
Self-monitoring of wireless sensor networks

Chihfan Hsina, Mingyan Liub,*

aElectrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2122, USA
bElectrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave. 4238 EECS, Ann Arbor, MI 48109-2122, USA

Available online 15 February 2005

Abstract

This paper presents an efficient distributed self-monitoring mechanism for a class of wireless sensor networks used for monitoring and

surveillance. In these applications, it is important to monitor the health of the network of sensors itself for security reasons. This mechanism

employs a novel two-phase timer scheme that exploits local coordination and active probing. Simulation results show that this method can

achieve low false alarm probability without increasing the response delay. Under a stable environment analytical estimates are provided as a

guideline in designing optimal parameter values. Under a changing, noisy environment a self-parameter tuning functionality is provided and

examined.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor networks; Monitoring; Surveillance; False alarm; Response delay
1. Introduction

Wireless sensor networks have been the subject of

extensive study in recent years due to rapid advances in

integrated sensing, actuation, processing and wireless

technologies. In this study, we consider a class of

surveillance and monitoring systems employing wireless

sensors, e.g., indoor smoke detection, surveillance of public

facilities for tampering or attack. In these applications, the

network itself—meaning the constituent sensors of the

network—needs to be constantly monitored for security

purposes. In other words, we need to ensure the proper

functioning of each sensor (e.g., has energy, is where it is

supposed to be, etc.) in order to rely on these sensors to detect

and report anomalies. Note that self-monitoring can reveal

both malfunctioning of sensors and attacks/intrusions that

result in the destruction of sensors. It is possible that in some

scenarios, especially where redundancy exists in the sensor

deployment, we only need to ensure that a certain percentage

of the sensors are functioning. In this study we will limit our

attention to the case where each individual sensor in
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.12.031

* Corresponding author. Tel.: C1 734 7649546; fax: C1 734 7638041.

E-mail addresses: chsin@umich.edu (C. Hsin), mingyan@umich.edu

(M. Liu).
the network needs to be monitored. We assume that a

(possibly) remote control center will react to any problems

revealed by such monitoring. Due to the potentially large

area over which sensors are deployed, sensors may be

connected to the control center via multiple hops. We will

assume that these multi-hop routes exist as a result of certain

initial self-configuration and route establishment function.

In general, detection of anomalies may be categorized

into the following two types. One is explicit detection,

where the detection of anomaly is performed directly by the

sensing devices, which send out alarms upon the detection

of an event of interest. Explicit detection usually involves

very clear decision rules. For example, if temperature

exceeds some predefined threshold, a sensor detecting it

may fire an alarm. Following an explicit detection, an alarm

is sent out and the propagation of this alarm is to a large

extent a routing problem, which has been studied exten-

sively in the literature. For example, [3] proposed a braided

multi-path routing scheme for energy-efficient recovery

from isolated and patterned failures; [5] considered a

cluster-based data dissemination method; [7] proposed an

approach for constructing a greedy aggregation tree to

improve path sharing and routing. Within this context the

accuracy of an alarm depends on the pre-set threshold, the

sensitivity of the sensory system, etc. The responsiveness of

the system depends on the effectiveness of the underlying

routing mechanism used to propagate the alarm.
Computer Communications 29 (2006) 462–476
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 463
The other type of detection is implicit detection, where

anomalies disable a sensor from being able to communicate.

The occurrence of such an event thus has to be inferred from

the lack of information. An example is the death of a sensor

due to energy depletion. To accomplish implicit detection, a

simple solution is for the control center to perform active

monitoring, which consists of having sensors continuously

send existence/update (or keep-alive) messages to inform the

control center of their existence. If the control center has not

received the update information from a sensor for a pre-

specified period of time (timeout period), it may infer that the

sensor is dead. The problem with this approach is the amount

of traffic it generates and the resulting energy consumption.

This problem may be alleviated by increasing the timeout

value but this will also increase the response time of the

system in the presence of an intrusion. Active monitoring can

be realized more efficiently in various ways, including the use

of data aggregation, inference, clustering, and adaptive

updating rate. For a more detailed discussion see [6].

A distinctive feature of active monitoring is that

decisions are made in a centralized manner at the control

center, which becomes a single point of data traffic

concentration (same applies to a cluster head). Sub-

sequently, the amount of bandwidth and energy consumed

affects its scalability. In addition, due to the multi-hop

nature and high variance in packet delay, it will be difficult

to determine a desired timeout value, which is critical in

determining the accuracy and responsiveness of the system.

An active monitoring based solution may function well

under certain conditions. However, we will pursue a

different, distributed approach in this paper.

Our approach is related to the concept of passive

monitoring, where the control center expects nothing from

the sensors unless something is wrong. Obviously, this

concept alone does not work if a sensor is disabled from

communicating due to intrusion, tampering or simply

battery outage. However, it does have the appealing feature

of low overhead. Our approach to a distributed monitoring

mechanism is thus to combine the low energy consumption

of passive monitoring and the high responsiveness and

reliability of active monitoring.

Due to the energy constraint of sensors and the nature of

random topology, it has been argued in [11] that it is

inappropriate to use CSMA/CD, TDMA or reliable point-to-

point transmissions like IEEE 802.11 in wireless sensor

networks. We assume in this paper that the wireless channel is

shared via MAC of the random access type, which is subject to

collision. Under this assumption, we define two performance

measures to evaluate a self-monitoring mechanism. The first is

the false alarm probability defined as the probability that a

particular sensor has been determined to be dead while the

truth is the opposite. This can happen if consecutive update

packets from a sensor are lost due to collision or noise in the

environment. The second is the response delay, which is

defined as the time between when a sensor dies (either due to

energy depletion or attacks) and when such an event is
detected. These are inherently conflicting objectives. Time-

out-based detection necessarily implies that longer timeout

value results in more accurate detection result (smaller false

alarm probability) but slower response (longer response

delay). Our approach aims at reducing the false alarm

probability for a given response delay requirement, or

equivalently reducing the response delay for a given false

alarm probability requirement. In addition to these two

metrics, energy consumption associated with a self-monitor-

ing mechanism is also an important metric. We will use these

three metrics in evaluating different approaches.

The rest of the paper is organized as follows. In Section 2,

we describe our approach to the self-monitoring problem, as

well as a number of variations. Section 3 provides simulation

results for performance evaluation. In Section 4, the

performance of some instances of this mechanism are studied

analytically. Section 5 provides a self-parameter tuning

scheme to adjust the control parameters of our approach

under a changing, noisy environment. Section 6 gives a review

of related work and Section 7 concludes the paper.
2. The two-phase self-monitoring system

The previous discussions and observations lead us to the

following principles. First, some level of active monitoring

is necessary simply because it is the only way of detecting

communication-disabling events/attacks. However, because

of the high volume of traffic it incurs, active monitoring

should be done in a localized, distributed fashion. Secondly,

the more decision a sensor can make, the less decision the

control center has to make, and therefore less information

needs to be delivered to the control center. Arguably, there

are scenarios where the control center is at a better position

to make a decision with global knowledge, but whenever

possible local decisions should be utilized to reduce traffic.

Similar concepts have been used for example in [8], where a

sensor advertises to its neighbors the type of data it has so a

neighbor can decide if a data transmission is needed or

redundant. Thirdly, it is possible for a sensor to reach a

decision with local information and minimum embedded

intelligence, and it should be exploited.

The first principle points to the concept of neighbor

monitoring, where each sensor sends update messages only

to its neighbors, and every sensor actively monitors its

neighbors. Such monitoring is controlled by a timer

associated with a neighbor. If a sensor has not heard from

a neighbor within a pre-specified period of time, it will

assume that the neighbor is dead. Note that this neighbor

monitoring works as long as there is no partition in the

network. Since neighbors monitor each other, the monitor-

ing effect is propagated throughout the network, and the

control center only needs to monitor a potentially very small

subset of sensors. The second and the third principles lead

us to the concept of local decision making. By adopting a

simple neighbor coordinating scheme with which a sensor



C(i) =C1+C2

C1(i)=C1 C2(i)=C2

Basic:

Two-
phase:

Fig. 1. The basic system vs. the two-phase system.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476464
consults with its neighbors before sending out an alarm, we

may significantly increase the accuracy of such a decision.

This in turn reduces the total amount of traffic destined for

the control center. The above discussion points to an

approach where active monitoring is used only between

neighbors, and network-wide passive monitoring is used in

that the control center is not made aware unless something is

believed to be wrong with high confidence in some localized

neighborhood. Within that neighborhood a decision is made

via coordination among neighbors.

Our approach consists of a two-phase timer where a

sensor uses the first phase to wait for updates from a

neighbor and uses the second phase to consult and

coordinate with other neighbors in order to reach a more

accurate decision. Fig. 1 shows the difference between our

approach (with neighborhood coordination) and a typical

system based on a single timer (without neighborhood

coordination), subsequently referred to as the two-phase

(TP) system and the basic system, respectively. In the basic

system a single timer of length C1CC2 is maintained for

monitoring sensor i by a neighboring sensor s. Each sensor

periodically sends an update packet (UPD) to its neighbors

with an average update interval of T. If an update packet

from i is received by s within this timer, it will be reset. If no

packets are received within this timer, sensor s times out and

decides that sensor i does not exist or function anymore. It

will then trigger an alarm to be sent to the control center.

In the two-phase system, two timers are maintained for

monitoring sensor i, with values C1 and C2, respectively. If

no packets from sensor i is received before the first timer

C1(i) expires, sensor s activates the second timer C2(i).

During the second timer period, sensor s will query other

neighbors regarding the status of i with an alarm query

packet (AQR), which contains IDs of s and i. A common

neighbor k of both i and s may corroborate s’s observation if

k’s own C1(i) has expired with an alarm confirmation packet

(ACF), or negate s’s observation if it has an active C1(i) with

an alarm reject packet (ARJ). This ARJ packet contains IDs

of k and i and the k’s remaining timer C1(i) as a reset value.

If sensor i is still alive and receives s’s query, it may directly

respond to s with an update. If sensor s does not receive any

response to its query before C2(i) expires, it will send out an

alarm. If any packet from i is received during any one of the

two phases, the timer will be reset. In subsequent discussion,

we will use UPD(i) to indicate an update packet from sensor

i, and use AQR(i), ACF(i) and ARJ(i) to indicate an alarm

query, confirmation or rejection packet regarding sensor i,
respectively. We will also refer to the sensor suspected of

having a problem as the target.

The intuition behind using two timers instead of one is as

follows. Let PF Abasic
and PF ATP

be the probability of false

alarm with respect to a monitoring sensor in the basic

mechanism and the two-phase mechanism, respectively. Let

f(t) be the probability that there is no packet received from

target i over time t. Let p be the probability that the

coordination/alarm checking of TP fails. Then we have the

following relationship. PF Abasic
zf ðC1CC2Þ and

PF ATP
zf ðC1CC2Þp, thus we have PF ATP

!PF Abasic

approximately.

Note that all control packets (UPD, AQR, ACF and ARJ)

are broadcast to the immediate neighbors and are subject to

collision, in which case packets involved in the collision are

assumed to be lost. There are no acknowledgments or

retransmissions. Also note that in the presence of data

traffic, any packet received from a sensor should be taken as

an update packet. Any data packet sent from a sensor can

also cancel out the next scheduled UPD packet.

2.1. State transition diagram and detailed description

We will assume that the network is pre-configured, i.e.

each sensor has an ID and that the control center knows the

existence and ID of each sensor. However, we do not require

time synchronization. Note that timers are updated/reset by

the reception of packets. Differences in reception times due

to propagation delays can result in slightly different

expiration times in neighbors. A sensor keeps a timer for

each of its neighbors, and keeps an instance of the state

transition diagram for each of its neighbors. Fig. 2(a) shows

the state transitions sensor s keeps regarding neighbor i.

Fig. 2(b) shows the state transition of s regarding itself.

They are described in more detail in the following.

Neighbor Monitoring: Each sensor broadcasts its update

packet UPD with TTLZ1 with inter-arrival time chosen

from some probability distribution with mean T. Each

sensor has a neighbor monitoring timer C1(i) for each of its

neighbor i with an initial value C1. After sensor s receives

UPD or any packet from its neighbor i, it resets timer C1(i)

to the initial value. When C1(i) goes down to 0, a sensor

enters the random delay state for its neighbor i. When sensor

s receives an alarm query packet AQR(i) in neighbor

monitoring, it broadcasts an alarm reject packet ARJ(i) with

TTLZ1. When sensor s receives an alarm reject packet

ARJ(i) in this state, it resets C1(i) to the reset (residual timer)

value in carried in the ARJ if its own C1(i) is of a smaller

value.

Random delay. Upon entering the random delay state for

its neighbor i, s schedules the broadcast of an alarm query

packet AQR with TTLZ1 and activates an alarm query

timer C2(i) for neighbor i with initial value C2. After the

random delay, sensor s enters the alarm checking state by

sending AQR. Note that if a sensor is dead, timers in a

subset of neighbors expire at approximately the same time



Rec. packets(i)
or ARJ(i)

C2 expires or
rec. ACF(i)

Neighbor
Monitoring

Alarm
Checking

Alarm
Propagation

C1 expires

Reset C1(i)

Act. C2(i)

Xmit Alarm,
Deact. C1(i)

Random
Delay

Suspend

Rec. AQR(i)
Xmit ARJ(i)

Rec. packets(i)
or ARJ(i)

Reset C1(i),
Deact. C2(i)

Rec. AQR(i)
Deact. C1(i),C2(i),

Xmit ACF(i)

Rec. packets(i)
Act. C1(i)

Delay expires

Rec. AQR(i)

Deact. C1(i),C2(i),
Xmit ACF(i)

Rec. packets(i)
or ARJ(i)

Reset C1(i),
Deact. C2(i)

C2 expires
Xmit Alarm,
Deact. C1(i)

Rec. packets(i)

Act. C1(i)

Xmit AQR(i)

Rec.: receive
Xmit: transmit
Act.: activate

Deact: deactivate
Packets(i): packets from i

(a)

Rec. AQR(s)

Xmit ARJ(s)

Upon the scheduled
time of UPD

Xmit UPD, Schedule
the next UPD Self

(b)

Fig. 2. State diagram for (a) neighbor i and (b) sensor s itself with transition conditions (condition/action).

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 465
(subject to differences in propagation delays which is likely

very small in this case) with a high probability. The random

delay therefore aims to de-synchronize the transmissions of

AQR. Typically this random delay is smaller than C2, but it

can reach C2 in which case the sensor enters the alarm

propagation state directly from random delay. In order to

reduce network traffic and the number of alarms generated,

when sensor s receives AQR(i) in the random delay state, it

cancels the scheduled transmission AQR(i) and enters the

suspend state. This means that sensor s assumes that the

sensor which transmitted AQR(i) will take the responsibility

of checking and firing an alarm. Sensor s will simply do

nothing. If sensor s receives any packet from i or ARJ(i) in

the random delay state, it knows that i is still alive and goes

back to neighbor monitoring. Sensor s also resets its C1(i) to

C1 if it receives packets from i.

Alarm checking. When sensor s enters the alarm

checking state for neighbor i, it waits for the response

ARJ from all its neighbors. If it receives any packet from i or

ARJ(i) before C2(i) expires, it goes back to neighbor

monitoring. Sensor s also resets its C1(i) to C1 if it receives

packets from i or to the C1(i) reset value in ARJ if it receives

ARJ(i). When timer C2 expires, sensor s enters the alarm

propagation state.
Suspend. The purpose of the suspend state is to reduce the

traffic induced by AQR and ARJ. If sensor s enters suspend

for its neighbor i, it believes that i is dead. However, different

from the alarm propagation state, sensor s does not fire an

alarm for i. If sensor s receives any packet from i, it goes back

to neighbor monitoring and resets C1(i) to C1.

Alarm propagation. After sensor s enters the alarm

propagation state, it deletes the target sensor i from its

neighbor list and transmits an alarm to the control center via

some route. If sensor s receives any packet from i, it goes

back to the neighbor monitoring state and resets C1(i) to C1.

If sensor s receives packets from i after the alarm is fired

within reasonable time, extra mechanisms are needed to

correct the false alarm for i. On the other hand, a well-

designed system should have very low false alarm

probability. Thus this situation should only happen rarely.

Self. In the self state, if sensor s receives AQR with itself as

the target, it broadcasts an alarm reject packet ARJ with

TTLZ1. In this state, sensor s also schedules the trans-

missions of the update packets. In order to reduce redundant

traffic, each sensor checks its transmission queue before

scheduling the next update packet. After a packet trans-

mission completes, a sensor checks its transmission queue. If

there is no packet waiting in the queue, it schedules the next



Table 1

System parameters

Notation Value

UPD size tup 60 bytes

AQR size taq 64 bytes

ARJ size tar 80 bytes

ACF size tac 64 bytes

Channel BW W 20 kbps

Xmission range R 200 m

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476466
transmission of the update packet based on the exponential

distribution. If there are packets in the transmission queue, it

will defer scheduling until these packets are transmitted. This

is because each packet transmitted by a sensor can be

regarded as an update packet from that sensor.

2.2. Variations within the two-phase mechanism

For performance comparison purposes, we will examine

the following variations of the mechanism described above.
(1)
 Alarm rejection only (ARJO). Under this approach, a

neighbor responds to an AQR(i) packet only when it has

an active timer for i. It replies with an ARJ(i) along with

the remaining value of its timer. If its first timer C1(i) has

also expired it will not respond but will enter the suspend

state. A sensor in the alarm checking state will thus wait

till its second timer C2(i) expires to trigger an alarm.
(2)
 Alarm confirmation allowed (ACFA). This approach is

the same as ARJO except that neighbors receiving

AQR(i) are also allowed to respond with an ACF(i) if

their timers also expired. We specify that upon receiving

one ACF(i) packet, a sensor in the alarm checking state

can terminate the state by triggering an alarm before the

second timer C2 expires. By doing so we can potentially

reduce the response delay, but we will see that this comes

with a price of increased false alarms.
(3)
 Alarm target only (ATGO). Under this approach, only

sensor i is allowed to respond to an AQR(i) packet from

sensor s. In other words, s proactively probes i to see if i

is still alive. In doing so if i is dead s will have to wait

for timeout before triggering an alarm. Intuitively by

doing so the amount of responding traffic is reduced.

However, the correlation between neighbors’ obser-

vations is not utilized.
Note that a key to these schemes is the determination of

parameters C1 and C2. This may be based on the expected

time to the next UPD packet arrival (T) and the likelihood of

a collision and consecutive collisions. In all the above

schemes these parameters are assumed to be pre-deter-

mined. An alternative approach is to have the sensors

announce the time to their next scheduled UPD transmission

in the current UPD packet. This scheme (subsequently

denoted by ANNOUNCE) does not require time synchro-

nization as the time of next arrival may be computed by the

local time of arrival of the current UPD and the time

difference contained in the current UPD. This scheme may

be used with any of the previous variations to determine the

timeout value C1.
1 The purpose is again to randomize the packet transmission times. The

random delay also needs to scale with the network degree d and the packet

transmission time.
3. Simulation studies

In this section, we compare the performance of the

various schemes introduced in Section 2, denoted by ‘basic’,
‘ARJO’, ‘ACFA’, ‘ATGO’, and ‘ANNOUNCE’, respect-

ively. Section 3.1 presents the results under the basic and the

first three variation schemes, when the UPD inter-arrival

time is exponentially distributed and the environment is

noiseless (meaning that the packet losses are only due to

collisions). As mentioned before, the proposed readily

admits any arbitrary distribution. The choice of exponential

in this part is largely due to the fact that the analysis in

Section 4 is made tractable under this assumption and may

be compared with simulation results. A second reason is that

it provides a reasonably large variance of the interarrival

times to randomize transmission times of UPD packets. In

Section 3.2, we consider the effect of noise, i.e. packet

losses are not only due to collisions, but also due to noise.

Here noise is modeled via independent loss probability

(in addition to collision loss) for every packet rather than via

explicit computation of signal to noise ratio. The perform-

ance of ANNOUNCE is examined in Section 3.3.

Our simulation is implemented in Matlab. A total of 20

sensors are randomly deployed in a square area. Sensors are

assumed to be static during the simulation. The transmission

radius is fixed for all sensors, thus the size of the square area

may be altered to obtain different sensor node degree,

denoted by d (degree is defined as the average number of

sensors within direct communication area of a sensor). For

AQR(i), ARJ(i), and ACF(i) packets, a sensor waits for a

random period of time exponentially distributed with rates

dtaq/W, dtar/W, and dtac/W before transmission, where W is

the channel bandwidth and taq, tar, and tac are the sizes of

the AQR, ARJ, and ACF packets, respectively.1 During a

simulation, sensor death events are scheduled periodically.

The sensor death periods (time between two successive

death events) are 100 time units and 500 time units when

update periods T are 10 units and 60 units, respectively.

Under the same sets of parameters (e.g., T), when the sensor

death becomes more frequent, the amount of control packets

incurred by sensor failure increases. Thus the false alarm

probability increases due to the increasing packet collision.

However, the response delay decreases because the control

timers are less likely to be reset when packet collision

increases. Table 1 shows the parameters and notations used

in simulation results and subsequent analysis. Different



10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

P
r[

F
A

]

T=10sec, C2=1sec

Basic
ARJO
ATGO
ACFA

10 20 30 40 50 60 70
0

20

40

60

D
el

ay
(s

ec
)

10 20 30 40 50 60 70
20

25

30

35

40

C1 (sec)

P
ow

er
 C

on
su

m
p.

(m
W

)

Fig. 3. Simulation results with TZ10, C2Z1, and dZ6.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 467
devices have different packet overhead. The packet size

ranges from tens of bytes [7] to hundreds of bytes [8]. Since

we only consider control packets, we used 60 bytes as the

basic size similar to [7]. Without specifying packet format,

these choices are arbitrary but reasonable.

The following metrics are considered. The probability of

false alarm, denoted by PF A, the response delay, and the

total power consumption. Denote the number of false alarms

generated by sensor s for its neighbor i by asi and denote the

total number of packets received by s from i by bsi. PF A is

then estimated by

PF A Z

P
s

P
i asiP

s

P
i bsi

:

This is because s resets its timer upon every packet

received from i, so each packet arrival marks a possible false

alarm event. The response delay is measured by the delay

between the time of a sensor’s death and the time when the

first alarm is triggered by one of its neighbors. The total

power consumption is the sum of communication and idle

power consumption. The former is calculated by counting

the total transmission/receiving time and using the

communication core parameters provided in [1]. The

power dissipated in node n1 transmitting to node n2 is

(a11Ca2d(n1,n2)2)r where a11Z45nJ/bit, a12Z135nJ/bit,

a2Z10pJ/bit/m2, r is the transmission rate in bits/s, and

d(n1,n2) is the distance between n1 and n2 in meters. The

power dissipated in n1 receiving from n2 is a12r. The idle

power consumption (sensing power and data processing

power) per sensor is 1.92 mW based on the energy

consumption ratio in [13]. Each data point is the average

of multiple runs with a fixed set of parameters but different

random topologies.
0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

P
r[

F
A

]

T=10sec, C1=21sec

Basic
ARJO
ATGO
ACFA

0 5 10 15 20 25 30 35
10

20

30

40

50

D
el

ay
(s

ec
)

0 5 10 15 20 25 30 35
20

25

30

35

40

C2 (sec)

P
ow

er
 C

on
su

m
p.

(m
W

)

Fig. 4. Simulation results with TZ10, C1Z21, and dZ6.
3.1. Comparison of different schemes

First, we will investigate a relatively high-alert system

with TZ10 time units. The amount of time per unit may be

decided based on the application. Different time units will

not affect the relative results shown here. In our simulation,

we choose one time unit to be 1 s. The upper 2 graphs of

Fig. 3 show the two performance measures with average

update interval TZ10, where C2 is set to 1. With this set of

parameters, the three two-phase schemes, ARJO, ATGO,

and ACFA, result in very similar and much lower false

alarm probability than the basic scheme. Compared to the

basic scheme, the largest false alarm probability decrease is

up to 82%. As expected, false alarm decreases as timer C1

increases for all cases. The response delay under all schemes

increases with C1, with very little difference between

different schemes (maximum 3 s). There is also no

consistent tendency as to which scheme results in the

highest or lowest response delay. The alarm confirmation

scheme (ACFA) does not help reduce the overall response

delay in this case because C2 is very small, in which case
a sensor either does not receive a confirmation, or the time

saving due to confirmation is very limited.

The upper 2 graphs of Fig. 4 show results with TZ10 and

C1 fixed at 21. False alarm decreases with increasing C2,

while the response delay increases. We see a dramatic

reduction in the response delay when the alarm confirmation

scheme (ACFA) is used. However, this does not come for

free. Table 2 shows comparison between ARJO and ACFA

at C2Z31. The increase in false alarm probability is mainly

due to incorrect confirmation given by a neighbor. Due to

the collision nature of the wireless channel and correlation

in observations, multiple neighbors may have expired

timers. This increase in false alarm can be potentially

alleviated by requiring more than one confirmation packet

(ACF) to be received before a sensor can trigger an alarm.

However, the same trade-off between accuracy and latency

remains. Furthermore, as can be seen in Fig. 4, the basic



50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

P
r[

F
A

]

T=60sec, C2=1sec

Basic
ARJO
ATGO
ACFA

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

C1 (sec)

R
es

p.
 D

el
ay

(s
ec

)

Fig. 5. Simulation results with TZ60, C2Z1, and dZ6.

Table 2

Effect of alarm confirmation

ARJO ACFA Change (%)

PFA 0.0014 0.0136 C871

Resp. delay 42.4 19.28 K54.5

2 From Ref. [12], in order to achieve asymptotic connectivity each sensor

should have number of neighbors c log(n) where c is a critical parameter

(assigned to 1 here) and n is the total sensor number. When the degree is 9,

the total number of sensors in which the asymptotic connectivity can still be

achieved is e9 x8103, which is a fairly large network.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476468
scheme has slightly smaller response delay than ARJO and

ATGO. This is because the last update packet (UPD) sent by

neighbor i before i’s death may be lost due to collision and

therefore the timer for i is not reset in the basic scheme.

When the timer expires, an alarm is sent. However, in ARJO

and ATGO as long as the alarm coordination in C2(i) phase

succeeds, the timers for i may still be reset even if the last

UPD from i is lost. Therefore, the sensors in ARJO and

ATGO need to wait for a longer time till the timers expire to

send an alarm than the sensor in the basic scheme. When C2

is larger, the alarm coordination is more likely to succeed

and thus the response delay is larger.

The bottom graphs of Figs. 3 and 4 show the total power

consumption. In the bottom graph of Fig. 3, we see that in

general the two-phase schemes result in slightly higher

energy consumption due to extra traffic incurred by the local

coordination mechanism. When C1 is not too large, ARJO

and ACFA have the highest power consumptions. ATGO

consumes less because only the target participates in alarm

checking. When C1 becomes larger, the difference becomes

small. Overall the largest increase does not exceed 6%. In

the bottom graph of Fig. 4, ACFA still has the highest power

consumption since it generates most control traffic. The

basic scheme still has the lowest power consumption.

However, the power consumption does not vary with C2.

The reason is that the amount of controlled traffic is control

by the length of C1 rather than C2. Overall the largest

increase does not exceed 2.7%.

Now we investigate the case with TZ60 time units. For

brevity we only show the results for TZ60 and C2Z1 in

Fig. 5. For other parameter settings, the observations and the

interpretations of the results remain largely the same as

given here. As can be seen, the comparison and the change

over C1 are similar to the case of TZ10. The two-phase

schemes result in much lower probability of false alarm than

the basic system. The response delay of different schemes

are approximately the same, with differences within 10 s.

Due to the light traffic, the power consumption of different

schemes become more and more similar, and is thus not

shown here. It may seem surprising that although on average

a sensor updates its neighbors once every 60 s, there is still

significant false alarms when C1 is below 200 s. This is

because as T increases, false alarms are more likely to be

caused by the increased variance in update interval than

caused by collisions as when T is small. Since the update

intervals are exponentially distributed, in order to achieve

low false alarm probability comparable to results shown in

Fig. 3, C1 needs to be set appropriately. In this case, either a

constant update interval or the ANNOUNCE scheme may
be used to reduce the amount of uncertainty in estimating

the time till the next UPD packet arrival.

We ran the same set of simulations for topology

scenarios with average sensor degrees of 3 and 92. Overall

all results on performance comparisons remain the same as

shown above. Power consumption increases with sensor

degree. However, the increase in energy consumption by

using the two-phase schemes remains very small. In Fig. 8

of Section 4, we will show that increasing degree does not

necessarily mean decreasing false alarm probability.
3.2. Results in a noisy environment

Recent measurements on real systems [4] show that links

with heavy packet loss are quite common due to the

corrupted received packets under a noisy environment.

Below we evaluate our system under a noisy environment.

Let Pf be the probability that a received packet is corrupted

due to the noisy environment (not due to packet collision).

Fig. 6 shows the simulation results under the same scenario

as Fig. 3 but with PfZ0.1 and PfZ0.5, respectively. (We

only show the results for the basic system, ARJO, and

ATGO for clearer presentation. The results for the

confirmation scheme ACFA follow similar observations.)

Comparing Figs. 3 and 6, we can see that the false alarm

probability increases and the response delay decreases as Pf

increases. This is because the last packet sent by neighbor i

before i’s death is more likely to be lost when Pf is larger.

The subsequent alarm coordination in C2(i) phase is also

more likely to fail when Pf is larger. Therefore, timers C1(i)

and C2(i) are less likely to be reset when Pf is larger, which



10 15 20 25 30 35 40 45 50 55 60 65
0

0.1

0.2

0.3

0.4

0.5

0.6

P
r[

F
A

]

T=10sec, C2=1sec, d=6

Basic:Pf=0.1
ARJO:Pf=0.1
ATGO:Pf=0.1
Basic:Pf=0.5
ARJO:Pf=0.5
ATGO:Pf=0.5

10 15 20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

C1 (sec)

R
es

p.
 D

el
ay

(s
ec

)

Fig. 6. Simulation results with TZ10, C2Z1, dZ6.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 469
results in less waiting time (response delay) till the timer

expiration to send an alarm for i. If we want to satisfy a

predefined false alarm probability limit, we need to use

different initial values for C1(i) or C2(i) under different

environment, i.e. different Pf. In Section 5, we present a

method for sensors to adjust the initial timer values

according to changes in the environment.
3.3. Announcement of the time till next UPD

ANNOUNCE was described in Section 2.2. In the

simulation the initial value of C1(i) is set to 2TC1. Upon

receiving a UPD packet from neighbor i containing a time

difference ti (time to next UPD arrival), C1(i) is updated to

be equal to ti. When using ANNOUNCE with the basic

scheme, only one timer of value C1(i) is used. All other

operations remain the same as before.

Fig. 7 shows the simulation results with T Z10 and dZ6

under this scheme. Since the basic scheme has only one
0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

P
r[

F
A

]

T=10sec
Basic
ARJO
ATGO
ACFA

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

C2 (sec)

D
el

ay
(s

ec
)

Fig. 7. Simulation results with TZ10 and dZ6 using ANNOUNCE.
timer updated by the received ti, which is unaffected by the

value of C2, it has approximately constant false alarm

probability and response delay. In contrast, the basic scheme

in Fig. 4 produces lower false alarm probabilities at large

values of C2. This is primarily because in Fig. 4 the basic

scheme has a timer value of C1CC2 with fixed C1 and

increasing C2, whereas under ANNOUNCE the basic

scheme has timer values of C1(i) updated by ti. The latter

essentially does not leave any room for the possibility of

packet losses, resulting in higher false alarm probability.

ARJO, ATGO, and ACFA in Fig. 7 have higher false

alarm probabilities than the ones in Fig. 4 for all C2

values simulated (especially for ARJO and ACFA with a lot

of control traffic and thus large packet collision

probabilities). Correspondingly the response delays are in

general lower than those shown in Fig. 4. The power

consumption in Fig. 7 is similar to the one in Fig. 4 and is

not shown here.

The results shown here indicate that even though better

estimates on when to expect the next UPD packet may be

obtained via explicit announcement, the uncertainty in

packet collision can still result in high false alarm

probabilities. In particular for exponential distribution

with mean TZ10, setting C1Z21 in Fig. 4 means that C1

is roughly the mean plus one standard deviation, which

results in a value greater than ti (which is drawn from the

same distribution) most of the time. Consequently Fig. 4 is a

result of on average larger timeout values C1CC2, hence

lower false alarm and high response delay (as we will show

in the next section, the performance of these schemes

primarily depends on the combined C1CC2). We could

easily increase C1 to be the sum of ti contained in the

received UPD packet and some extra time, which should

lead to reduced false alarm probability, but the tradeoff

between the two performance measures would remain the

same. On the other hand, as mentioned before as T increases

packet collision decreases and thus the performance of

ANNOUNCE is expected to improve.
3.4. Discussion

These simulation results show that the two-phase

approach performed very well with the parameters we

simulated. We can achieve much lower false alarm

probability compared to a single timer scheme for a given

response delay requirement (up to 82% decrease). Equiva-

lently we can achieve much lower response delay for a

given false alarm probability requirement. In particular, the

alarm confirmation scheme (ACFA) poses additional

flexibility in achieving a desired trade-off. Such benefit

comes with a very slight increase in energy consumption. In

general, false alarm probability decreases with increased

timer values C1 and C2, while the response delay increases.

The choice of update rate 1/T also greatly affects these

measures. In the next section, we will show how to choose



C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476470
these system parameters via analysis for certain instances of

this scheme.

In the simulation results shown, we only considered

control traffic incurred by our algorithms. In reality, other

background traffic may also be present in the network. As

mentioned earlier, all traffic may be regarded as update

packets from neighbors. Therefore, if the background traffic

is light (e.g. less frequent than the scheduled UPD packets),

then it simply replaces some of the regularly scheduled UPD

packets, and the performance of the system should not

change much. On the other hand, if the background traffic is

heavy, it mounts to updating neighbors very frequently which

may completely replace the regularly scheduled UPD

packets. The performance, however, in this scenario is not

easy to predict since the background traffic is likely to require

reliable transmission between nodes (e.g. using the collision

avoidance method RTS-CTS sequence provided by IEEE

802.11, and packet retransmission).

There are many other choices in addition to an

exponential distribution that was used for scheduling

UPD packets in these simulations. In general, sufficient

variance in this candidate distribution is desired as it

properly de-synchronize the transmission of UPD packets

(with the exception of perhaps the scenario of very light

traffic, i.e. long update cycles, where initial randomiz-

ation followed by fixed update intervals or the

ANNOUNCE scheme may suffice). On the other hand,

this variance should not be too large, as it may make the

determination of values C1 and C2 difficult. In general,

there is a delicate balance between (1) sufficiently large

timeout values to ensure high confidence that the timer

expires because a sensor is indeed dead rather than

because there happens to be a very large interarrival time

of the UPD packets or because there has been a packet

collision, and (2) not overly large timeout values to

ensure reasonable response time.
4. System analysis and optimization

In this section, we attempt to analyze the performance of

the scheme introduced in this paper for a few simplified

instances. The goal is to obtain further insight into the

relationship between the performance of the system and the

timer values C1 and C2. If the analytical models are

accurate enough, then they can also be potentially used to

properly select these system parameters for certain per-

formance requirement on false alarm probability and

response delay.

We assume that the UPD inter-arrival time is

exponential distributed with rate 1/T. We assume that

the transmission queue in each sensor is stable and the

arrival rate equals the departure rate. This is because

compared to channel bandwidth, the packet generation

rate is typically very small. We also assume that

the packet propagation delay, data processing delay in
a sensor, and transmission queuing delay are all

negligible. Furthermore, the amount of sensor update

packets, UPD, is much larger than AQR and ARJ

packets. Thus we may only consider the collision

induced by UPD packets. Packet loss probability due to

a noisy environment is denoted by Pf.

Below we first define reference values for C1 and C2

that serve as benchmarks. We then provide models of

PF A and response delay, denoted by D, as functions of a

number of system parameters for the basic system,

ARJO, and ATGO schemes, respectively. We will

not consider ACFA here for brevity as ACFA is

significantly more complicated than other variations and

require additional assumptions. The details of the

derivations of the results presented below can be found

in Appendix A.

Result 1. The reference values of the two timers C1 and

C2 are:

C�
1 Z

T

1 KPf

exp
2dtup

TW

� �
;

and

C*
2 Z

taq Ctar C4dtup

W
:

Result 2. Basic scheme has

PF A Z exp K
ð1 KPf Þe

K2dtup=TW ðC1 CC2Þ

T

 !

and

DzPsucc

ðC1CC2

0
ðC1 CC2 Kx1Þ

eKx1=T

T
dx1 CPsuccð1KPsuccÞ

!

ðC1CC2

0

ðC1CC2Kx2

0
ðC1 CC2 Kx1 Kx2Þ

eKx1=T

T

!
eKx2=T

T
dx1dx2;

where

Psucc Z ð1KPf Þe
K2dtup=TW :

Result 3. ARJO has

PF A Zexp K
ð1KPf Þ

2eKð2dtup=TWÞðC1 CC2Þ

T

� �

! 1Kð1KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �

! exp K
ð1KPf Þe

Kð2dtup=TWÞC1

T

� �	

C 1Kexp K
ð1KPf Þe

Kð2dtup=TWÞC1

T

� �� �

! 1Kð1KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �
0:6885d



10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r[

F
A

]

T= 10 sec, C2= 1 sec

Basic(analysis)
Basic(simulation)
ARJO(analysis)
ARJO(simulation)
ATGO(analysis)
ATGO(simulation)

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

C1 (sec)

R
es

po
ns

e 
D

el
ay

 (
se

c)

Basic&ATGO(analysis)
Basic(simulation)
ATGO(simulation)
ARJO(analysis)
ARJO(simulation)
Max. response delay

Fig. 9. Numerical results with fixed C2.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10–3

d

P
r[

F
A

] o
f A

R
JO

C1=7sec, C2=1sec

T=1sec
T=2sec
T=7sec

Fig. 8. PF A of ARJO with C1Z7 s and C2Z1 s.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 471
and

DzPsucc

ðC1CC2

0
ðC1 CC2 Kx1Þ

eKx1=T

T
dx1 CPsuccð1KPsuccÞ

!

ðC1CC2

0
P

ðC1CC2Kx2

0
ðC1 CC2 Kx1 Kx2Þ

eKx1=T

T
dx1

�

Cð1KPÞ

ðC1CC2

0
ðC1 CC2 Kx1Þ

eKx1=T

T
dx1

�
eKx2=T

T
dx2;

where

PZ exp K
ð1KPf Þe

Kð2dtup=TWÞC1

T

� �	

C 1Kexp K
ð1KPf Þe

K2dtup=TW C1

T

� �� �

! 1Kð1KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �
0:6885d

:

Result 4. ATGO has

PF A Zexp K
ð1KPf Þe

Kð2dtup=TWÞðC1 CC2Þ

T

� �

! 1Kð1KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �

and the response delay is the same as Result 2.

First consider PF A. We will use Result 4 instead of Result

3 since the former is much easier to interpret. We see that

PF A decreases exponentially with the increase in the ratio

(C1CC2/T). Though not a surprising result, it is interesting to

observe that it is the sum of C1CC2 that determines the false

alarm rather than individual values (same with response

delay). This is because the performance is decided by how

packets are received over the sum of C1 and C2 period;

furthermore, the individual C2 value (C2O0) does not affect

the probability that the alarm coordination succeeds since

AQR and ARJ packets are only transmitted once (no

retransmission) and we have discarded the queuing delay in

the derivation. However, individual C1 and C2 values do have

an effect on energy consumption. Furthermore, increasing

the channel bandwidth W will decrease PF A.

We next consider the effect of the degree d on PF A of

ARJO. On the one hand, PF A tends to decrease with

increasing degree since there are more sensors to correctly

report the state of a sensor; on the other hand, the probability

of collision also increases with node degree, which leads to

higher number of false alarm events. The combined effect of

these two factors is shown in Fig. 8, computed from Result

3. As can be seen, when T is small (e.g. TZ1 in Fig. 8), the

packet collision resulted from the increasing degree d

outweighs the benefit of alarm coordination. When T is large

(e.g. TZ7 in Fig. 8), the benefit of alarm coordination

becomes more prominent as d increases.

Below we compare the numerical results from the above

models with those of simulation. For brevity we only show

the results for TZ10, degree dZ6, PfZ0, and C2Z1 s.
The observations are similar under other parameter settings.

The initial values of C1 and C2 are chosen based on the

analytical reference values. Fig. 9 shows numerical results

with TZ10 and C2Z1. The analysis and the simulation of

PF A of the basic system match quite well. However,

analysis on ARJO and ATGO are less satisfactory,

producing gross underestimates. The main reason with

ARJO is that we assumed that two unsuccessful packet

receiving events at two neighbors are independent. When a

sensor did not successfully receive a broadcast packet, it is

likely that its neighbors also did not successfully receive the

same broadcast due to the shared wireless channel. Thus

those two events may be highly correlated. The discrepancy

with ATGO is likely related to the fact that as probability of

false alarm falls very low, the variance in simulation results

increases. For example, a small rise in the number of false

alarm events (numerator of PF A measure) caused by a

random perturbation in the simulation can result in a large

difference when probability is low. For the response delay,



0.5
T=10sec, d=6

ARJO with M=2

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476472
the analysis gives very good estimates under all schemes

examined, with differences not exceeding 3 s.
0

0.1

0.2

0.3

0.4

P
r[

F
A

]

ARJO with M=4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

10

20

30

40

50

60

pf

R
es

p.
 D

el
ay

(s
ec

)

Fig. 10. Performance of the self-parameter-tuning function.
5. Self-parameter tuning function

In previous sections, we have shown via both simulation

and analysis that the system performance greatly depends

upon system parameters, in particular C1 and C2. On the

other hand, given different deployment environment, e.g.

node degree or noise level, the best values of C1 and C2 may

vary. It is thus desirable to have a mechanism that adapts to

an unknown and potentially changing environment and

produces a stable false alarm probability under different (or

changing) conditions. This means that the sensors need to

dynamically adjust their C1 and C2. Below we show one

simple way of achieving this, by using the average of packet

reception rate as an indicator of how good the environment

is and adjusting these parameter accordingly.

When a sensor s receives the a-th packet from sensor i, it

updates its initial value of C1(i) to a moving average

C1 Z M

Pa
bZaKNC1 tb

N
;

where tb is the reception period between the (bK1)-th and

the b-th packets received from sensor i, N is the size/window

of the moving average, and M is a control parameter. A

larger M results in smaller false alarm probabilities but

higher response delays. When sensor s receives the a-th ARJ

from sensor i, it updates its initial value of C2(i) to

C2 Z M

Pa
bZaKNC1 t 0b

N
;

where t 0b is the period between the b-th AQR sent and the

b-th ARJ received from sensor i.

This self-parameter tuning function is essentially a low-

pass filter of the received packet interarrival times. Here for

brevity we only show the results of ARJO with TZ10, dZ6,

NZ20, and note that the results are similar in other cases.

Fig. 10 gives the simulation results for MZ2 and MZ4

under different Pf. Comparing these results to that shown in

Fig. 6, we see that the false alarm probabilities for both

MZ2 and MZ4 are much more stable under different Pf

compared to the difference of the false alarm probabilities

with PfZ0.1 and PfZ0.5 in Fig. 6. In Fig. 10, the response

delay increases with Pf because sensors use larger C1 and C2

when the packet losses are more often, i.e. Pf is larger. A

large M (e.g. MZ4 in Fig. 10) gives us large C1 and C2,

which results in small false alarm probabilities but large

response delays.
6. Related work

Problems related to the monitoring of a sensor network

have been studied in the literature for various applications
and purposes. [2] proposed a single timeout scheme to

monitor the system-level fault diagnosis. [14] proposed an

approach to construct abstracted scans of sensor network

health by applying in-network aggregation of network state.

Specifically, in [14] a residual energy scan was designed to

approximately depict the remaining energy distribution

within a sensor network. Such in-network aggregation was

also studied in [7]. Ref. [9] proposed an approach to trace

the failed nodes in sensor networks, whereby the corrupted

routes due to node failure can be recovered. The approach

used in [9] was centralized, where the control center (base

station) monitors the health of sensors and recovers the

corrupted routes. Coordination among neighbors similar to

the one used in this paper was also proposed in [8] for

information dissemination among sensors, where sensors

use meta-data negotiations to eliminate the transmission of

redundant data. [10] presented a hierarchical architecture

for the self-organization of sensor networks, in which a

monitoring mechanism was proposed. Under this scheme,

sensors report periodic updates to their cluster heads. This

falls under the active monitoring method mentioned before,

whose efficiency depends on the size of the cluster.
7. Conclusion

In this paper, we presented a comprehensive two-

phase mechanism developed for the self-monitoring of a

large sensor network using neighbor monitoring and local

coordination. Via both simulation and analysis, we

showed that this two-phase, self-monitoring mechanism

achieves low false alarm probability without increasing

the response delay and with very limited extra power

consumption. We presented variations of this mechanism

which help achieve better tradeoff between the two

performance objectives.



C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 473
Acknowledgements

This work was supported in part by the Engineering

Research Centers Program of the National Science Foundation

under NSF Award Number EEC-9986866. An earlier

version of this work reporting part of the results here appeared

in 2002 ACM Workshop on Wireless Security (WiSe’02).
Appendix A. System analysis
C1+C2

C1+C2-x1x1
AlarmUPD(i) UPD(i)

i is
dead

R R

(1)

C1+C2

C1+C2
-x1-x2x1 Alarm

UPD(i) UPD(i)

i is
dead

R L

(2)

x2

Fig. A1. Possible scenarios. ‘R’ means that UPD is received from i. ‘L’

means that UPD is lost.
A.1. Timer references

It is reasonable to choose a reference value of C1 to be the

expected time for a sensor (say node A) to receive

successfully a UPD packet from a given neighbor. For this

to happen, no other neighbors of A (including A itself) may

transmit simultaneously. Adopting a random access model

(unslotted), the transmissions of UPD from different sensors

are independent. Thus we may model the UPD trans-

missions by all A’s neighbors excluding A as a single

Poisson process with rate d/T. Then the probability of A

successfully receiving a UPD from any given neighbor is the

probability that no other transmission takes place during the

period 2tup/WT, i.e.

Psucc Z ð1 KPf Þexp K
2dtup

TW

� �

Hence the successful reception of UPDs at A from a given

neighbor is a Poisson process with rate

lra Z
Psucc

T
:

The average time between two consecutive successful UPDs

from this neighbor is 1/lra, which is taken to be the

reference value for C1, i.e.

C*
1 Z 1=lra Z

T

ð1 KPf Þ
exp

2dtup

TW

� �
:

Next consider C2. For a neighbor to respond with an ARJ, the

delay is approximately the summation of the transmission

delays of AQR and ARJ and twice the average random delay.

Note that under the assumptions given earlier, ARJ

transmissions are always successful. The random delay is

exponentially distributed with rate mraZ(W/dtup) with mean

1/mra. We take twice the mean for the purpose of deriving a

reference value for C2, which is taken to be

C*
2 Z

taq Ctar C4dtup

W
:

This reference is a little more than the expected time it

takes to successfully transmit an AQR and successfully

receive an ARJ.
A.2. Performance of the basic scheme

The basic scheme only has one timer of initial value

C1CC2. Given all sensors are alive, the probability that a

sensor transmits a false alarm packet targeting a neighbor

is the probability that this sensor has not received UPD

from that neighbor for C1CC2. We know that the

successful reception of UPDs is a Poisson process with

rate lra, which immediately leads to the expression of PFA

given in Result 2.

In calculating the response delay, we use Fig. A1 to

illustrate possible scenarios. In Fig. A1 (1), a sensor

successfully receives the last UPD from i, but sensor i is

dead x1 time units after this event. Denoting the response delay

in this case by D0, we have D0ZC1CC2Kx1. The delay

between the last update and the death event is a random

variable denoted by X1. In Fig. A1 (2), a sensor fails to receive

the last UPD from i but did successfully receive the one before

the last one. Thus the response delay in this case, denoted by

D1, is D1ZC1CC2Kx1Kx2. The delay between two

consecutive UPD from i is also a random variable denoted

by X2. In general, we can define Ai to be the event that a sensor

has lost the last i (consecutive) UPDs sent by another sensor

that subsequently died. Di is then defined as the response delay

as a result of event Ai. Note that events Ai form a partition of the

space of all possible events that can happen to a sensor in

detecting another sensor’s death. We only consider consecu-

tive losses since any reception will reset the timer. We can then

derive the average response delay:

D Z
XN
iZ0

Pr½Ai�Di Z PsuccD0 CPsuccð1 KPsuccÞD1

CPsuccð1 KPsuccÞ
2D2 C/Z PsuccD0

CPsuccð1 KPsuccÞD1 CoðPsuccÞ

The following can be obtained:

D0 Z

ðC1CC2

0
ðC1 CC2 Kx1ÞfX1ðx1Þdx1



C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476474
and

D1 Z

ðC1CC2

0

ðC1CC2Kx2

0
ðC1 CC2 Kx1 Kx2Þ

!fX1ðx1ÞfX2ðx2Þdx1dx2

where fx1(x1) and fx2(x2)are pdf’s of X1 and X2, respectively.

Both are exponentially distributed with rate 1=T , assuming

sensor death is a random event. For D0, the range of x1 is from 0

to C1CC2. If x1 is larger than C1CC2, a false alarm event will

happen which results in a negative response delay. This,

however, is considered as a false alarm event and not taken into

account in deriving response delay. Result 2 given in Section 4

follows.
A.3. Performance of alarm reject only scheme (ARJO)

Consider the simple scenario shown in Fig. A2 and

assume all sensors are alive. A sensor would send out a false

alarm if it failed to receive a UPD from a neighbor within

C1CC2, and failed to receive an ARJ from its neighbors

within C2. We denote these two events by E1 and E2,

respectively. We thus have PF AZPr[E1] Pr[E2jE1], where

Pr[E1] was obtained earlier.

Further define E3 to be the event that after C1 expires

and an AQR is sent, a sensor (e.g., B in Fig. A2) does not

receive an ARJ from the target (e.g., A in Fig. A2) within

C2. Define E4 to be the event that under the same scenario

a sensor does not receive an ARJ from a common

neighbor of itself and the target (e.g., C in Fig. A2) within

C2. Define E5 to be the event that a common neighbor’s

timer C1 has also expired when the ARJ was transmitted

(by B). Define E6 to be the event that the AQR-ARJ

communication failed between the sensor (e.g., B) who

initiated the AQR and a common neighbor (e.g., C).

Assuming that the events of not successfully receiving

ARJ from neighbors are mutually independent, and

assuming the expected number of common neighbors

are d 0, we have the following approximation: Pr½E2jE1�z
Pr½E3�ðPr½E4�Þd

0ZPr½E3�ðPr½E5�C Pr½ �E5�Pr½E6j �E5�Þ
d 0

:

The probability of E5 is the probability that the

neighboring sensor has not received UPD from the target

in C1. Thus,

Pr½E5� Z exp K
ð1 KPf Þe

Kð2dtup=TWÞ

T
C1

� �
:

BA

C D

E
F

Fig. A2. A basic scenario.
Continuing with the same example with sensors A, B and C

in Fig. A2, AQR-ARJ communication between two sensors

may fail because the AQR failed or the ARJ failed when

AQR was successful. Recall that we consider only the

collisions of UPD packets. If C wants to successfully

receive AQR from B, other neighbors of C including C itself

cannot transmit UPD when B is transmitting AQR. There-

fore, the probability that C successfully receives AQR from

B is the probability that there are no other transmissions in a

period of length (tupCtaq)/W times the probability of no

failure due to noise. Since the transmission of UPDs of C

and C’s neighbors excluding B is modeled as a

single Poisson process with rate d/T, the probability AQR

succeeds is

ð1 KPf Þexp K
dðtup CtaqÞ

TW

� �
:

Similarly, given an AQR succeeds, an ARJ succeeds, with

probability

ð1 KPf Þexp K
dðtup CtarÞ

TW

� �
:

Therefore, between two sensor exchanging AQR and ARJ,

we have the following:

Pr½E6j �E5� Z Pr½AQR fails�CPr½AQR succeeds�

Pr½ARJ failsjAQR succeeds�

Z 1 K ð1 KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �
:

The probability that a sensor does not successfully receive

an ARJ from the target itself is given by

Pr½E3� Z 1 K ð1 KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �
:

Thus

Pr½E2jE1�z 1 K ð1 KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �

! exp K
ð1 KPf Þe

Kð2dtup=TWÞ

T
C1

� �	

C 1 Kexp K
ð1 KPf Þe

Kð2dtup=TWÞ

T
C1

� �� �

! 1 K ð1 KPf Þ
2 exp K

dðtaq Ctar C2tupÞ

TW

� �� �
d 0

:

The average number of common neighbors to two

neighboring sensors can be calculated (see Appendix A.5)

to be d 0Z0.6885d. This leads to Result 3 given in Section 4.

The derivation of the response delay for the ARJO

scheme is similar to what we showed with the basic scheme.

One scenario that needs special attention is shown in

Fig. A3. Here when Sensor A does not successfully receive

the last UPD from i, C1(i) will expire eventually, which

results in the alarm checking process. As shown, when C1(i)



x1
AlarmUPD(i) UPD(i)

i is
dead

R L

x2

C1

UPD(i) UPD(i)

R R

C2

C2
C1 Remain

ing C1

C1+C2-x1
Sensor

A

Sensor
B

Alarm

query

Fig. A3. A possible scenario. ‘R’ means that UPD is received from i. ‘L’

means that UPD is lost.

C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476 475
in A expires, A will consult its neighbor B. If B receives the

last UPD from i and the transmissions of AQR(i) and ARJ(i)

are successful, A resets its C1(i) to the remaining C1(i) value

sent by B. Thus, the response delay under this scenario is

C1CC2Kx1.

If B fails to receive the last UPD from i, the response

delay would be C1CC2Kx1Kx2, same as in Fig. A1 (2).

Note that A can consult with all its neighbors including B.

Let P denote the probability that this consulting fails, which

was derived earlier. If A successfully receives the last UPD

from i, the response delay is C1CC2Kx1, same as in Fig. A1

(1). Again ignoring higher order terms we get D given in

Result 3 in Section 4.
A.4. Performance of the alarm target only scheme (ATGO)

When a sensor transmits AQR(i) for a target i, only the

sensor which is the target can reply with ARJ(i). It is easy to

derive the probability that a sensor sends out a false alarm in

this case by setting the number of common neighbors to zero

in the previous result. The response delay is the same as in

the basic scheme because the target cannot reply as it

is dead.
A.5. Average number of common neighbors

Fig. A4 shows the transmission regions of two sensors A

and B, each with transmission range of R. Assuming that the

network density is fixed and that the distance r from a sensor

to its neighbor is uniformly distributed in [0, R], The size of
R R
r

A B

Fig. A4. Transmission regions of A and B.
the shaded area may be shown to be

4

ðR

r=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 Kx2

p
dx Z 4

ðp=2

sinK1 r
2R

R2 cos2q dq

Z 2R2 q C
1

2
sin 2q

� �p=2

sinK1 r
2R

Z 2R2 p

2
KsinK1 r

2R
K

r

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 K

r

2R

� �2
r" #

:

Consequently, the average number of sensors in the

shaded areaZ(average size of the shaded area)!densityZ

1

R

ðR

0
pR2 K2R2 sinK1 r

2R
K

1

2
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 Kr2

p� �
dr

d

pR2

Z 0:6885d:
References

[1] M. Bhardwaj, A.P. Chandrakasan, Bounding the lifetime of

sensor networks via optimal role assignments, in: Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM),

2002.

[2] S. Chessa, P. Santi, Comparison based system-level fault diagnosis in

ad hoc networks, IEEE 20th Symp. Reliable Distributed Systems

(SRDS) 2001;.

[3] D. Ganesan, R. Govinda, S. Shenker, D. Estrin, Highly resilient,

energy efficient multipath routing in wireless sensor networks, Mobile

Comput. Commun. Rev. (MC2R) 1 (2) (2002).

[4] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, S.

Wicker, Complex behavior at scale: an experimental study of low-

power wireless sensor networks, in: UCLA Computer Science

Technical Report UCLA/CSD-TR 02-0013, 2002.

[5] W. Heinzelman, A. Chandrakasa, H. Balakrishnan, Energy-efficient

communication protocols for wireless microsensor networks, in:

Proceedings of Hawaiian International Conference on Systems

Science, 2000.

[6] C.-F. Hsin, M. Liu, A distributed monitoring mechanism for wireless

sensor networks, in: Proceedings of ACM Workshop on Wireless

Security (WiSe), 2002.

[7] C. Intanagonwiwat, D. Estrin, R. Gonvindan, Impact of network

density on data aggregation in wireless sensor networks, in:

Proceedings of International Conference on Distributed Computing

Systems (ICDCS), 2001.

[8] J. Kulik, W.R. Heinzelman, H. Balakrishnan, Negotiation-based

protocols for disseminating information in wireless sensor networks,

ACM Wireless Networks, 2002.

[9] J. Staddon, D. Balfanz, G. Durfee, Efficient tracing of failed nodes in

sensor networks, in: Proceedings of First ACM International Work-

shop on Wireless Sensor Networks and Applications (WSNA), 2002.

[10] L. Subramanian, R.H. Katz, An architecture for building self-

configurable systems, in: Proceedings of IEEE/ACM Workshop

on Mobile Ad Hoc Networking and Computing (MobiHOC 2000),

2000.



C. Hsin, M. Liu / Computer Communications 29 (2006) 462–476476
[11] A. Woo, D.E. Culler, A transmission control schemes for media

access in sensor networks, in: Proceedings of ACM/IEEE

International Conference on Mobile Computing and Networking

(MOBICOM), 2001.

[12] F. Xue, P.R. Kumar, The number of neighbors needed for connectivity

of wireless networks, Wireless Networks, 2003.
[13] W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for

wireless sensor networks, in: Proceedings of Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), 2002.

[14] Y.J. Zhao, R. Govindan, D. Estrin, Residual energy scan for

monitoring sensor networks, in: Proceedings of IEEE Wireless

Communications and Networking Conference (WCNC’02), 2002.


	Self-monitoring of wireless sensor networks
	Introduction
	The two-phase self-monitoring system
	State transition diagram and detailed description
	Variations within the two-phase mechanism

	Simulation studies
	Comparison of different schemes
	Results in a noisy environment
	Announcement of the time till next UPD
	Discussion

	System analysis and optimization
	Self-parameter tuning function
	Related work
	Conclusion
	Acknowledgements
	System analysis
	Timer references
	Performance of the basic scheme
	Performance of alarm reject only scheme (ARJO)
	Performance of the alarm target only scheme (ATGO)
	Average number of common neighbors

	References


