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ABSTRACT | This paper examines the growing need for a

general-purpose Banalytics engine[ that can enable next-

generation processing platforms to effectively model events,

objects, and concepts based on end-user input, and accessible

datasets, along with an ability to iteratively refine the model in

real-time. We find such processing needs at the heart of many

emerging applications and services. This processing is further

decomposed in terms of an integration of three fundamental

compute capabilitiesVrecognition, mining, and synthesis

(RMS). The set of RMS workloads is examined next in terms of

usage, mathematical models, numerical algorithms, and un-

derlying data structures. Our analysis suggests a workload

convergence that is analyzed next for its platform implications.

In summary, a diverse set of emerging RMS applications from

market segments like graphics, gaming, media-mining, un-

structured information management, financial analytics, and

interactive virtual communities presents a relatively focused,

highly overlapping set of common platform challenges. A

general-purpose processing platform designed to address

these challenges has the potential for significantly enhancing

users’ experience and programmer productivity.

KEYWORDS | Algorithms; data structures; emerging applica-

tions; parallel architectures

I . INTRODUCTION

The performance of computers has improved dramatically

in the past 40 years. Computers’ ability to perform a huge

number of computations per second has enabled many

applications that have an important role in our daily lives,
including a host of media-processing applications. Looking

forward, we are all curious how future, even more

powerful computers will change our lives.

It is extraordinarily difficult to accurately predict

which next-generation applications will become popular

(i.e., what will be the next Bkiller apps[). However, we
believe these applications will also involve digital media

and that another big leap in computing capability is needed
to harvest and take full advantage of digital content. The

ability to have computers intelligently understand and

interpret data will help us in business, medicine, sociology,

science, and personal hobbies.

There are at least three reasons why systems that can

help us understand and interpret data will be important.

First, the world’s data outstrips our ability to comprehend

it, much less take maximum advantage of it. According to
the How Much Information project at the University of

California at Berkeley,1 print, film, magnetic, and optical

storage media produced about 5 exabytes (EB) of new

information in 2003. Further, the information explosion is

accelerating. Market research firm IDC estimates that in

2006, 161 EB of digital content were created, and that will

rise to 988 EB by 2010. To handle all this information,

people will need systems that can help them understand

Manuscript received March 16, 2007; revised October 19, 2007.

The authors are with the Microprocessor Technology Labs, Intel Corporation, Santa

Clara, CA 95054 USA (e-mail: yen-kuang.chen@intel.com; jatin.chhugani@intel.com;

pradeep.dubey@intel.com; christopher.j.hughes@intel.com; daehyun.kim@intel.com;

sanjeev.kumar@intel.com; victor.w.lee@intel.com; anthony.d.nguyen@intel.com;

mikhail.smelyanskiy@intel.com).

Digital Object Identifier: 10.1109/JPROC.2008.917729
1http://www.sims.berkeley.edu/how-much-info-2003.

790 Proceedings of the IEEE | Vol. 96, No. 5, May 2008 0018-9219/$25.00 �2008 IEEE



and interpret it. Search engines will not be enough.
Tapping the Web alone, today’s search engines often turn

up thousands of documents in a single search, but many

have minimal relevance. Moreover, 50 million new or

changed Web pages are added every day. In addition to

text, the world’s data includes videos, photos, and various

other kinds of media. We need computers to Bsee[ data the
way we do, identify what is useful to us, and assemble it for

our review. The ability to have computers intelligently
understand this data and help us use it in business,

medicine, sociology, science, hobbies, and virtually every

other realm of human endeavor could have enormous

benefits and initiate countless revolutionary advances in

human knowledge.

Second, the Web is shifting its focus from Bdata
presentation to end-users[ to Bautomatic data processing

on behalf of end-users.[ Today’s World Wide Web is a
distributed data repository, a distributed compute infra-

structure, and a composable service infrastructure. Most of

the Web’s current contents are intended for humans to

read, not for computer programs to analyze. However, the

Web has recently begun to transform into the BSemantic

Web.[ According to Berners-Lee [2], the Semantic Web

Badds logic to the Web.[ This will change the Web’s

functionality from Bdelivering data to users[ to Bprocessing
data for users.[ Computers will use automated reasoning to

help us understand and interpret structured collections of

information via sets of inference rules.

Third, there is an inherent gap between a user’s

conceptual model of a problem they want solved and his/

her computer’s model of the problem. One of the primary

goals of any computer system is to interact with its user

and respond to user commands efficiently. As shown in
Fig. 1, a major challenge to achieving this goal is bridging

the gap between the user’s and computer’s model of the

underlying problem to be solved. This gap is also known as

Norman’s gulf [23]. As noted by Norman in his seminal

paper, a typical everyday problem requires multiple

iterations of Bexecute and evaluate[ between the user

and the system. An iteration consists of the user’s deciding

which command he/she believes will result in the
computer’s solving the problem and constructing the

command in a machine-readable format; then the
computer’s executing the command and generating user-

readable output. Each such iteration normally narrows the

modeling gap. Given the increasing complexity of

emerging end-user compute scenarios (Bfind me this

picture[ rather than Badd this number pair[), Norman’s

gulf has been growing. Fortunately, emerging computer

usage models are introducing new ways to bridge

Norman’s gulf. Instead of involving the end-user in every
iteration, an alternative is to depend on a computer’s

ability to refine model instances by itself. This allows a

reduction in the number of interactions between a user

and his/her computer, and therefore an increase in the

system’s efficiency.

The above three are examples of the tasks of an

Banalytics engine[ that can model events, objects, and

concepts based on what we show the computers and on the
data accessible to them. Hence, we must be able to

communicate with computers in more abstract terms

(high-level concepts or semantics). We believe that an

analytics engine must have the capability to construct,

manipulate, and evaluate mathematical models. These

capabilities can be classified as three distinct classes:

recognition, mining, and synthesis (RMS). We call this

classification the RMS taxonomy and describe it in detail in
Section II. Briefly, recognition is the Bwhat is.[ It is

identifying that a set of data constitutes a model and then

constructing that model. Mining refers to searching a data

set, such as the Web, and asking Bis it?[ Synthesis is

discovering Bwhat if[ cases of a model, i.e., the ability to

create an instance of a model where one does not exist.

Section II examines a set of workloads in terms of this

taxonomy.
Emerging applications will likely iterate through

different recognition, mining, and synthesis modules to

build and use models. The iterations are necessary to

refine models to bridge Norman’s gulf. Such a refinement

loop typically involves user interaction. Hence, we refer to
these loops as iRMS loops.

Recognition, mining, and synthesis workloads often

share some common kernels, mathematical models,
numerical algorithms, and problem structures. We call

this phenomenon workload convergence (Section III). As

a result of this convergence, a diverse set of emerging

RMS workloads presents a relatively focused set of

common design challenges. We explore some of the key

software and hardware challenges as well as possible

avenues for overcoming these challenges (Section IV). A

system designer who can overcome these challenges can
construct a single architecture that can cost-effectively

meet the needs of most or all RMS workloads. This is

excellent news for everyone who will use, program, and

design future computer systems because it will enable the

building of faster systems with powerful software tools,

both of which will enable brand new usages of computer

systems.Fig. 1. Norman’s gulf.
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II . INTERACTIVE RMS
APPLICATIONS (iRMS)

A. RMS Taxonomy
Bridging Norman’s gulf requires that applications build

and use sophisticated models. The RMS taxonomy [8],

[20] was proposed as a way to classify techniques used in

such applications.

Recognition: Computers examine data and images and
construct mathematical models based on what they Bsee.[
Depending on the data provided, that model could be of a

valuable vase, a terrorist’s behavior pattern, the right time

to sell a particular type of stock, or the qualities needed by

an actor to successfully play the part of Othello. This is a

type of machine learning called recognition. Recognition is

the Bwhat is.[ It is identifying that a set of data constitutes
a model and then constructing that model.

Mining: Once a computer has recognized the Bwhat is[
and turned that data into a model, the computer must be

able to search for instances of the model. This is mining.

Mining refers to searching a data set, such as the Web, and

asking Bis it?[ to find instances of a model, such as good

stock-trading opportunities or the best actors to play

Othello.

Synthesis: Synthesis is discovering Bwhat if[ cases of a
model. If an instance of the model does not exist, a

computer should be able to create a potential instance of

that model in an imaginary world. In other words,

synthesis is the ability to create an instance of a model

where one does not exist. For example, if a director is

considering switching an actor in Othello, synthesis will

show how that new actor would appear in the play and

possibly predict the success of making the switch.
Beyond its use as a taxonomy, RMS offers a view of the

underlying technologies. Traditionally we have treated

BR,[ BM,[ and BS[ components as independent applica-

tion classes. For example, graphics applications used by

animation movie studios to render high-quality animated

movies are primarily synthesis applications. Similarly, data

warehousing primarily involves mining. In contrast,

emerging interactive applications use a combination of
technologies that span the RMS spectrum. The remainder

of this section examines this trend.

B. iRMS Loop
iRMS applications iterate through different recogni-

tion, mining, and synthesis modules to build, manipulate,

and use models. Models are refined during each iteration

of the loop, which we refer to as an iRMS loop. Fig. 2

shows the concept of iRMS loops.

The better computers are able to build models

(recognition), the better computers should be at finding

instances that fit these models and our needs (mining). For
example, a robust model for a car will be able to locate its

instances even when the car images are nonlinearly

transformed or partly obscured.

Additionally, the better a model is constructed, the

better that computers can manipulate the model in reality

augmentation (synthesis). For example, the Digital

Michelangelo Project demonstrated that computer-

generated graphics are almost indistinguishable from
photos when a model contains 4 million polygons with a

resolution of 1 mm. Furthermore, those results of mining

and synthesis can be fed back to the model construction

process for further improvements in building the model

(recognition). Finally, since today RMS technologies are

usually not perfect, user interaction is needed to guide

the refinement process.

C. iRMS Nested Loops
A user interacts with a computer via an iRMS Bvisual

computing[ loop, where a representation or instance of

the model is presented in a human-accessible format (e.g.,

images or video). To address the growing Norman’s gulf,

the user needs to be taken out of the model refinement

process as much as possible. For each iteration of the visual

computing loop, one can add one or more iterations of an
iRMS analytics loop, which does not involve end-user

visualization and instead depends on a machine’s ability to

refine model instances by itself. Fig. 3 shows a nested

iRMS loop. As the inner loop of user-independent machine

analytics becomes more efficient at bridging the model gap

for increasingly complex models, the number of visual

outer loop iterations will drop and will focus on higher

levels of abstraction. It is important to note that the latency
of each visual outer loop iteration is fundamentally limited

by human response-time limitations (speed of keyboard

Fig. 2. iRMS loop.
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input, etc; recall, a typical user has very limited cognitive

abilities). Also, the quality requirements of the outer loop
are limited by typical human sensory limitations such as

Breal-enough photos.[ On the other hand, the inner loop

latency is purely limited by the data-processing abilities of

the compute infrastructure. Therefore, in principle, the

inner loop can iterate much faster than a typical outer loop

with a human in the loop. For example, millisecond trades

are possible, as no human keystrokes are involved.

The emergence of the Semantic Web is also very
relevant in this context. As noted by Berners-Lee [3], the

primary goal of the Semantic Web is to add logic to the

Web. This implies that processing requirements growth

will increasingly shift from Bvisual computing[ to

Banalytics.[ That is, there will be multiple inner loop

iterations of nonvisual computing (i.e., analytics) for every

outer loop iteration of visual computing. This potential

shift further assumes that the underlying software stack
(XML/RDF/OWL-like) proposed by Berners-Lee [2] and

reproduced in Fig. 4 gains traction in the developer com-

munity and that applications such as virtual environments

(e.g., Second Life and Sony’s Home) gain acceptance

among end-users. Fig. 5 illustrates a virtual environment

as an instance of a nested iRMS loop as described above.

D. Examples of iRMS Applications
Below are other examples of applications that use a

combination of RMS techniques and that include iRMS

loops and nested loops.

Medicine: Fig. 6 shows how, through RMS, a tumor

could be:

1) recognized as a model;

2) identified through mining patient data as the type
of tumor in a particular patient;

3) synthesized in a way that would predict the effects

of the tumor’s progression for a particular patient
and whether treatment is advisable.

Synthesis could also be used as a means to determine

the efficacy of various treatment options. One could take

what is known about each treatment model and perform

synthesis with the patient’s medical history and condition.

For instance, on a cancer tumor, synthesis could be used to

simulate the effects and prognosis of treatments by

chemotherapy, radiation, surgery, combined approaches,
or no intervention at all. By examining the outcomes of

each treatment, both the doctor and the patient could

decide the best course of action.

Fig. 4. Semantic Web software stack.

Fig. 3. iRMS nested loop.
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In the near future, individual genetic profiles may

enable Bpersonalized medicine.[ Using RMS, a patient’s

genetic profile could be modeled and kept on file. When a
patient comes in with a specific condition, such as high

blood pressure, a doctor could mine drug databases using

the patient’s profile for the best drug options. The doctor

could then test through synthesis for possible reactions by

that particular patient to the various drugs suggested. With

technology like this, doctors could more safely prescribe

medicines.

Investment: Selecting smart equity investments involves

more than analysis of a company’s financials. An investor

should consider industry trends and a wide spectrum of

potential factors that could include currency rates, trends

in buying habits, oil prices, recent research on Asian
attitudes toward American foods, and much more. There is

so much possible data to consider that in the end, people

often just rely on standard indicators, such as a stock’s

price-to-earnings ratio, recommendations by friends or a

broker, and their gut feeling.

RMS could radically change that (see Fig. 7). Using a

model of a successful investment, people could mine a

dataset for other potential successful investments. Syn-
thesis could then enable a person to examine Bwhat if’s[
having to do with various investment periods and the

Fig. 5. A virtual environment (e.g., Second Life) as an iRMS nested loop instance.

Fig. 6. An example of how RMS might be used in medicine.
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potential effects of various events, such as a rise in interest

rates or one company acquiring another. While RMS

would not take all the uncertainty out of an investment, it

could allow investors to make use of a much larger data set

in determining which equities to buy. RMS could create
new expectations for what better portfolio-management

software should do.

Business: Successful businesses with large cash reserves

often begin looking for acquisitions to broaden their pro-

duct lines and their markets. Some work out; others do

not. Some take years to pay off; others end up in dive-

stiture. Even though financial analysts and other specialists
pore over the prospective company’s books for months

before a transaction is completed, the result can still go

sour over intangibles and unexpected turns of events.

Through RMS, many of these intangibles could become

tangible and unexpected turns of events could be

anticipated. Using an acquisition model and mining the

vast amount of data on the two companies and past ac-

quisitions, outcomes could be more accurately predicted
using synthesis. Other acquisition targets could also be

more accurately Btried[ before announcing any interest

or a potential purchase.

Small businesses could profit from RMS as well.

Independent retailers, such as a local auto parts store,

have limited shelf space and need to optimize their

inventory for both better profitability and customer service.

Using a model of what a good inventory item is (good
margin, fast mover), a local parts store could mine national

car service databases by manufacturer to determine what

parts to carry.

Surveillance could be another key business use of

RMS. Today’s surveillance cameras simply record what they

see. Imagine if their images were run through a computer

that could recognize and provide the right kind of alert for

each instance of trouble. For example, a bank’s surveillance

system, trained through models to recognize a gun, could

immediately alert police when someone has entered the

bank with one. On a larger scale, RMS could help monitor

freight. Today, only 4% of the container traffic coming into
the United States on ships is inspected. Imagine if through

radio-frequency ID tags, surveillance cameras, biological

sensors, and other monitoring systems, computers could

monitor imports using a database of models to identify

which might require an alert and further inspection.

Another application for business could be hiring.

Through recognition, a model of a successful employee

for a particular job position could be created. Using
mining, all particular potential candidates who fit this

model could then be identified. Finally, through synthe-

sis, an idea of how each candidate might perform in a

number of job-specific situations could be examined.

Hours of sourcing and interviewing could be reduced to

interviewing only a few candidates who, according to the

synthesis results, Bperformed[ best in the simulated job

situations.

Home: As the popularity of digital audio, photography,

and video grows, so does the number of MP3 files, photos,

and clips on people’s hard drives. Having busy lives, most

people do a poor job of naming and categorizing these

files. The result is a great deal of time and frustration

searching folders for particular audio files, photos, or

video clips.
In the future, it is only going to get worse, especially as

hard drives continue to grow in capacity and people

continue to save digital media onto them in a haphazard

manner. Imagine if, using RMS, a person could easily

assemble for a twenty-fifth wedding anniversary a collec-

tion of photos and video clips of just the married couple.

Through recognition and data mining, these files could be

Fig. 7. RMS could potentially be used to ‘‘mine’’ for instances where, according to a particular hedge fund’s strategy, it would make

sense to invest. Synthesis could be used to predict what might happen to a particular hedge fund investment if certain

conditions, such as prevailing interest rates, changed.
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easily and quickly found among hundreds of thousands of
files. Using synthesis, someone could even surprise the

couple by showing what they might look like on their

fiftieth anniversary or how they would look now in their

original wedding photos.

Consider, too, how RMS might be used by people as

they gain access through the Web to entire libraries of

music, film, and television shows. It could unleash new

channels of creativity and investigation as people use
synthesis to see what one film star might have been like in

another film star’s part, or how using a different pitcher

might have changed the outcome of a baseball game. Or

imagine shopping on the Web and being able to use

synthesis to interactively combine models of you and

models of various articles of clothing. You’ll be able to very

quickly Btry on[ lots of outfits and colors before you ever

click Bbuy[Vand accurately determine how they fit.
Another excellent use of RMS would be information

monitoring and sorting to help people stay current with a

particular subject or interest. For example, a person’s com-

puter could constantly model specific information to look for

based on what a person views and uses on their computer.

This would be somewhat similar to how Amazon and other

vendors on the Web today make product recommendations

based on buying habits, but RMS would enable it to be
applied to a much bigger universe of information.

This universe could even include the multitudes of

blogs on the Internet today. Imagine having your computer

monitor and collect on your hard drive all the items (text,

video, photographs) in this information universe that

should be of interest to you. Using models, a computer

could mine the entire Web continuously for information of
value to a person’s business, educational pursuits, and

hobbies.

In short, RMS can be used independently in applica-

tions, as graphics has been historically separate from

mining. However, an essential aspect of RMS is that the

components R, M, S are not to be viewed in isolation. An

application is more powerful when it can integrate mul-

tiple components of RMS, especially if it has the ability to
loop back and forth between the components.

III . WORKLOAD CONVERGENCE

The previous section introduces the growing need for a

general-purpose analytics engine and how the analytics

tasks can be classified as being R,M, and/or S.We therefore

refer to workloads run by such an engine as RMS
workloads. These workloads come from a broad spectrum

of domains, such as visual computing and medicine. This

section shows that RMS workloads from any domain can be

decomposed to a set of mathematical models and

techniques, and those can be further decomposed to

numerical algorithms and numerical primitives on data

structures. We use some concrete examples to show that

there is significant overlap between workloads from
different domains even at the level of mathematical

models, and almost complete overlap at the numerical

algorithms and the primitive’s levels. We call this

phenomenon workload convergence.

Fig. 8 presents an RMS workload component hierarchy

consisting of four levels: 1) RMS applications, 2) mathe-

Fig. 8. RMS workload component hierarchy.
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matical models that use mathematical language to describe
the behavior of each application, 3) mathematical tech-

niques, which are the set of mathematical tools used to solve

the model, 4.1) numerical algorithms, and 4.2) primitive

operations and data structures that are used to support robust

implementation of the mathematical models and techniques.

In the following discussion, we map applications from three

example RMS workload domains, to our workload compo-

nent hierarchy: Web mining, financial analytics, and visual
computing.

A. Example RMS Workload Domains
Fig. 9 is an expanded version of Fig. 8 that focuses on

the first three levels of the hierarchy for each of our

example workload domains.

Web Mining: The Web mining workload domain shown
in Fig. 9(a) uses data mining to analyze and discover

interesting statistical patterns of a user’s usage of data on

the Web, with the goal of categorizing and classifying

new data [6]. Web mining applications spend more effort
on the mining part of the iRMS loop. One example of a

key Web mining application is collaborative filtering, a

basis of modern recommender systems. Collaborative

filtering automates predictions of the interests of a user

by collecting and filtering taste information from many

users. Another example of a Web mining application is

named entity recognition information extraction. This

application locates and extracts atomic text elements in
documents and classifies them into predefined categories

such as the names of persons, organizations, and

locations.

These and other data-mining applications rely on a

broad set of mathematical models that classify data. In

classification, one starts off with a set of training

observations that map instance vectors dk to known

categories �k. The problem is to determine the category
xi to which a given new observation vector should belong.

For example, to solve a discriminative model of a classifier,

one can use a support vector machine (SVM), which

Fig. 9. Three example RMS workload domains, including a set of important applications in each domain, and their underlying

mathematical models and techniques.
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reduces a classification model to a quadratic optimization
problem of the form

Maximizex � 1

2

X

i;j

�i;j�i�jxixj þ
X

i

xi

subject to
X

i

�ixi ¼ 1; 0 � xi � C; 8i ¼ 1; . . . ; n:

The solution to this optimization problem will separate

the observation vectors into categories with the maximum

separating distance.

Financial Analytics: The financial analytics workload

domain shown in Fig. 9(b) uses mathematical finance,

numerical methods, and computer simulations to make

trading, hedging, and investment decisions as well as to

facilitate risk management of those decisions [7]. As

discussed earlier, financial analytics applications map to all

three parts of the iRMS loop.
Derivative pricing is an important example financial

analytics application. The goal of derivative pricing is to find

the fair price of a financial derivative of one or more under-

lying assets [18]. The modern mathematical formulation of

derivative pricing uses a Black–Scholes diffusion model [5],

[21], which models a derivative as a stochastic partial dif-

ferential equation. Solving a Black–Scholes diffusion model

relies on a wide range of mathematical techniques, such as
lattice methods and stochastic simulation.

Given n derivatives, each with expected return �i and

variance �i, one seeks to select an optimal portfolio with

maximum expected return while keeping risk under a

threshold, R. Such a portfolio is modeled using a

Markovitz portfolio optimization problem, which reduces

portfolio selection to a quadratic optimization problem of

the form

Minimizex
X

i;j

�ij�i�jxixj

subject to
X

i

xi¼1;
X

i

�ixi�R; xi�0; 8i¼1; . . . ; n:

Here �i;j is the correlation between two derivatives,

which characterizes the degree of independence between

these derivatives. For example, a correlation of one implies
a linear relationship between two derivatives, while a

correlation of zero implies independent derivatives.

Quadratic optimization problems that we encountered in

Web mining and finance are solved using the interior-point

method [24].

Visual Computing: The main task of applications in the

visual computing workload domain shown in Fig. 9(c) is to

acquire, analyze, and synthesize visual data [1], [25]. They
often spend most of their time in the synthesis part of the

iRMS loop.

One example visual computing application is rendering

using global illumination. This can be used in computer

games or in generating movie special effects. It recognizes

where a player/actor is and where the light sources are,

and simulates in real-time all the points or rays of light.

Another example is physical simulation, which models
systems of objects such as rigid bodies, cloth, and fluids

and their motion according to Newton’s laws of dynamics.

Performing physically correct simulation of the inter-

action of light and physical objects relies on a rich set of

mathematical models. For example, appearance models

are used to model and simulate objects made up of

different materials. Also, particle system models are used

to simulate fuzzy physical objects such as fire, explosions,
smoke, flowing water, sparks, falling leaves, clouds, fog,

and snow. Mathematical models used in visual computing

may or may not be physically accurate. While physical

accuracy is important in film-production-quality simula-

tion, games can typically tolerate rougher approximations.

A wide variety of mathematical techniques is used to

solve models in visual computing. One example is collision

detection, which is used to determine collisions between
two geometries, such as a ray and a triangular mesh in the

case of rendering, or two convex geometries in the case of

physical simulation.

B. Numerical Algorithms
We have shown the decomposition of a variety of RMS

applications into mathematical models and techniques.

Robust numerical algorithms are required to solve these
mathematical models. Therefore, in Fig. 10, we decompose

those models and techniques further, into numerical

algorithms, and even further into numerical primitives on

data structures. Virtually all RMS applications map to (i.e.,

spend much/most of their time in) a very small, common

set of numerical algorithms, and therefore to a small,

common set of numerical primitives and data structures.

We call this phenomenon RMS workload convergence.
While there is some overlap between RMS applications

from different workload domains, even at the levels of

mathematical models and techniques, the small footprint

of the final two levels of the workload component

hierarchy highlights RMS workload convergence.

Fig. 11 provides an illustrative example of workload

convergence using several applications from our example

RMS workload domains. Arrows in this figure connect an
example application with a subset of numerical algorithms

to which this application maps.

We observe that most numerical algorithms used in RMS

applications can be divided into the following four catego-

ries: direct solvers, iterative solvers, Monte Carlo simulation,

and convex collision-detection methods. We now briefly

describe each of these categories. In the following section, we
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Fig. 10. Decomposition of mathematical models and techniques into numerical algorithms and primitives.

Fig. 11. Workload convergence. This example illustrated several applications from three RMS workload domains, which map to a small,

common set of numerical algorithms.
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will discuss the lower level numerical primitives and data
structures.

Direct and Iterative Solvers: Numerical solutions to

optimization problems and partial differential equations

rely on solving linear systems of equations Mx ¼ b. The
two primary methods of solving linear systems are direct

and iterative [15], [26].

Direct solvers for linear systems of equations involve
the following two steps:

1) LU factorization, which decomposes matrix M

into lower triangular submatrix L and upper tri-

angular submatrix U, such that M ¼ LU;
2) triangular solver, which uses the results of

factorization to solve a system of linear equations

LUx ¼ b, using the following two substeps:

a. forward solver, which solves Ly ¼ b;
b. backward solver, which solves Ux ¼ y.

Direct methods use low-level dense linear algebra

operations, such as dense matrix–matrix product and

dense matrix–vector product. Efficient implementations of

these low-level primitives are crucial for achieving high

performance on direct solvers.

Two main drawbacks of direct solvers are their high

computational complexity and high storage requirements.
This makes them prohibitively expensive for very large

problems. For such problems, iterative methods are

preferred. There are many iterative methods; however,

the RMS applications we have studied to date rely only on

a small subset of these methods, in particular successive

overrelaxation (SOR) and conjugate gradient. Examples of

SOR use are solving linear complementarity problems that

arise in rigid body simulation and in pricing American-
style derivatives. An example of conjugate gradient use is

solving partial differential equations that arise in physical

simulation of cloth, fluids, and face.

Fig. 12 shows an example of the conjugate gradient

method. It starts with an initial guess to the solution xinitial.
The core of the method is the main optimization loop,

which updates the vector x at each iteration until

convergence to the optimal solution is achieved.
While direct methods rely on dense matrix operations,

the core of all iterative methods is sparse matrix–vector

product and sparse backward solve.

Monte Carlo Method: A key numerical technique for
solving problems in combinatorial and stochastic optimi-

zation is Monte Carlo simulation. Monte Carlo simulation

iteratively evaluates complex mathematical models using

sets of random numbers as inputs. This is especially useful

where the complexity of the mathematical model pre-

cludes representing the function to be solved analytically.

The idea of Monte Carlo can be demonstrated using

evaluation of a simple integral I ¼
R b

a fðxÞdx. Using the
definition of the integral, it can be approximated as

I ¼
R b
a fðxÞdx � ððb� aÞ=NÞ

PN
i¼1 fðxiÞ. Instead of directly

computing the integral, Monte Carlo simulation takes

many random samples xi, computes fðxiÞ for each sample,

and averages these contributions to approximate the

integral.

Monte Carlo simulation is widely used in computa-

tional finance for pricing complex option derivatives
where analytical methods are not applicable [14]. An

option is a financial contract between the buyer and the

seller, where the buyer of the option has the right, but not

the obligation, to buy an agreed quantity of a particular

stock S from the seller of the option at the expiration date

T for a certain price. Given the nondeterministic nature of

an underlying stock, one uses Monte Carlo simulation to

find the price of an option as follows.

for i ¼ 0 . . .N
1. Sample random stock S price from time t ¼ 0 to

t ¼ T
2. Calculate the payoff from the derivative, pi

end

3. Calculate expected payoff: P ¼
PN

t¼0 pi
4. Discount P at risk-free rate to get option price.

Efficient implementations of Monte Carlo simulation

rely on a high quality random number generator.

Collision Detection: Collision detection is an important

numerical technique that is at the core of many visual

computing applications. Collision detection is used to

determine whether two objects, represented as geome-
tries, are in contact or interpenetrate each other, such as a

ray and a triangular mesh in ray-tracing, or a cylinder and

an axis-aligned box in physical simulation. Collision

detection is used to calculate collision points, collision

trajectories, and collision times [10].

There are two types of geometries: convex and

nonconvex (see Fig. 13). An object is convex if, for every

pair of points within the object, every point on the straight
line segment that joins them is also within the object. For

example, a triangle is convex, a solid cube is convex, but

anything that is hollow or has a dent in it is not convex.

While there exists a number of specialized and op-

timized routines for determining the collision between a

ray and a triangle, collision detection among more com-

plex convex geometries is commonly performed using theFig. 12. Example of a conjugate gradient iterative solver.
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GJK algorithm [13]. GJK iteratively computes the distance

between two convex geometries until the minimum dis-

tance is found. In the case of nonconvex geometries, the
frequently used methods are 1) to break the nonconvex

geometry into several convex geometries and use convex

collision methods on each and 2) to represent the geo-

metry using a triangulated surface and then use a general

algorithm for colliding triangular meshes, which again

involves colliding convex geometries.

Collision detection algorithms rely on acceleration data

structures to significantly reduce the number of collision
tests, as we describe in the next section.

C. Numerical Primitives and Data Structures
The small set of numerical algorithms common to RMS

applications is built on an equally small set of numerical

primitives operating on data structures, the last level of the

RMS workload component hierarchy (see Figs. 8 and 10).

In this section, we provide several illustrating examples of
these primitives and data structures.

BLAS: The basic linear algebra subprograms (BLAS) are

standard building blocks for performing basic vector and

matrix operations. The Level 1 BLAS performs scalar–

vector and vector–vector operations, the Level 2 BLAS

performs matrix–vector operations, and the Level 3 BLAS

performs matrix–matrix operations. Both direct and
iterative solvers heavily use BLAS routines.

Matrix Storage Formats: Many underlying problems in

RMS applications can be represented by large matrices

with very few nonzero elements, referred to as sparse

matrices. To avoid storing a large number of zeros, sparse

matrices are often compressed to yield significant savings

in memory usage. Several sparse matrix formats exist [9],
[26], such as compressed row storage (CRS), jagged

diagonal format, and compressed diagonal storage format.

Each format takes advantage of a specific property of the
sparse matrix and therefore achieves a different degree of

space efficiency. The CRS format is perhaps the most

widely used format in RMS applications (Fig. 14).

As an example, consider the portfolio optimization

problem discussed earlier. If every derivative is correlated

with every other derivative, a dense correlationmatrix is used.

In a more realistic scenario, each derivative is only correlated

with a few others, so a sparse correlation matrix is used.
CRS uses three vectors to represent a matrix. The value

vector holds the nonzero values, the column index vector

indicates the column index for each element in the value

vector, and the row vector indicates each row’s first

element in the value vector.

All primitive sparse matrix operations are performed

using their CRS format directly.

Supernode and Elimination Tree: We further consider

two other data structures that are paramount to efficient

implementations of direct linear solvers: supernodes and

elimination trees [22]. A supernode is a set of contiguous

columns in a matrix whose nonzero structure consists of a

dense triangular block on the diagonal and an identical set

of nonzeroes for each column below the diagonal. An

example of a matrix partitioned into supernodes is given in
Fig. 15. In this example, a 13 � 13 sparse matrix (where

zero entries are empty and nonzero entries are indicated

with an Bx[) is broken down and stored in six supernodes

(sn1, sn2, . . ., sn6). Columns 1 and 2 with the same nonzero

structure form supernode 1 (sn1). Similarly, columns 5 and

6 form supernode 3 (sn3). Since all columns in a supernode

have an identical nonzero structure, in practice, nonzero

elements of supernodes are compactly compressed into and
stored as a dense matrix.

An elimination tree is a task dependence graph that

characterizes the computation and data flow among the

supernodes of a sparse matrix during Cholesky factorization

and triangular solving. It is defined as follows:

Fig. 14. Matrix in CRS format.

Fig. 13. Convex and nonconvex geometries.
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parentðsnjÞ ¼ minfsniji9 j and at least one of the elements

of snj that correspond to the diagonal block of sni is
nonzerog. In other words, the parent of supernode j is
determined by the first subdiagonal nonzero in supernode i.

Fig. 15 also shows an example of the elimination tree for

the matrix. We see that there is an edge between sn1 and

sn5 because, as the shaded portion of the figure shows, the
second row of the 2 by 2 diagonal block of sn5 corresponds

to the nonzero row 10 in sn1. Similarly, there is an edge

between sn3 and sn6 because the first two rows of sn6

correspond to nonzero elements in rows 11 and 12 of sn3.

Spatial Partitioning Data Structures: Efficient implemen-

tation of key visual computing applications hinges upon

several key acceleration data structures. These data
structures partition the space of the underlying scene-graph

to significantly reduce the number of collision tests needed.

For example, in ray-tracing, an acceleration data

structure allows us to efficiently determine the path a ray

takes through space and to test it only against those triangles

that are in the vicinity of the ray’s trajectory [25]. Similarly,

in collision detection, an acceleration data structure spatially
separates simulated objects such that expensive collision

tests only occur between objects that are in each other’s

vicinity. Fig. 16 illustrates a few of the most frequently used

spatial partitioning data structures: uniform grids, quadtrees

[octrees in three dimensions (3-D)], and kd-trees.

These data structures partition space into a number of

cells, and objects are mapped into the corresponding cells.

While uniform grids partition space into equal-sized cells,
octrees and kd-trees partition space into uneven-sized

cells. This allows octrees and kd-trees to provide a tighter

fit for the objects using the same number of cells as a

uniform grid, or the same fit with fewer cells. Although

kd-trees are harder to implement and are more expensive

to build than octrees, they provide a tighter fit than

octrees: while octrees recursively subdivide each cell into

eight equal-size subcells, kd-trees subdivide each cell using
axis-aligned splitting planes into arbitrary size subcells.

In summary, this section describes several numerical

primitives and data structures that are commonly used

across RMS applications to enable high-performance

implementations. It is good news that we can identify a

critical set of primitives and data structuresVit means that a

performance library designer can optimize these operations

and data structures and incorporate them into tuned
libraries, which will then accelerate many RMS applications.

IV. IMPLICATIONS FOR SYSTEM DESIGN

As just described, convergence of the mathematical

models, numerical algorithms and primitives, and data

structures in many RMS applications constitutes what we

call workload convergence. Workload convergence has
implications for programmers, users, and system de-

signers. From a system designer’s point of view, workload

convergence is excellent newsVit means that a large set of

important workloads presents a relatively small set of

common challenges. For example, we may cost-effectively

Fig. 15. Example of supernodal matrix structure and

corresponding elimination tree.

Fig. 16. Spatial partitioning data structures.
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design a single architecture capable of meeting the needs
of most or all RMS workloads. We refer to this as system

design convergence. In this section, we discuss the

computation requirements of RMS workloads and explore

how to provide the necessary compute power.

Computation Requirements: Most RMS workloads have

very high compute requirements, and thus can benefit

from orders of magnitude acceleration. Fig. 17 shows the
computation requirements of some RMS applications for a

variety of usage scenarios (i.e., different image/video

resolutions, frame rates, grid resolutions for fluids, and

number and type of assets). All of these applications have

important usage scenarios with computation requirements

approaching or even exceeding a teraflop, and some have

requirements far beyond a teraflop. When we consider that

future workloads will likely combine multiple of these
applications, the need for large acceleration becomes even

greater. Acceleration of multiple orders of magnitude will

enable interactivity or even allow some applications to

become real-time. The recent introduction of multicore

processors, and the promise of many-core processors to

come, means that such acceleration may be possible.

To harness the compute power of multicore and many-

core systems, applications typically are parallelized via
software threading. Fortunately, all RMS workloads that

we have examined to date contain copious amounts of

thread-level parallelism (although it is not always coarse-

grained or easily extracted). That is, they have enough

thread-level parallelism to see performance benefits from

having at least tens of threads running concurrently. For

example, Fig. 18 shows the parallel scalability of some RMS

applications on a simulated 64-core chip multiprocessor.
Therefore, while the compute requirements of most RMS

workloads are well beyond what today’s systems can

provide, workload convergence means that the systems of

tomorrow have the potential to meet those requirements.

However, achieving high performance from future

systems is not as straightforward as this. There are a

number of common challenges presented by RMS work-
loads from a system designer’s point of view. In the rest of

this section, we address some of the key challenges.

Programming Model: Parallelizing applications is a

nontrivial task. Programmers must identify the parallelism

in an algorithm and map or partition the computation to a

large number of threads. In some cases, programmers must

employ completely different algorithms than they would use
in a single-threaded implementation because the single-

threaded algorithm has too little inherent parallelism (or it is

too difficult to identify or exploit). While there are existing

languages and extensions to languages to facilitate this, they

may prove too inaccessible for many programmers. Allowing

a programmer to express certain parallel concepts through

primitives, either through the programming language or a

library, may reduce the effort of parallelization. Example
concepts that would be useful to express are task dependence

graphs, such as the elimination tree for a sparse solver, and

reductions, which we discuss later.

Programmers also need to handle communication and

synchronization between the threads. This is often done

(in shared memory models) using locks. Keeping track of

which locks protect what and avoiding deadlock by

keeping the locks in a total order can be difficult even
for a single programmer. For large code bases developed by

many programmers simultaneously, this is a truly daunting

task. However, this may be greatly simplified by

techniques such as transactional memory [16], [17].

Transactional memory replaces critical sections protected

by locks with Btransactions.[ For example, a transaction

may be delineated with Bbegin transaction[ and Bend
transaction[ instructions; the instructions within the
transaction should happen atomically. With transactional

Fig. 17. Computation requirements of some RMS applications

for a set of usage scenarios.

Fig. 18. Scalability of some RMS applications.
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memory, the programmer does not have to associate one or
more synchronization variables with a critical section. This

makes composing a large parallel application easier.

Fine-Grained Parallelism: Most current parallel systems

were designed under the assumption that parallel sections

(e.g., parallel loops) can be broken into large pieces (e.g.,

millions of instructions or more). However, a significant

number of RMS workloads have key parallel sections that
cannot be broken into large pieces. They have very fine-

grained thread-level parallelism relative to today’s parallel

workloads. This is in part because in the iRMS context,

problem sizes are often smaller than in the currently

dominant parallel systems context of high-performance

computing. In some iRMS cases, each chunk is only

thousands or even hundreds of instructions. We observe

this in various physical simulation, financial analytics, and
computer vision workloads.

Furthermore, Amdahl’s law tells us that the maximum

parallel speedup for an application is bounded by the size

of its serial sections. Therefore, in order to achieve good

parallel speedups on a highly threaded architecture, even

small modules in an application need to be parallelized.

For both of the above reasons, it is critical to provide

efficient support for exploiting very fine-grained thread-
level parallelism [19].

Data-Level Parallelism: In addition to thread-level

parallelism, many RMS workloads have a lot of data-level

parallelism. For example, computer vision workloads often

include a significant amount of image processing, which is

largely data-parallel. Also, many machine learning algo-

rithms involve performing a set of arithmetic operations
on each element of an input set. And linear solvers used in

many domains include operations on vectors that are

inherently data-parallel.

One of the most common and efficient methods for

exploiting data-level parallelism is via single-instruction

multiple-data (SIMD) execution, in which a single

instruction operates on multiple data elements simulta-

neously. This is typically implemented by extending the
width of registers and arithmetic logic units, allowing

them to hold or operate on multiple data elements,

respectively. The rest of the system is left untouched.

This implementation places some restrictions on the

use of SIMD execution, particularly in the layout of the

data. Operands and results are typically required to be

grouped together sequentially in memory. To achieve the

best performance, they should be placed into an address-
aligned structure. If the data do not meet these layout

restrictions, the programmer must convert the data’s

layout. This generally involves Bscatter-gather[ operations

[11], where operands are gathered from multiple locations

and packed into a tight group, and results are scattered

from a tight grouping to multiple locations. Fig. 19 shows

an example of a gather operation, where one field from

each structure in an array of structures is read and packed

into a contiguous stream. This can be quite expensive if
done in software. Hardware acceleration of scatter-gather

operations can enable significantly more RMS workloads

to see benefits from SIMD execution, such as those that

rely on sparse linear solvers.

An additional challenge imposed by this implementa-

tion of SIMD execution is control flow. Sometimes a

programmer wishes to use conditional SIMD operations,

where only a set of the data elements are operated on. This
is typically supported through the use of bit masks. For

each SIMD instruction, a bit mask can be provided to

specify which operands to ignore. However, for a sig-

nificant number of important RMS modules, such as

various flavors of collision detection, the set of operands

being masked out increases monotonically during execu-

tion. This leads to an increasingly large fraction of wasted

effort by the system. If the hardware could support
compressing the useful operands together, this inefficiency

could be substantially reduced.

Memory Access Patterns: Many RMS workloads are

dominated by streaming or repeated streaming memory

access patterns. A streaming access pattern is one where an

application touches a regular sequence of elements from a

data structure. Each element is typically touched once, or, in
some cases, multiple times in quick succession. This lack of

reuse across a program’s execution means that traditional

caches provide little benefit. A repeated streaming pattern is

one where the application touches the same sequence of

elements multiple times; a cache can help here quite a bit,

but only if it can hold the entire stream. Repeated streaming

is seen, for example, in the conjugate gradient algorithm

described earlier. For good performance, it is important for a
system to efficiently handle these access patterns, both in

terms of providing high bandwidth and in terms of providing

low latency access to the data.

Fig. 19. Gather operation on an array of structures.
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Memory bandwidth is a particular concern because on
a multicore chip, it is shared by all of the threads on the

chip. Unfortunately, the bandwidth requirements for some

workloads we have examined are high even for a single

thread because they access large data structures and

perform little computation for each data item accessed.

The data structures will most likely not fit in conventional

caches, so each time an element is reused, it must be

refetched from memory. Fig. 20 shows the memory
bandwidth requirements for some RMS applications under

different usage scenarios, assuming 16 MB of on-chip

cache. For a number of applications and usage scenarios,

the memory bandwidth requirement is in the hundreds of

gigabytes per second, and in some cases exceeds 1 TB/s.

One possible solution to the memory bandwidth

problem is to make caches much larger. Recent advances

in multichip modules and 3-D stacking of silicon dies
makes this feasible [4]. A second die containing an SRAM

or even a high-density DRAM cache can be packaged with

a processor to greatly increase the amount of storage in the

processor package.

Architects have been working furiously for the past

couple of decades to develop techniques to reduce or hide

latency for accessing caches and memory. The most

common technique for doing this is prefetching. However,
existing prefetching techniques trade off higher bandwidth

usage to achieve lower effective latency. Since bandwidth

is in many cases more of a performance limiter than

latency, more bandwidth-efficient prefetching techniques

are needed. Further, most prefetching schemes assume

streaming or repeated streaming patterns where the

streams are long; the hardware learns the pattern and

assumes it will continue. As discussed earlier, in many
RMS workloads, the parallel tasks are small. An effect of

this is that long streams are broken into small pieces (i.e.,

short streams). These short streams cannot be learned

quickly enough by the hardware. Thus, software may need

to provide some information to the hardware on what data

will be accessed in the future.

Fast Atomic Operations: The most effective way to

parallelize many key modules within RMS workloads is to

have threads cooperate to produce a single result or a set of

results. That is, rather than making a single thread

responsible for each result, multiple threads may accumu-

late their partial results together. This is known as a

parallel reduction. An example of a parallel reduction is

the computation of a histogram from a set of input data, as
shown in Fig. 21. One way to perform this computation in

parallel is for each thread to compute a histogram for a

subset of the data and then accumulate their partial results

to a global total result. Operations similar to this are

common in RMS workloads, such as in linear solvers.

For correctness, each reduction operation (e.g., addi-

tion to the global total result) must be atomic (i.e.,

protected with synchronization). Providing atomicity to
protect reductions is quite expensive on current systems,

and if reductions happen frequently, this can have a large

impact on performance [12]. Support for fast atomic

operations can significantly reduce these overheads and

provide good performance benefits.

In some cases, the synchronization overhead is not the

only performance problem for parallel reductions. If
Fig. 20. Memory bandwidth requirements of some

RMS applications for a set of usage scenarios.

Fig. 21. Parallel histogram computation.
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multiple threads attempt to accumulate results into the
same accumulator simultaneously, they will serialize. If

this happens often enough, this can significantly reduce the

parallel speedup of an application. One way to alleviate this

problem is to provide hardware support to 1) automatically

allow each thread to perform its part of the reduction

independently of the other threads (i.e., by providing a

private copy of the accumulator) and 2) asynchronously

accumulate each thread’s partial result into the global
result so that the threads can overlap useful work with the

final stage of the reduction operation.

Fast Complex Arithmetic Operations: General-purpose

processors are very fast at performing basic arithmetic

operations (add, subtract, multiply, etc.) but much

slower in performing more complex operations. Many

RMS workloads, especially those from the finance
domain and in machine learning and image processing,

heavily use complex arithmetic operations such as

transcendental operations and random number genera-

tion. Accelerating these operations could provide large

performance benefits. One possible avenue for acceler-

ation is special-purpose hardware. Another is to enable

variable-precision operations. Current processors perform

both simple and complex arithmetic operations with
fixed precision. However, many modules do not need the

full precision offered by the processor (e.g., image

processing). Since complex arithmetic operations can

often be sped up at the cost of some precision, enabling

the programmer to make this precision–performance
tradeoff may be beneficial.

V. CONCLUSIONS

In this paper, we described a general-purpose Banalytics
engine[ that is at the core of next-generation processing

platforms. The engine models events, objects, and con-

cepts based on end-user input and accessible datasets. It
iteratively refines its models in real-time. This engine is

inspired by many emerging workloads, which are char-

acterized along three fundamental classes of processing

capabilities we call RMSVrecognition, mining, and syn-

thesis. We find that in addition to the analytics engine

model, RMS workloads exhibit other fundamental simi-

larities. They are based on a common set of mathematical

models, numerical algorithms, and underlying data struc-
tures. We call this phenomenon workload convergence.

Workload convergence has strong implications for future

computer system developers because it means that a

diverse set of emerging RMS applications from market

segments like graphics, gaming, media-mining, unstruc-

tured information management, financial analytics, and

interactive virtual communities presents a relatively

focused, highly overlapping set of common platform
challenges. A general-purpose processing platform de-

signed to address these challenges has the potential to

significantly enhance users’ experience and programmer

productivity. h
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