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Abstract. This paper presents a method for diacritics restoration based
on learning mechanisms that act at letter level. This technique is new to
our knowledge, and we compare it with the well known techniques for
diacritics restoration that learn from words. Our method is particularly
useful for languages that lack large electronic dictionaries and where
means for generalization beyond words are required. Accuracies of over
99% at letter level are reported.

1 Introduction

Diacritics restoration is the problem of inserting diacritics into a text where they
are missing. With the continuously increasing amount of texts available on the
Web, tools for automatic insertion of diacritics become an essential component
in many important applications such as Information Retrieval, Machine Transla-
tion, Corpora Acquisition, construction of Machine Readable Dictionaries, and
others. Spelling correction has a direct impact on the processing quality in many
of these applications. For instance, in the absence of a tool for diacritics recovery,
a search for the Romanian word peste(fish) retrieves peste(over) as well, paturi
can be wrongly translated as beds, where the intended meaning was blankets (the
translation of paturi), and so forth.

The problem as such is not very difficult, and previous work has demonstrated
that a good dictionary can lead to over 90% accuracy in accent restoration for
French and Spanish [9], [11], [5]. The method described by Michael Simard in
[9] is an improvement over a similar method proposed by El-Béze [4]. It relies
on Hidden Markov Models and learns from surrounding words for an overall
reported accuracy of 99%. Tufis and Chitu [10] propose a similar approach for
diacritics insertion in Romanian texts. Yarowsky gives in [11] a comprehensive
overview of accent restoration techniques. Most of the algorithms he presents
rely on dictionaries and surrounding words in deciding whether to select a form
or another for a given ambiguous word. He mentions, in addition to the base-
line constituted by the dictionary based approach, N-gram taggers, Bayesian
classifiers and decision lists, all of them relying on contexts, and eventually on



additional morphological and syntactic information. A different approach is pro-
posed by Nagy et. al in [7], where strings extracted from texts are used to derive
statistics, with high precision reported on French texts. Their work is similar
with the approach proposed in [1], where trigram similarity measures are em-
ployed for automatic spelling correction.

The majority of studies performed so far in this field have addressed well
known and widely spread languages such as French or Spanish, and very few
studies have emphasized less popular languages like Czech, Slovene, Turkish or
other languages that employ diacritics in their spelling. Table 1 ! lists the dia-
critics encountered in European languages. As seen in the table, a large number
of languages face the problem of diacritics restoration. From the entire set of 36
languages listed in the table, English seems to be the most “lucky” one from this
point of view, as it is the only one with no diacritics. However, because of this
distinction its semantic ambiguity is higher than the average language?.

Language Diacritics Language Diacritics
Albanian ¢ & Ttalian aéeiiiéonn
Basque n i Lower Sorbian ¢¢él Nf§§7z
Breton aénui Maltese Cghz

Catalan ac¢eéiil-ddéui Norwegian dxog

Czech dtdéinérst yz Polish a, et 65§72z
Danish - ] Portuguese aacgedoot
Dutch 4344846é6026ii1176000 uu G iijRomanian Adigt

English none Sami 41¢d-nn,§t 2z
Estonian & ¢06068 1z Serbo-Croatian ¢ & d- § z

Faroese 4da& d-idpuy Slovak sacdéilnéorst ayz
Finnish 44 6§z Slovene c8z

French Adax:geéeéiidoeuny Spanish déiéuun
Gaelic 4éi61 Swedish 440

German &06u8 Turkish ¢cgii1dgi
Hungarian 4 6 6 6 4 4 4 Upper Sorbian ¢ ¢élt 161§z
Icelandic 42 0éi66uybd ‘Welsh Aéiouwy

Table 1. Diacritics in European languages with Latin based alphabets.

We have started to think about this problem when faced with diacritics
restoration in an electronic Romanian dictionary. No context is available in this
case, and we deal with the dictionary itself and therefore methods relying on
information encoded in a dictionary are not useful for this task. The role of a

! The table lists only lower case letters. There is a corresponding upper case diacritic
letter for each lower case letter. The information in this table was compiled from lists
of diacritics in European languages available at http://www.tiro.com/di_intro.html

% Studies performed on bilingual parallel corpora have shown that the vocabulary
built from an English text is about half the size of the vocabulary build for the
same text written in a different language. Senseval competition [6] has also reported
significantly lower precision for English with respect to other languages, in a word
sense disambiguation task.



dictionary could be played by an ad-hoc vocabulary built from online corpora.
Nonetheless, for some languages the availability of online data is quite limited,
especially when we place the constraint that the texts should contain diacritics.

It turns out that the applicability of previous methods is limited when:

(1) Electronic dictionaries are not available, or only limited size dictionaries
are made public. Moreover, when the dictionary itself lacks diacritics, methods
relying on diacritics restoration from dictionaries become useless.

(2) Tools for morphological and/or syntactic analysis, which are considered to be
helpful for the problem of diacritics restoration, are inexistent or are not publicly
available.

(3) Size of usable corpora containing diacritics is limited. The size of the corpora
available on the Web or in other public forms influences the size of the vocabulary
that can be built ad-hoc out of these texts. Moreover, Web publishers choose in
many cases to avoid diacritics, for reasons of simplicity, uniformity or just the
lack of means for diacritics encoding.

We propose in this paper a technique for diacritics restoration based on learn-
ing performed at letter level, rather than word level. The strongest advantage
of this method is that it provides the means for generalization beyond words.
The method is particularly useful for languages that lack large electronic dic-
tionaries with diacritics. Well studied and widespread languages such as French
and Spanish can benefit as well from this methodology in dealing with unknown
words.

We have experimented this algorithm on diacritics restoration in Romanian
texts, and a precision of over 99% at letter level was observed. Moreover, this
method does not require any preprocessing steps, only a small size corpus of
raw text with diacritics. Due to the simplicity of the algorithm, the processing
speed is very high, about 20 pages of text per second, measured on a Pentium
ITT running at 500MHz, with 250MB memory.

Specifically, instead of learning rules that apply at word level, such as “anun-
cio should change to anuncié when it is a verb”, we are interested in learning
rules at letter level, like “s followed by i and preceded by white space should
change to s”. This latest type of rules are more general and they have higher
applicability when only small dictionaries are available, when many unknown
words are encountered in the input text, or when there are no usable tools for
morphological or syntactic analysis.

It is obvious that letters constitute the smallest possible level of granularity
in language analysis, and therefore have the highest potential for generaliza-
tion. Instead of having about 150,000 units that are potential candidates for
the algorithm (the approximate size of the vocabulary of a language), we have
more or less 26 characters that will constitute the entry to the disambiguation
mechanism.?

3 The actual numbers depend on the language considered. It was shown, for instance,
that about 85% of the French words do not have any spelling that includes diacritics,
and hence only about 20,000 words are potentially ambiguous. On the other hand,
only 7 letters are ambiguous in French.



2 Experimental setup

The purpose of the experiments reported in this paper is to see whether learn-
ing at letter level is possible to the end of solving the problem of diacritics
re-insertion. Besides providing an additional method for diacritics restoration,
the purpose of doing learning at such a low level is to supply a methodology
for languages that have only few lexical and semantic resources and for which
diacritics restoration via learning at word level is hard to perform.

2.1 Data

During our experiments, we have considered the Romanian language. First, Ro-
manian is not a widely spread language, and consequently it does not have many
publicly available tools for preprocessing, and only small electronic dictionaries
are available. Secondly, we had to solve a specific problem that required diacrit-
ics restoration. We have an electronic dictionary that we plan to use in further
development of tools for Romanian. The size of the dictionary is fairly large,
about 75,000 entries, but it has the disadvantage of containing no diacritics.
Instead of relying on smaller dictionaries with diacritics, we chose to further
study the problem of diacritics restoration and make use of our large dictionary.
Furthermore, for the tools we plan to develop we need Romanian corpora, which
usually lack diacritics, and once again diacritics restoration is required. More-
over, we have the means of comparison with learning at word level performed
on the same language, through the experiments and results reported in [10].

We needed therefore a corpus of Romanian texts with diacritics. To this
end, we downloaded articles from “Roméania Literara” *, which is a Romanian
newspaper published weekly, with publications related mostly to literature. The
newspaper started to have a version including diacritics beginning with year
2000. The entire collection available online at the date of the download (August
2001) adds up to 2,780 articles.

Next, we converted the HTML files into text files. We have paid particular
attention only to characters specific to the Romanian language. Other characters
such as &, ¢, etc., have been transformed into their equivalents, since we are
interested in Romanian characters, rather than French or other languages. After
this step, we were left with a corpus of about 3 million words.

Upper case letters have been converted into lower case. It is worth mentioning
the case of the 4 and 1 letters in the Romanian language. Practically, the two
letters have the same pronunciation but their spelling depends on their position
within the word. At the beginning of a word, 1 should be used, whereas & spelling
is employed inside the word. The spelling of this letter has been controversial
over the years. A law from the sixties changed the spelling from & to 1, with
the only exception being the words with the root Roman. In early nineties the
old spelling was reintroduced, and so we ended up having inconsistent texts. It
so happens that one can encounter different spellings for the same word. For

* Available at http://www.romlit.ro



instance, cintec and cantec, both meaning song, can be sometimes found in the
same source text. The “Romania Literara” newspaper is still applying the 1
spelling, with few exceptions (i.e. articles written by invited writers who chose
to use 4 instead of 7).

2.2 Learning algorithms

We decided to use an instance based learning algorithm for our diacritics restora-
tion task. The reasons for this decision are twofold. First, it was demonstrated
that forgetting exceptions is harmful in Natural Language applications, and in-
stance based learning algorithms are known for their property of taking into
consideration every single training example when making a classification deci-
sion [2]. Secondly, this type of algorithms are efficient in terms of training and
testing time. We have used the Timbl [3] implementation to run our learning
experiments.

Additionally, we have performed similar experiments with a decision tree
classifier, namely C4.5 [8]. The results obtained were similar with the cases when
instance based learning is employed, but C4.5 has the capability of generating
expressive rules, which are useful for practical implementations.

As we work at the low level of letters, the target attribute to be learned is
constituted by the ambiguous letters. It can be therefore any of the ambiguous
characters listed in Table 1. For Romanian, for instance, we have four pairs of
ambiguous letters: s - §, t - §, a - @ and ¢ - 7. Upper case diacritics are not
considered as they have been previously converted to lower case. Due to the fact
that the source data we are using applies the 1 spelling, as mentioned in Section
2.1, we do not have an @ - 4 ambiguity, instead we have an ¢ - 7 ambiguity.
This fact does not imply any loss in generality. The conversion between the two
spelling modes is very simple, using merely the position of the letter within the
word, and thus different spellings do not affect in any way the final outcome of
the algorithm.

2.3 Features

The features used in any learning algorithm have tremendous influence over the
final accuracy. As mentioned in the introduction, we do not have the possibility
of using part of speech taggers or any other morphological or syntactic analyzers.
Furthermore, we do not want to rely on surrounding words, because the data
we have is limited, and we would therefore encounter many cases of unknown
words.

Hence, we decided for very simple features, for the extraction of whom no
particular processing is required. We are using surrounding letters, with a special
notation assigned to white spaces, commas, dots and colons (these characters
may affect the learning process, as they are considered special characters by
C4.5 and/or Timbl). This set of features performs surprisingly well in terms of
accuracy, as shown later in the paper.



3 Results

For Romanian, there are four pairs of ambiguous letters. As mentioned earlier,
we did not want to rely on any tags obtained with pre-processing tools, but
simply on the information that can be extracted from raw text. Also, we are
interested to find means for generalization, such that limited size corpora can be
used to derive rules for diacritics re-insertion. Rather than learning from words,
as it was the case with previous approaches, we want to learn rules from letters,
as they constitute the smallest language units and enable learning from very
small corpora.

For each ambiguous pair of letters, we scan the text and generate all possible
examples encountered in the corpus. The attributes in an example are formed by
N letters to the left and right of the ambiguous letter, and the target attribute
is the ambiguous letter itself. We present below samples of feature vectors that
were fed to the learning algorithm for the s - § ambiguous pair. CO, DO and SP
are the replacement codes we use to denote comma, dot or space.

l,i,n,SP,(,u,b,SP,i,n,s.

e,CO,SP,r,o,—,g,a,r,d,§.

g,a,r,d,i,t,u,l,CO,SP,s.
e,SP,o,r,a,DO,SP,t,o,t,s.

The number of examples extracted from the corpus depends on the pair
of letters. From the entire set of three million words, we obtained 2,161,556
examples for the ambiguous pair a - 4, 2,055,147 for the pair i - 7, 1,257,458
examples for ¢ - ¢, and finally 866,964 examples for the s - g pair.

The best accuracy was observed for an window size of ten surrounding let-
ters (i.e. N = 5). We have therefore studied in more detail this case, including
learning rates for the four pairs. Nevertheless, results are provided for various
window sizes for comparative purposes.

Table 2 shows the results obtained for N = 5. The precision figures reported
in this table are obtained using the instance based learning algorithm. We have
performed tests with various sizes for the training set, ranging from 2,000,000
examples to as few as 10 examples, to the end of finding the learning rate and
the minimum size of a corpus required for a satisfactory precision. All the ex-
periments are performed with a test set size of 50,000 examples. A 10-fold cross
validation scheme was used for more accurate results. The table also shows the
baseline, defined here as the precision obtained when the most frequent letter is
used out of the two letters found in a pair.

The results shown in Table 2 are plotted in Figure 1. It is interesting to
observe that the most important part of the learning process is achieved with
the first 10,000 examples. We have measured that about 100,000-250,000 running
characters (approx. 25-60 pages of text) are needed to generate 10,000 examples
with diacritics, which is a small corpus. From there on, a significant number of
examples is required for every single percent of improvement in accuracy. We also
show in bold the first precision figure that exceeds the baseline, as an indicative



Ambiguous pair
a-d a-d(2) | @i [ s-s t-t
Data set size|2,161,556|1,369,517]2,055,147] 866,964 [1,157,458
Baseline| 74.70% | 85.90% | 88.20% |76.53% | 85.81%
Precision obtained with a test set
Training size of 50,000 examples
2,000,000( 95.56% - 99.69% - -
1,000,000 95.10% | 99.14% | 99.58% - 98.75%
750,000| 94.83% | 98.97% | 99.53% |99.07% | 98.63%
500,000| 94.57% | 98.79% | 99.46% | 98.86% | 98.40%
250,000| 94.00% | 98.37% | 99.28% |98.87% | 98.26%
100,000{ 93.03% | 97.56% | 98.96% | 98.54% | 97.81%
50,000| 92.10% | 96.86% | 98.57% |98.13% | 97.40%
25,000| 90.99% | 95.75% | 98.11% |97.58% | 96.92%
10,000| 88.99% | 93.75% | 97.31% | 96.53% | 96.20%
5,000| 87.56% | 92.76% | 96.65% |95.61% | 95.10%
4,000 86.91% | 91.86% | 96.49% |94.99% | 94.53%
3,000( 86.39% | 90.99% | 96.19% |94.18% | 94.30%
2,000| 85.81% | 89.93% | 95.49% |93.47% | 93.56%
1,000| 83.49% |88.36% | 93.78% |92.31% | 91.85%
500| 80.61% | 85.66% | 93.07% |90.75% | 89.74%
250| 77.89% | 83.17% | 92.75% |87.41% | 87.23%
100| 74.80% | 84.04% |91.41% | 82.13% | 84.46%
50| 72.79% | 82.73% | 88.05% |86.53% | 77.54%
25| 72.45% | 81.34% | 88.15% |78.26%| 78.52%
10| 73.38% | 85.90% | 88.20% | 75.88% | 85.81%

Table 2. Results obtained in solving diacritics ambiguity, using an instance based
learning algorithm and an window size of ten surrounding letters

of the smallest size of training set where a form of learning is observed. Notice
that as few as 1,000 examples are enough to perform some learning.

Using the entire set of examples extracted from the corpus, the disambigua-
tion of the i-i pair is almost 100% correct. For this diacritic letter, we now
have one instance wrong out of 300 instances, whereas the baseline implies one
instance wrong for every eight instances, therefore a significant improvement.

The worst precision is achieved in the case of a-d pair. From a simple error
analysis, it turns out that the main reason for this is the fact that many Ro-
manian nouns have their base form ending in @, whereas their articulated form
ends in a. For instance, masd and masa are two forms, one articulated and one
not, for the same noun table. Also, some verbs have two different tenses with the
only difference standing in an a - @ ending letter. The learner is therefore tricked
by many identical usages for these letters. A simple solution for this is to avoid
in the learning process those examples that contain an @ or a letter at the end
of a word. The results obtained under this simplifying assumption are reported



in Table 2 under the heading a-d(2)°. As shown in the table, more than four
percents are gained in precision with this simple condition (this translates into
87% error reduction).
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Fig. 1. Learning rates for the four ambiguous diacritics. The chart in the middle rep-
resents a zoom of the 0-10,000 range area.

We have also employed C4.5 on the same training data, but no improvements
were observed with respect to the results from Table 2. The disadvantage of us-
ing C4.5 for this task is that the learning phase is slower than with the Timbl
implementation. On the other hand, C4.5 has the capability of generating ex-
pressive rules. “L;=e and Ly=space then $7(99.5%), “L1=t and Ly=space then
s7(98.7%), “L_4 = p and L_1=v and Ly =t Ly=e then $”(95.5%), are examples
of such rules, where L; denotes a surrounding letter at the relative position i
with respect to the ambiguous letter. Notice that these rules do not say any-
thing about whether or not the letters belong to one single word. The learning
algorithm simply relies on letters, regardless of the word they belong to. Con-

5 Generality is not affected in by our assumption that ending a or d letters are not
considered during the learning process. This case of ambiguity can be easily solved
by finding words articulation, if any, which is a fairly simple task.



sequently, pseudo-homographs words (as in peste and peste - see Section 1) are
equally addressed by this method, as the algorithm has the capability of going
across words.

3.1 Different window sizes

We have experimented various window sizes to determine the size of the context
that would best model our problem. We considered window sizes of two, six,
ten, fourteen and eighteen surrounding letters (i.e. N = 1,3,7,9). Comparative
results are reported in Table 3. These figures should be compared with the
uppermost row in Table 2 (the N=5 column in the current table).

Ambiguous Window size
pair N=1 | N=3 | N=5 | N=7 | N=9
a-G(2) |88.63%]|98.79%(99.14%(99.10%(99.10%
-1 94.18%199.13%|99.69%99.68%|99.43%
5-$ 88.09%199.06%|99.07%99.02%|99.00%
t-1 89.45%(98.57%198.75%|98.67%|98.25%

Table 3. Comparative results for various window sizes

When no context is available, window sizes of N=3 can be used without losing
much in precision. Nevertheless, as stated earlier, the best accuracy is attained
for a window of ten surrounding letters (N=5).

3.2 Comparison with related work

These results are best compared with the work reported by Tufig and Chitu [10],
who employed the same language as in our experiments.

According to Tufig and Chitu, the task of diacritics recovery in Romanian
is harder than with other languages, as Romanian makes more intensive use of
diacritics. As reported in their experiments, only about 60% of the Romanian
words are diacritics free, compared to the studies reported in [9] which show
that about 85% of the French words are spelled with no accents.

The approach presented by Tufis and Chitu uses dictionaries, a tokenizer
and part of speech tagger, and learning is performed at word level, for an overall
performance of 97.4%. We cannot directly compare our results, as both methods
and evaluations are fundamentally different. The average precision of 99% we
have obtained is measured at letter level, whereas the accuracy they report is
determined at word level.

Our methodology overcomes previous approaches in that very high precisions
and processing speeds are obtained without any preprocessing tools or dictio-
naries being required, and therefore this algorithm is applicable to any language,
with the only requirement being a relatively small corpus of texts with diacritics.



4 Conclusions

We have presented a method for diacritics restoration based on learning mech-
anisms that act at letter level. This technique is new to our knowledge, and its
strongest advantage stands in its capability of generalization beyond words. No
preprocessing steps are required, and no tools or dictionaries are employed. The
only requirement is a relatively small corpus of texts with diacritics.

The method is particularly useful for languages that lack large electronic dic-
tionaries and morphological or syntactic tools. Raw texts are fed to the learning
mechanism, and accuracies of over 99% at letter level are reported. Moreover,
due to its simplicity, processing speeds of about 20 pages of text per second can
be attained.
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