
criterion is faulty.

Figure 7 depicts the results. The figure clearly shows the
negative correlation between the loss and user success ratio in

uniform ---- stratified —e— VAS
_ 60 F1 7 Hmu\\ T mm_\‘» T T H = Im
g \)]
= [\ | Z
53 40 \ 5 2m
G & N £
s 20 - N n & Im
S S N
= [[>
| L@ llg LI\ gl

0.1 1 10 100

Visualization Time (secs)

Error (log-loss-ratio)

(a) Error given time (b) Time given error

Fig. 8: Relationship between visualization production time and
error for the three sampling methods.

the regression task. Because the X-axis of the figure is the loss
function that we aim to minimize to obtain a good sample, the
negative correlation between the two metrics shows the validity
of our problem formulation.

Also, when we computed Spearman’s rank correlation
coefficient?, the correlation coefficient was —0.85, indicating
a strong negative correlation between user success and the
log-loss-ratio. (Its p-value was 5.2 x 10~%.) Put another way,
minimizing our loss function for a sample should do a good
job of maximizing user success on the resulting visualizations.
This result indicates that the problem formulation in Section III
and the intuition behind it was largely valid.

C. VAS Uses a Smaller Sample

This section shows that VAS can produce a better sample
than random uniform sampling or stratified sampling. That
is, for a fixed amount of visualization production time, its
quality (loss function value) is lower; or, that for a fixed quality
level (loss function value), it needs less time to produce the
visualization. (The visualization production time is linear with
the number of data points.)

We used the Geolife dataset and produced samples of var-
ious sizes (and thus, different visualization production times).
Figure 8(a) shows the results when we varied the visualization
time: VAS always produced a sample with lower loss function
values (i.e., higher quality) than other methods. The quality
gap between the methods did not become smaller until after
an entire minute of runtime. We show a similar result with the
other dataset in our technical report [34]

Figure 8(b) shows the same data using a different perspec-
tive. We fixed the loss function value (quality) and measured
how long it takes to visualize the corresponding samples.
Because the samples generated by our method had much
smaller losses compared to other methods, all of the data points
in the figure are in the bottom right corner. Competing methods
required much more time than VAS to obtain the same quality
(loss function value).

3Spearman’s rank correlation coefficient produces —1.0 for pairs of vari-
ables that are completely negatively correlated, and 1.0 for pairs of variables
that are completely positively correlated.

10

TABLE II: LoSS AND RUNTIME COMPARISON

N | Metric MIP | Approx. VAS Random
Runtime Im 7s Os Os
50 | Opt. objective 0.160 0.179 3.72
Loss(S) 1.5e+26 1.5e+26 2.5e+29
Runtime Im 33s Os Os
60 | Opt. objective 0.036 0.076 3.31
Loss(S) 3.8e+11 1.6e+16 2.5e+29
Runtime 14m 26s Os 0Os
70 | Opt. objective 0.047 0.048 3.02
Loss(S) 1.8e+13 1.8e+13 | 9.45e+33
Runtime 48m 55s 0Os 0Os
80 | Opt. objective 0.043 0.048 2.25
Loss(S) 8.5e+13 1.8e+13 | 9.4e+35
1 - ‘ ‘ ‘
0.8 It —— Sample Size: 100K |
® \ - - - Sample Size: IM
= 0.6 v —
2 \
8 0.4 — —
0.2 |- B
0 ! ! ! ! !
0 30 60 90 120 150 180

Processing Time (mins)

Fig. 9: Processing Time vs. Quality. The lower the objective,
the higher the quality is. The Interchange algorithm for VAS
produces a high-quality visualization in a relatively short
period of time. The quality is improved incrementally as more
processing time is allowed.

D. Algorithmic Details

We now examine three internal qualities of the VAS
technique: approximate vs. exact solution, runtime analysis,
and optimization contributions.

Exact vs. Approximate — The NP-hardness of VAS sup-
ports the need for an approximation algorithm. This section
empirically examines the NP-hardness of VAS.

We think one of the best options for obtaining an exact
solution to VAS is by converting the problem to an instance
of integer programming and solving it using a standard library.
Refer to our report [34] for converting VAS to an instance of
Mixed Integer Programming (MIP). We used the GNU Linear
Programming Kit [42] to solve the converted MIP problem.

Table II shows the time it took to obtain exact solutions to
VAS with datasets of very small sizes. The sample size K was
fixed to 10 in all of the experiments in the table. According
to the result, the exact solutions to VAS showed better quality,
but the procedure to obtain them took considerably longer.
As shown, obtaining an exact solution when N = 80 took
more than 40 minutes, whereas the time it took by other
sampling methods was negligible. Clearly, the exact solution
is not feasible except for extremely small data sizes.

Runtime Analysis — VAS gradually improves its sample
quality as more data is read and processed. As observed
in many statistical optimization routines, VAS offers good-
quality plots long before reaching its optimal state. To investi-
gate this phenomenon, we measured the relationship between

No ES [ES .
ES 7
ES+Loc — ES+Loc |
| | | | | |
0 50 100 0 50 100 150 200

Offline Runtime (min)

(a) Small Sample Size (100)

Offline Runtime (min)

(b) Large Sample Size (5K)

Fig. 10: Runtime comparison of different levels of opti-
mizations. For this experiment, we used the Geolife dataset.
ES+Loc indicates that both Expand/Shrink (ES) operation and
the locality of a proximity function were used.

“processing time” and “visualization quality.” The result is
shown in Figure 9. Note that the Y-axis of the figure is the
objective4 of our minimization problem; thus, the lower the ob-
jective, the higher the associated visualization’s quality. In this
experiment, we used the Geolife dataset. Figure 9 demonstrates
that our Interchange algorithm improved the visualization
quality quickly at its initial stages, and the improvement rate
slowed down gradually. Notably, VAS produced low-error
plots within only tens of minutes of processing time. The
storage overhead of our algorithm is only O(K), where K
is the sample size.

Optimization Contribution — To quantify the impact of our
optimization efforts on the runtime reduction, we measured the
runtime of three different settings:

1) No Expand/Shrink (No ES): This is the most basic con-
figuration that does not use the Expand/Shrink approach,
but instead compares the responsibility when a new point
is switched with another one in the sample.
Expand/Shrink (ES): This version uses the Expand/Shrink
operation, reducing the time complexity by O(K), where
K is the sample size.

Expand/Shrink+Locality (ES+Loc): This version uses an
additional R-tree to speed up the Expand/Shrink opera-
tions. This version is possible due to the locality of our
loss function.

2)

3)

Figure 10 shows the results. When the sample size was
relatively small (100), the second approach (Expand/Shrink),
which does not exploit the locality, showed the shortest runtime
due to no extra overhead coming from maintaining an extra
R-tree data structure. However, when the sample size was
relatively large (5K), the last approach (ES+Loc) that exploits
the locality of the loss function showed the fastest runtime.
When the user is interested in large samples (more than 10K
at least), the last approach that uses R-tree to exploit locality
will be the most preferable choice. The runtime sensitivity
to sample size suggests that in the future, it may be useful
to employ an optimizer that chooses the most appropriate
algorithm setting, given a requested sample size.

4We scaled the objectives appropriately for a clearer comparison.

11

VIIL

Support for interactive visualization of large datasets is
a fast-growing area of research interest [1]-[10], [15], along
with other approximate techniques for interactive processing of
non-conventional queries [43]. Most of the work to date has
originated from the user interaction community, but researchers
in database management have begun to study the problem.
Known approaches fall into a few different categories.

RELATED WORK

The most directly related work is that of Battle, et al. [15].
They proposed ScalaR, a system for dynamic reduction of
query results that are too large to be effectively rendered
on-screen. The system examines queries sent from the vi-
sualization system to the RDBMS and if necessary, inserts
aggregation, sampling, and filtering query operators. ScalaR
uses simple random sampling, and so could likely be improved
by adopting our sampling technique. For bar graphs, Kim et
al. [44] proposed an order-preserving sampling method, which
examines fewer tuples than simple random sampling.

Binned aggregation approaches [3]-[5] reduce data by
dividing a data domain into tiles or bins, which correspond
to materialized views. At visualization time, these bins can be
selected and aggregated to produce the desired visualization.
Unfortunately, the exact bins are chosen ahead of time, and
certain operations — such as zooming — entail either choosing
a very small bin size (and thus worse performance) or living
with low-resolution results. Because binned aggregation needs
to pre-aggregate all the quantities in advance, the approach
is less flexible when the data is changing, such as measured
temperatures over time; our method does not have such a
problem.

Wickham [3] proposed to improve visualization times with
a mixture of binning and summarizing (very similar to binned
aggregation) followed by a statistical smoothing step. The
smoothing step allows the system to avoid problems of high
variability, which arise when the bins are small or when they
contain eccentric values. However, the resulting smoothed data
may make the results unsuitable for certain applications, such
as an outlier finding. This smoothing step itself is orthogonal
to our work, i.e., when there appears to be high variability
in the sample created by our proposed method, the same
smoothing technique can be applied to present more inter-
pretable results. The smoothing process also benefits from our
method because VAS creates a sample much smaller than the
original database, thus, makes smoothing faster. The abstract
rendering pipeline [1] also maps bins to regions of data, but
the primary goal of this system is to modify the visualization,
not performance.

Farallel rendering exploits parallelism in hardware to speed
up visual drawing of the visualization [9], [10]. It is helpful
but largely orthogonal to our contributions. SEEDB is a
system that discovers the most interesting bar graphs [45] from
datasets.

Incremental visualization proposes a streaming data pro-
cessing model, which quickly yields an initial low-resolution
version of the user’s desired bitmap [7], [8]. The system
continues to process data after showing the initial image
and progressively refines the visualization. When viewed in
terms of our framework in Section II, this method amounts to
increasing the sample budget over time and using the new

samples to improve the user’s current visualization. Thus,
incremental visualization and sample-driven methods should
benefit from each other.

VIII. CONCLUSIONS AND FUTURE WORK

We have described the VAS method for visualization data
reduction. VAS is able to choose a subset of the original
database that is very small (and thus, fast) while still yielding
a high-quality scatter or map plot. Our user study showed that
for three common user goals — regression, density estimation,
and clustering — VAS outputs are substantially more useful
than other sampling methods’ outputs with the same number
of tuples.

We believe our core topic — data system support for
visualization tools — is still in its infancy and entails a range
of interesting challenges. In particular, we plan to investigate
techniques for rapidly generating visualizations for other user
goals (including outlier detection, trend identification) and
other data types (such as large networks).

ACKNOWLEDGMENT

This work is in part sponsored by NSF awards ACI-
1531752, CNS-1544844, and III-1553169. The authors are
also grateful to Suchee Shah for her great comments on this
manuscript.

REFERENCES

[1] J. A. Cottam, A. Lumsdaine, and P. Wang, “Overplotting: Unified

solutions under abstract rendering,” in BigData Conference, 2013.
J. Heer and S. Kandel, “Interactive analysis of big data,” XRDS, 2012.

H. Wickham, “Bin-summarise-smooth: a framework for visualising
large data,” had.co.nz, Tech. Rep., 2013.

Z. Liu, B. Jiang, and J. Heer, “immens: Real-time visual querying of
big data,” in Computer Graphics Forum, vol. 32, 2013.

L. D. Lins, J. T. Klosowski, and C. E. Scheidegger, “Nanocubes for
real-time exploration of spatiotemporal datasets,” TVCG, 2013.

M. Barnett, B. Chandramouli, R. DeLine, S. M. Drucker, D. Fisher,
J. Goldstein, P. Morrison, and J. C. Platt, “Stat!: an interactive analytics
environment for big data,” in SIGMOD, 2013.

D. Fisher, 1. O. Popov, S. M. Drucker, and m. c. schraefel, “Trust me,
i’'m partially right: incremental visualization lets analysts explore large
datasets faster,” in CHI, 2012.

D. Fisher, S. M. Drucker, and A. C. Konig, “Exploratory visualization
involving incremental, approximate database queries and uncertainty,”
IEEE Computer Graphics and Applications, vol. 32, no. 4, pp. 55-62,
2012.

J. A. Cottam and A. Lumsdaine, “Automatic application of the data-
state model in data-flow contexts,” in IV, 2010, pp. 5-10.

(2]
(3]

(4]
(5]

(6]

(71

(8]

91
[10] H. Piringer, C. Tominski, P. Muigg, and W. Berger, “A multi-threading
architecture to support interactive visual exploration,” IEEE Trans. Vis.
Comput. Graph., vol. 15, no. 6, pp. 1113-1120, 2009.

R. B. Miller, “Response time in man-computer conversational transac-
tions,” in fall joint computer conference, 1968.

[11]

[12] B. Shneiderman, “Response time and display rate in human performance

with computers,” CSUR, 1984.

Z. Liu and J. Heer, “The effects of interactive latency on exploratory
visual analysis,” 2002.

[13]
[14] 1. Stoica, “For big data, moore’s law means better decisions,” http:
/Iwww.tableausoftware.com/.

[15] L. Battle, M. Stonebraker, and R. Chang, “Dynamic reduction of query
result sets for interactive visualizaton,” in BigData Conference, 2013,

pp. 1-8.

12

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“BlinkDB: queries with bounded errors and bounded response times on
very large data,” in EuroSys, 2013.

B. Mozafari, “Verdict: A system for stochastic query planning,” in
CIDR, Biennial Conference on Innovative Data Systems, 2015.

K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo, “The analytical boot-
strap: a new method for fast error estimation in approximate query
processing,” in SIGMOD, 2014.

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua
approximate query answering system,” in SIGMOD, 1999.

B. Babcock, S. Chaudhuri, and G. Das, “Dynamic sample selection for
approximate query processing,” in SIGMOD, 2003.

S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling
for approximate query processing,” TODS, 2007.

J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
SIGMOD, 1997.

C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, “Scalable approxi-
mate query processing with the dbo engine,” TODS, 2008.

C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed,
“Interactive analysis of web-scale data.” in CIDR, 2009.

B. Mozafari and N. Niu, “A handbook for building an approximate
query engine,” IEEE Data Engineering Bulletin, 2015.

Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on gps data,” in Ubiquitous computing, 2008.
“Tableau for the enterprise: An overview for it,” http:
/Iwww.tableausoftware.com/sites/default/files/whitepapers/whitepaper_
tableau-for-the-enterprise_0.pdf.

S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden, and I. Stoica,
“Blink and it’s done: Interactive queries on very large data,” PVLDB,
2012.

B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Visual Languages, 1996.

S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking.” in
CIDR, 2007.

A. Parameswaran, N. Polyzotis, and H. Garcia-Molina, “Seedb: Visu-
alizing database queries efficiently,” PVLDB, 2013.

B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon, “CliffGuard: A principled
framework for finding robust database designs,” in SIGMOD, 2015.

P. Cizek, W. K. Hirdle, and R. Weron, Statistical tools for finance and
insurance. Springer, 2005.

Y. Park, M. Cafarella, and B. Mozafari, “Our technical report,” http:
/larxiv.org/abs/1510.03921.

U. Feige, D. Peleg, and G. Kortsarz, “The dense k-subgraph problem,”
Algorithmica, vol. 29, 2001.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-1,” Mathemat-
ical Programming, vol. 14, 1978.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” JMLR, vol. 9, 2008.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of ACM, vol. 18, 1975.

S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer,
“Profiler: Integrated statistical analysis and visualization for data quality
assessment,” in AVI, 2012.

“Tableau software,” http://www.tableausoftware.com/.

“Mathgl,” http://mathgl.sourceforge.net/doc_en/Main.html.

A. Makhorin, “Glpk (gnu linear programming kit), version 4.54,” http:
//www.gnu.org/ software/ glpk.

Y. Park, M. Cafarella, and B. Mozafari, “Neighbor-sensitive hashing,”
PVLDB, 2015.

A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Ru-
binfeld, “Rapid sampling for visualizations with ordering guarantees,”
PVLDB, 2015.

M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis,
“Seedb: Efficient data-driven visualization recommendations to support
visual analytics,” PVLDB, 2015.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
