
High-Performance 3D Compressive Sensing MRI Reconstruction
Daehyun Kim, Joshua D. Trzasko, Mikhail Smelyanskiy,

Clifton R. Haider, Armando Manduca, and Pradeep Dubey

Abstract— Compressive Sensing (CS) is a nascent sampling
and reconstruction paradigm that describes how sparse or
compressible signals can be accurately approximated using
many fewer samples than traditionally believed. In magnetic
resonance imaging (MRI), where scan duration is directly
proportional to the number of acquired samples, CS has the
potential to dramatically decrease scan time. However, the
computationally expensive nature of CS reconstructions has so
far precluded their use in routine clinical practice – instead,
more-easily generated but lower-quality images continue to be
used.

We investigate the development and optimization of a proven
inexact quasi-Newton CS reconstruction algorithm on several
modern parallel architectures, including CPUs, GPUs, and In-
tel’s Many Integrated Core (MIC) architecture. Our (optimized)
baseline implementation on a quad-core Core i7 is able to
reconstruct a 256x160x80 volume of the neurovasculature from
an 8-channel, 10x undersampled data set within 56 seconds,
which is already a significant improvement over existing im-
plementations. The latest six-core Core i7 reduces the recon-
struction time further to 32 seconds. Moreover, we show that
the CS algorithm benefits from modern throughput-oriented
architectures. Specifically, our CUDA-base implementation on
NVIDIA GTX480 reconstructs the same dataset in 16 seconds,
while Intel’s Knights Ferry (KNF) of the MIC architecture
even reduces the time to 12 seconds. Such level of performance
allows the neurovascular dataset to be reconstructed within a
clinically viable time.

Keywords: Compressive Sensing, MRI, Angiography, Re-

construction, GPU, Many Core

I. INTRODUCTION AND MOTIVATION

Magnetic resonance imaging (MRI) is a powerful medical

imaging modality commonly used to investigate soft tissues

in the human body. However, as MRI scan duration is

proportional to the number acquired data samples, obtaining

high-resolution images can require a significant amount of

time. Prolonged scan duration poses a number of challenges

in a clinical setting. For example, during long examinations

patients often exhibit involuntary (e.g. respiration) and/or

voluntary motion (e.g. active response to discomfort), both of

which can impart spatial blurring. High temporal resolution

is also needed to accurately depict physiological processes.

Under standard imaging protocols, spatial resolution must

unfortunately be sacrificed to permit quicker scan termination

or more frequent temporal updates.

Rather than executing a low spatial resolution exam, many

MRI protocols acquire a subset of the samples associated

with a high-resolution exam and attempt to recover the

image using constrained reconstruction methods such as

DK, MS and PD are with Throughput Computing Lab, Intel Corporation
JT, CH and AM are with the Center for Advanced Imaging Research,

Mayo Clinic

(a) (b)

(c) (d)

Fig. 1. Sagittal maximum intensity projection (MIP) images (column 1) and
coronal cross section images (column 2) for test data set 5. (a-b) represent
the current clinical reconstruction protocol result, and (c-d) represent the CS
reconstruction obtained in 32s using an Intel six-core CPU. Note the superior
vascular conspicuity and parotid gland homogeneity in the CS reconstruction
images.

Compressive Sensing (CS). CS theory asserts that the number

of samples needed to form an accurate approximation of

an image is largely determined by the image’s underly-

ing complexity [1], [2]. Thus, if there exists a means of

transforming the image into a more efficient (i.e. sparse

or compressible) representation, significantly less time may

actually be required to collect the data set needed to form

the high-resolution image [3].

Contrast-enhanced MR angiography (CE-MRA) is a very

natural clinical target for CS methods. As the diagnosis of

many conditions like peripheral vascular disease are based

on both vessel morphology and hemodynamics, images with

both high spatial and temporal resolution are needed. CS

enables the acquisition of such data in a single exam. Al-

though several authors (e.g. [[4], [5], [6]]) have successfully

demonstrated the application of CS methods to CE-MRA, the

computationally-intensive nature of these applications has so

far precluded their clinical viability. For example, published

32nd Annual International Conference of the IEEE EMBS
Buenos Aires, Argentina, August 31 - September 4, 2010

978-1-4244-4124-2/10/$25.00 ©2010 IEEE 3321

CS reconstruction times for a single 3D volume (CE-MRA

or not) range from minutes to hours [3], [7], [8], [9], [6],

even when advanced hardware environments were employed

[10], [11] or the 3D problem was approximated by a series

of 2D problems [3]. As the results of a CE-MRA exam are

often needed as soon as the acquisition completes (either for

immediate clinical intervention or to guide additional scans),

it is not practical to wait for the result of any currently-

implemented CS reconstructions. Instead, linear or other non-

iterative reconstructions that can be executed online (i.e.

subsecond run-times for 3D volume reconstruction) must be

used, even if they provide suboptimal results.

Recently, Trzasko et al. [11], [6] demonstrated high quality

non-convex CS reconstructions of 3D CE-MRA images

acquired using the state-of-the-art CAPR acquisition strategy

[12] in a matter of only minutes per 3D volume using

an advanced code implementation on a cluster system.

In this paper we investigate the development, optimiza-

tion and performance analysis of a proven inexact quasi-

Newton CS reconstruction algorithm on several modern

parallel architectures, including the latest quad and six-core

CPUs, NVIDIA GPUs and Intel’s MIC architecture. Our

optimized CS implementation on a six-core CPU is able to

reconstruct a 256x160x80 volume of the neurovasculature

from an 8-channel, 10x under-sampled data set within 32

seconds, which is more than a 3.4x improvement over

other conventional implementations. Furthermore, we show

that our CS implementation scales very well to the larger

number of cores. Our GTX480 implementation reconstructs

the same dataset in 16 seconds using the NVIDIA CUFFT

library. And, Intel’s KNF (an implementation of Intel’s MIC

architecture with 32 cores at 1.2GHz) can reconstruct the

same dataset within a clinically viable 12 seconds.

II. METHODS

A. Acquisition and Recovery of CAPR CE-MRA Images

As described in [12], CAPR adopts a SENSE-type [13]

parallel imaging strategy. Letting f be a discrete approxi-

mation of the underlying image of interest, the targeted data

acquisition process can thus be modeled as










g1

g2

...

gC











=











ΦFΓ1

ΦFΓ2

...

ΦFΓC











f + n, (1)

where gc is the cth coil sensor signal, Γc is the cth coil

sensitivity function, F is the 3D DFT operator, Φ is a

(binary) sampling operator that selects a prescribed subset of

k-space values, and n is complex AWGN. Raw CAPR data is

traditionally background subtracted and view-shared prior to

reconstruction. Accordingly, let hc(t) denote the result after

such preprocessing of gc.

It was demonstrated in [6] and [11] that background-

suppressed CE-MRA images acquired by systems of the

form in (1) can be accurately recovered by solving

ṽ = arg minv J(v), where the cost functional J(v) =

α
∑

n∈η P (Dnv) +
∑C

c=1 ‖ΦFΓcv − hc‖
2
2, Dn is the finite

spatial difference operator for some offset n, and the penalty

or prior functional P (v) =
∑

x∈Ω ρ (v(x)) for some concave

metric functional ρ(·). Following [6], the non-convex Laplace

functional ρ(·) = 1 − exp(σ−1| · |), for some σ ∈ [0,∞), is

herein adopted.

B. Numerical Optimization

In [6], an efficient inexact quasi-Newton algorithm was

proposed for solving the described constrained minimization

to reconstruct CAPR CE-MRA images. Recall that com-

plex quasi-Newton iterations [14] are typically of the form

vi+1 = vi − B−1(vi)L(vi), where L(·) is the gradient

of J(v) (taken with respect to v [15]) and B(·) is an

approximation of the complex Hessian of J(v). The term

“inexact” arises when ∆i is only approximately determined,

such as by truncated conjugate gradient (CG) iteration.

Given J(v), note that L(vi) = α
∑

n∈η D∗
nΛ(Dnvi)Dnvi +

∑C
c=1 Γ∗

cF
∗Φ∗(ΦFΓcvi−kc(t)), where the (relaxed) diago-

nal operator Λ(Dnvi)(x,x) = 1
2|[Dnvi](x)|ǫi

·
∂ρ(|[Dnvi](x)|ǫi

)
∂|[Dnvi](x)|ǫi

,

for some arbitrarily small ǫ > 0. In their work , Trza-

sko et al. [6] adopted the following analytical linear Hes-

sian approximation: B(vi) = α
2

∑

n∈η D∗
nΛ(Dnvi)Dn +

∑C
c=1 Γ∗

cF
∗Φ∗ΦFΓc, which is a generalization of Hessian

model used by Vogel and Oman [16] for total variation (TV)

denoising. For improved convergence, decreasing continua-

tion is also performed on ǫ [17].

In [11], an efficient C++ implementation of the above

algorithm that employed the templated class framework

described by Borisch et al. [18] and both the MPI and

OpenMP libraries was described and executed on an 8-node

dedicated reconstruction cluster, where each node had two

3.4GHz Xeon processors and 16GB memory. For a single

256x160x80 head volume reconstruction from 8-channel data

and only 6 difference neighbors, reconstruction times of

slightly less than 2 minutes were reported. Although these

times represent a significant advancement over other existing

work, they are still too long for routine clinical use.

III. EXPERIMENTS

We used five datasets (two artificial and three clinical) to

analyze the CS performance on three platforms: Intel CPUs,

NVIDIA GPUs, and Intel’s MIC architecture.

A. Computing Architectures

Intel Core i7 The Intel Core i7 is an x86-based multi-

core architecture which provides four/six cores (731M/1.17B

transistors) on the same die. It features a super-scalar out-

of-order core supporting 2-way hyper-threading and 4-wide

SIMD. Each core is backed by a 32KB L1 and a 256KB

L2 caches, and all cores share an 8MB/12MB L3 cache.

Quad and six-core CPUs provide 100 Gflops and 135 Gflops

of peak single-precision computation respectively, as well

32 GB/s of peak memory bandwidth. To optimize CS

on Core i7, we took advantage of its SSE4 instructions

using the Intel ICC auto-vectorizing compiler as well as

3322

(a) (b)

Fig. 2. (a) CS Implementation Overview (b) Execution Time Breakdown

hand-vectorization intrinsics. We parallelized the code with

OpenMP and adopted a highly optimized FFT implementa-

tion from Intel’s Math Kernel Library (MKL) 10.2.

NVIDIA GTX480 The NVIDIA GTX480 (Fermi [19], 3B

transistors) provides 16 multiprocessors, each with 32 scalar

processing units that share 128KB of registers and a 64KB

on-chip memory. 32 scalar units are broken into two groups,

where each group runs in lockstep. All multiprocessors share

a 768KB L2 cache. Its peak single-precision computing

performance is about 1.35 Tflops and its on-board GDDR

memory provides up to 121 GB/s bandwidth. We used the

CUDA [20] programming environment to implement CS on

the GTX480. CUDA allows programmers to write a scalar

program that is automatically organized into thread blocks to

be run on multiprocessors. CUDA provides an open source

FFT library (CUFFT 2.1 [21]), although more optimized FFT

implementations such as Nukada’s [22] have been published.

Intel Knights Ferry The Intel’s MIC architecture is a

Aubrey Isle [23] based silicon platform and Knights Ferry

(KNF) [24] is its first implementation with 32 cores running

at 1.2GHz. It is an x86-based many-core processor based

on small in-order cores that combines the full programma-

bility of today’s general-purpose CPU architectures with the

compute-throughput and memory bandwidth capabilities of

modern GPU architectures. Each core is a general-purpose

processor, which has a scalar unit based on the Pentium

processor design, as well as a vector unit that supports 16

32-bit float or integer operations per clock. It is equipped

with two levels of cache: a low latency 32KB L1 cache

and a larger globally coherent total 8MB L2 cache that is

partitioned among the cores. It offers a peak throughput of

1.2 Tflops (single-precision). Because the MIC architecture

is based on x86, it provides a natural extension to the

conventional x86 programming models. Thus we could use

similar data and thread level implementation as on Core i7.

B. Assessment of Computational Burden

Figure 2(a) shows the overview of our CS implementation.

The targeted CS reconstruction algorithm is composed of

multiple iterations of 3D matrix arithmetics. We divide

the application into six stages based on the loop structure

(denoted as Stage1, Stage2 and so on). Each stage per-

forms a series of matrix computations such as element-

wise additions and 3D FFTs. The pie-chart in Figure 2(b)

shows the execution time breakdown of the key kernels.

FFT3D (performed in Stage2 and Stage5) is the most time-

consuming and accounts for 46% of the total execution time.

Fig. 3. Performance Comparison between Core i7, GTX480 and KNF

To achieve optimal performance, FFT requires architecture-

specific optimization. Thus we use the best FFT libraries

available for each architecture. Simple element-wise matrix

arithmetics (Matrix) are the second most time consuming

kernels. Because they stream large amount of data from/to

the main memory, our optimizations focus on hiding latency

and utilizing bandwidth efficiently. Diff3D (in Stage1 and

Stage4) calculates the differences from the original matrix

to its shifted copy. Since the same data are used multiple

times, we block the matrix to exploit data reuse in fast

on-die memories. Finally, GEval (in Stage1 and Stage3)

performs transcendental operations such as division and

exponentiation. On the GTX480 we take advantage of fast

math functions; however, the performance gain due to the

faster math is marginal because GEval comprises only 7%

of the total execution time.

C. Experimental Data and Reconstruction Specifications

Five datasets are used for our experiments, whose

volume size and memory footprint are: (256x64x64,

224MB), (256x160x32, 280MB), (256x160x80, 700MB),

(256x160x84, 735MB), and (256x160x88, 770MB), for

datasets 1 to 5, respectively. Datasets 1 and 2 were artificially

generated, Dataset 3 represents a non-contrast-enhanced

brain, and Datasets 4 and 5 represent the contrast-enhanced

vasculature. All MRI data were acquired on a 3T GE Signa

scanner (v.20) using an 8-channel head array using the CAPR

acquisition sequence. Prior to reconstruction, view-sharing

was performed on datasets 3-5, and background reference

subtraction on datasets 4 and 5 as described in [12]. For

all experiments, 5 outer and 15 inner (CG) iterations were

executed under W = 1 (corresponding to 26 finite difference

neighbors). ǫ-continuation (0.1 reduction) was performed at

each outer iteration. Figure 1 shows the reconstruction result

for dataset 5 obtained from our optimized CS implementa-

tion, which is visually identical to that obtained using the

conventional CS implementation.

IV. RESULTS

We compare the performance of our CS implementation

on Core i7, GTX480 and KNF, and provide performance

analysis from a computer architecture perspective.

A. Performance Comparison: CPU, GPU and Intel’s MIC

Figure 3 compares CS performance on three architectures:

six-core Core i7, NVIDIA GTX480, and Intel KNF. We

3323

normalize the speedups with respect to the quad-core Core

i7 implementation (56 sec runtime) and show them only

for datasets 1, 2, and 3. Datasets 4 and 5 perform very

similar to dataset 3. For GTX480 and KNF, we show two

speedup bars: one without data transfer overhead from the

CPU host, and the other with the overhead. The data transfer

overhead results in very small performance degradation of

less than 1%, because CS spends significant time performing

computation, and can hide the most of data transfer time.

The six-core CPU performs about 1.7x faster than the

quad-core CPU, thanks to the increased number of cores.

The GTX480 is 3.5x faster than the quad-core CPU for

dataset 3. However, its performance exhibits big variance

across datasets. The GTX480 shows more than 10x speedup

for dataset 1, but shows only 2.1x speedup for dataset 2.

It is due to FFT performance optimization. We believe that

CUFFT 2.1 is specially optimized for small power of two

datasets like dataset 1. Thus, FFT performance on dataset 1

is significantly better than on dataset 2 and 3. For dataset 3

(actual clinical data), KNF achieves 4.5x speedup over quad-

core CPU, which is about 1.3x faster than GTX480.

Note that Core i7 and KNF are more efficient than

GTX480 in terms of resource utilization. Though GTX480

has 10x peak flops and 3.5x peak bandwidth than Core i7,

it only provides 2x performance. Also, while KNF deliv-

ers similar peak flops and 20% less peak bandwidth than

GTX480, KNF shows 1.3x better performance than GTX480.

B. Impact of Performance Optimization

We demonstrate the importance of performance optimiza-

tion by showing an example. Figure 4 shows the performance

improvement of our CS implementation on a quad-core CPU,

as we apply our optimization in sequence. The bar represents

the execution time in seconds for each optimization step, and

the line shows the corresponding relative speedup over the

baseline. Base is a original single-core implementation of the

algorithm, compiled with the highest level of optimization

including auto-vectorization, function in-lining and inter-

procedural optimization. As our first optimization, we replace

the FFTW [25] used in the original implementation with the

faster Intel MKL. This results in 1.15x speedup as repre-

sented by the second bar (MKL). Second, we hand-vectorize

the codes that can not be auto-vectorized by the compiler.

Hand-vectorization provides additional 1.19x speedup (Vec-

tor). Third, we apply cache blocking to exploit data reuse in

the Diff3D kernel, which shows another 1.10x speedup (Tile).

Through these three single-thread optimizations, we achieve

overall 1.51x speedup over the baseline implementation. To

take advantage of multiple cores/threads, we parallelize the

application. For FFT3D, we use the parallel implementation

of the MKL library, and for the other kernels we hand-

parallelize using the OpenMP library. Parallelization achieves

another 2.14x speedup on four cores over the single-core

baseline. Overall, by combining the single-thread optimiza-

tion and the multi-thread parallelization, we achieve 3.21x

performance improvement from the baseline implementation,

Fig. 4. Performance Optimization on quad-core Core i7

which reduces the total execution time from 175 seconds

(Base) to 56 seconds (4 Cores).

To optimize for MIC, we applied almost identical tech-

niques, because MIC is a x86-based architecture and hence

supports the same programming model. Optimization for

GTX480 required additional efforts, because it has a different

architecture with a different programming model.

V. CONCLUSION

In this work, we have shown that advanced computing

architectures can facilitate significant improvements in the

performance of CS MRI reconstructions, and particularly

that optimized use of modern many-core architectures cans

diminish the computational barrier associated with this class

of techniques. This suggests that as many-core architectures

continue to evolve, CS methods can be employed in routine

clinical MRI practice. Although CE-MRA was targeted in

this work, the implication of the results apply to many other

MRI applications as well as other areas in medical imaging.

ACKNOWLEDGEMENTS

The authors thank David Holmes III and Stephen Riederer

for their help in establishing the collaboration between Mayo

Clinic and Intel Corporation.

REFERENCES

[1] E. Candès et al. IEEE TIT, 52(2):489–509, 2006.
[2] D. Donoho. IEEE TIT, 52(4):1289–1306, 2006.
[3] M. Lustig et al. MRM, 58(6):1182–1195, 2007.
[4] M. Lustig et al. In Proc. ISMRM, page 695, 2006.
[5] T. Çukar et al. MRM, 61(5):1121–1131, 2009.
[6] J. Trzasko et al. In Proc. ISBI, pages 274–277, 2009.
[7] A. Bilgin et al. In Proc. ISMRM, page 337, 2008.
[8] M. Doneva et al. In Proc. ISMRM, page 336, 2008.
[9] Y.-C. Kim et al. MRM, 61(6):1434–1440, 2009.

[10] C.-H. Chang and J. Ji. In Proc. EMBS, pages 2684–2687, 2009.
[11] J. Trzasko et al. In Proc. ISMRM, page 347, 2010.
[12] C. Haider et al. MRM, 60(3):749–760, 2008.
[13] K. Pruessmann et al. MRM, 46(4):638–651, 2001.
[14] A. van den Bos. IEE Proc.: Vis., Image, and Sig. Proc., 141(6):380–

383, 1994.
[15] D. Brandwood. IEE Proc.: Comm., Radar, and Sig. Proc., 130(1):11–

16, 1983.
[16] C. Vogel and M. Oman. IEEE TIP, 7(6):813–824, 1998.
[17] R. Chartrand. IEEE SPL, 14(10):707–710, 2007.
[18] E. Borisch et al. In Proc. ISMRM, page 1492, 2008.
[19] Nvidia’s Next Generation CUDA Compute Architecture: FERMI.

2009.
[20] NVIDIA CUDA Programming Guide 2.3. 2009.
[21] CUDA CUFFT Library 2.1. 2008.
[22] Nukada et al. In Proc. SC, pages 1–10, 2009.
[23] L. Seiler et al. ACM Trans. Graphics, 27(3):1–15, 2008.
[24] K. Skaugen. ISC 2010 Keynote.
[25] M. Frigo et al. Proc. IEEE, 93(2):216–231, 2005.

3324

