
Predicate-Aware Scheduling: A Technique for Reducing
Resource Constraints

Mikhail Smelyanskiy Scott A. Mahlke Edward S. Davidson Hsien-Hsin S. Lee
�

Advanced Computer Architecture Laboratory
�
School of ECE

University of Michigan Georgia Institute of Technology
Ann Arbor, MI 48109 Atlanta, GA 30332�

msmelyan, mahlke, davidson � @eecs.umich.edu leehs@ece.gatech.edu

ABSTRACT
Predicated execution enables the removal of branches wherein seg-
ments of branching code are converted into straight-line segments
of conditional operations. An important, but generally ignored side
effect of this transformation is that the compiler must assign distinct
resources to all the predicated operations at a given time to ensure
that those resources are available at run-time. However, a resource
is only put to productive use when the predicates associated with its
operations evaluate to True. We propose predicate-aware schedul-
ing to reduce the superfluous commitment of resources to opera-
tions whose predicates evaluate to False at run-time. The central
idea is to assign multiple operations to the same resource at the
same time, thereby oversubscribing its use. This assignment is in-
telligently performed to ensure that no two operations simultane-
ously assigned to the same resource will have both of their predi-
cates evaluate to True. Thus, no resource is dynamically oversub-
scribed. The overall effect of predicate aware scheduling is to use
resources more efficiently, thereby increasing performance when
resource constraints are a bottleneck.

Keywords: instruction scheduling, predicate analysis, predicated
execution, resource utilization, software pipelining, VLIW proces-
sor

1. INTRODUCTION
Very long instruction word (VLIW) processors rely on an intel-

ligent compiler for extracting, enhancing, and exposing sufficient
instruction-level parallelism (ILP) to deliver high performance. To
extract ILP more effectively in the presence of branches and re-
duce the overhead of branches, predicated (conditional) execution
is often employed. With predicated execution, operations are aug-
mented with an additional Boolean operand known as the guarding
predicate. When the guarding predicate is True, the operation exe-
cutes normally. Conversely, when it is False, the operation is nul-
lified. Predicated execution can be exploited by compilers that use
if-conversion to convert branching code into straight-line segments
of predicated operations [2] [13]. As a result, many branches and
the difficulties associated with them can be eliminated.

Though generally effective at dealing with branches, predicated
execution introduces a serious overhead of its own. Predicated ex-
ecution trades off sequential execution of conditional operations
for increased resource requirements. If-conversion is additive with
respect to resources across branches to which it is applied. For

branches that are if-converted in a code segment, the resources of
the then and else clauses are added to determine the overall resource
requirements for the resultant sequence of predicated operations.
Intuitively this makes sense, since to remove a branch both clauses
must be scheduled with the appropriate one nullified at run-time.
As a result, a compiler must apply if-conversion carefully to avoid
oversaturation of the processor resources [12].

Compile-time assignment of resources (e.g., fetch slots, regis-
ter ports, function units, memory ports) to predicated operations
is traditionally handled in a conservative manner. The compiler
assumes that any predicate may evaluate to True at run-time and
accordingly ensures that all resources required by an operation are
unconditionally available. However, this is not necessary. At run-
time, operations require resources when their predicate evaluates to
True. An operation with a False predicate only requires a subset of
its resources. In particular, the resources from fetching the oper-
ation to determining that its predicate is False are necessary. All
later resources assigned to a nullified operation are superfluous.

For a predicated architecture, processor resources can be bro-
ken down into two categories: must-use and may-use. A must-use
resource is required by an operation regardless of its run-time pred-
icate value. Conversely, a may-use resource is only required when
an operation’s predicate evaluates to True. The classification of re-
sources into the two categories is based on the point in the proces-
sor pipeline where operations with False predicates are nullified.
Resources before the nullification point are must-use; those after
are may-use. Nullification later in the pipeline reduces the latency
from predicate computations to uses of those predicates; nullifi-
cation earlier in the pipeline minimizes the number of must-use
resources.

To overcome the problem of superfluous resource utilization by
nullified operations, we propose a technique referred to as predi-
cate aware scheduling. The central idea of predicate aware schedul-
ing is to allow static over-subscription of may-use resources wherein
multiple operations are allowed to reserve the same resource at the
same time. However, dynamic over-subscription of resources must
not take place. Thus, the compiler must guarantee that no two op-
erations that are assigned to the same resource at the same time
will ever have their predicates both evaluate to True at run-time.
The overall affect of predicate aware scheduling is to increase the
utilization of may-use resources, thereby increasing processor per-
formance. A secondary benefit is that with resource constraints
lessened, more aggressive if-conversion can be applied to extract

further benefit from branch elimination.
In order to accomplish predicate aware scheduling, predicate

analysis is employed in the resource reservation process. Specif-
ically, relational properties among the predicates used in a program
segment are derived [12] [8] [17]. The most important property
for this work is disjointness, wherein two predicates are disjoint
if they can never evaluate to True at the same time. For instance
with an if-then-else statement, the predicates controlling the then
and else clauses are disjoint. Such predicate analysis is already
used extensively in compilers to assist with dataflow analysis, op-
timization, and register allocation of predicated code [4] [5]. A set
of operations with disjoint predicates is allowed to reserve a com-
mon resource as the compiler guarantees that at most one of these
operations will be active at run-time.

One obvious alternative to predicate aware scheduling is to sim-
ply build a wider processor with more resources. When the num-
ber of resources is sufficiently large, the problem of resource con-
tention goes away. However, this solution may have a high cost;
additional function units, register file ports, busses, etc. may be
necessary. For either cost- or power-sensitive environments, this
may be unacceptable. Predicate-aware scheduling offers an ap-
proach to increase the utilization of existing processor resources
and therefore increase application performance with a fixed set of
resources.

For this paper, we present the necessary extensions to accommo-
date both predicate-aware acyclic scheduling and software pipelin-
ing. In the next section, a brief background on scheduling is pre-
sented followed by a motivational example to illustrate the potential
benefit of predicate-aware scheduling. Section 3 contains a descrip-
tion of the compiler support used to accomplish predicate-aware
acyclic scheduling and software pipelining. The effectiveness of
the technique is evaluated experimentally on a sample predicate-
aware processor in Section 4. The final two sections describe re-
lated work and present conclusions.

2. BACKGROUND AND MOTIVATION
Code scheduling refers to the process of binding operations to a

time slot and a set of resources for execution. In this section, we
briefly describe two common scheduling techniques: list schedul-
ing (LS) [1] to schedule acyclic code regions and iterative modulo
scheduling (IMS) [14] to schedule innermost loop regions. Each
technique is applied to a basic block as a simple illustration.

The goal of LS is to find a valid schedule of minimum length for
an acyclic code region. The minimum achievable schedule length
is the maximum of two lower bounds. The resource-constrained
lower bound is equal to the number of busy cycles required by the
most heavily used resource during a single execution of the region.
The latency-constrained lower bound is determined by the sum of
the latencies along the longest path through the data dependence
graph (i.e. the critical path) of the region.

The goal of IMS is to find a valid schedule for an innermost
loop that can be overlapped with itself multiple times so that a
constant interval between successive iterations (Initiation Interval
(II)) is minimized. The II-cycle code region that achieves the maxi-
mum overlap between iterations is called the kernel. The scheduler
chooses its initial II to be the maximum of two lower bounds. The
resource-constrained lower bound (ResMII) is equal to the number
of cycles that the most heavily used resource is busy during a sin-
gle iteration of the loop. The recurrence-constrained lower bound
(RecMII) is determined by the maximum ratio �����	��

�����	��
��

Function Unit Operations Mnemonics Lat.
ALU (A) Add add 1

Subtract sub 1
Multiply mult 3
Predicate Compare cmpp 1,2

Memory (M) Load load 2
Store store 1

Branch (B) Branch on condition if 1

Table 1: Description of a sample processor

among all cycles � in the dependence graph, where ���	��
 is the
sum of the operation latencies over all edges of the cycle � , and
���	��
 is the sum of all loop-carried dependence distances over
those edges.

As the number of machine resources increases, recurrence and
latency constraints begin to dominate the schedule length for LS
and IMS techniques, respectively. In general, IMS is more resource-
constraint bound than LS, because IMS can look for independent
operations across loop iteration boundaries. Conversely, LS is lim-
ited to operations within a single execution of a code region. Note
that loop unrolling in conjunction with LS can be applied to ap-
proximate the benefits of IMS for loops.

Both scheduling techniques schedule operations at particular cy-
cles so that both data dependences and resource constraints are sat-
isfied. To satisfy scheduling constraints, LS and IMS use a data
structure known as the schedule reservation table (SRT). The SRT
records the use of a particular resource by a specific operation at
a given time [3] [14]. Scheduling at that time is permitted only
if the resource usage does not result in a resource conflict, i.e. it
does not attempt to reserve any resource at a time when some other
operation already reserved that same resource, and no latency con-
straints of prior operations on which the operation being scheduled
depends are violated. In addition, IMS uses a Modulo Reserva-
tion Table (MRT) to facilitate tracking the modulo constraints. The
modulo constraint states that two operations that use the same re-
source may not be scheduled an integer multiple of II cycles apart
from one another.

IMS is generally applied to single basic block innermost loops.
In processors that support predicated execution, if-conversion
[2] [20] is applied to broaden the class of loops that can be modulo
scheduled. If-conversion can also be used in conjunction with LS
on acyclic regions to increase the effectiveness of the scheduler.

2.1 Example Code Segment
To illustrate the application of conventional LS and IMS along

with the potential benefits of making each predicate-aware, we con-
sider a simple code example and processor model. The example
processor can fetch and execute up to three operations per cycle
has three fully pipelined function units as detailed in Table 1 1.
The mnemonics for the various operations, binding of operations
to units, and latency of operations are shown in the table.

The example code segment is a slightly modified loop extracted
from the unquantize image() function from the epic application in
the Mediabench benchmark suite [11]. Figure 1(a) shows the C
source for the loop. Figure 1(b) shows the assembly code for
the loop after if-conversion. For conciseness of the example we

1To support predicate-aware scheduling, the cmpp latency must be
increased by at least one cycle as discussed in Section 4.1. In this
example, the cmpp latency is increased from 1 to 2 cycles.

1: for (�������
�����	� ���	 "!"�
�$#%#�

2:

�
3: &$'�(*)+�-, �.�0/ ��132546�	7 ���8 9!:�
4: if (, �	�0/ �.1<;>=)
5: '9!��"/ �.1$�?&$'*(�)�@BA6(*'�'*!CAEDF�.(�7G�
6: else
7: '9!��"/ �.1$�?&$'*(�)H#IA6(*'�'*!CAEDF�.(�7G�
8: �

(a) Source code

op1: t1 = load ���
=9JK, �.��
 if &L� ;
op2: prod = mult �MD6=9J8DF4���
 if &L� ;
op3: p1,p2 = cmpp.lt.uu �MDN=*J6=O
 if &L� ;
op4: t2 = sub �P&$'*(�)$J	DFAN(�'9
 if &Q= ;
op5: t2 = add �P&$'�(*)$J8DFA6(*'9
 if &LR ;
op6: store ���K=O#S�-T�JK'9!��9J�D
R9
 if &L� ;
op7: if ���L#�#U���.� ���	 "!�
 goto (6&<= if &$� ;

(b) Assembly code after if-conversion (p0=True)

Figure 1: Example code segment

2 2

0

11

3

op1
M

B
op7

3

A
op2 A

op3

A
op5

M
op6

op4
A

1 or 21 or 2

Figure 2: Data dependence graph for code segment

assume that the instruction set supports post-increment load and
store operations. In this example, the if-then-else statement is re-
placed by the corresponding predicate defining operation (p1,p2 =
cmpp.lt.uu �MD6=9JE=C
 if &L�). Predicate &<= is set to True and &VR is set
to False when the �8W condition (D6=X�>=) evaluates to True; whereas
condition False sets &Q= False and &LR True. The detailed semantics
of the cmpp operations are described in [9].

The data dependence graph of the if-converted loop segment is
presented in Figure 2. Each node is annotated with the type of the
operation (A=ALU, M=memory, B=branch). Each edge is marked
with the latency of that edge. Note that the edges in the graph are
all flow dependences with the exception of the edge from op6 to
op7 which is a control dependence.

2.2 Applying Predicate-Aware Scheduling
As stated above, the reservation table enforces resource con-

straints for both LS and IMS. That is, operations that use the same
resource cannot be scheduled in the same cycle. Predicate-aware
scheduling relaxes this constraint by allowing operations guarded
by disjoint predicates (from here on referred to as disjoint oper-
ations) to reserve (or share) the same resource in the same clock

M B

4
5
6

Time

0
1
2
3 op3

op1

op6 op7

A

op2

op4
op5

7

(a) SchedLen = 8

MA B

4
5
6

Time

0
1
2
3

op5op4

op3

op1

op6 op7

op2

(b) SchedLen = 7

Figure 3: LS schedule (a) versus PALS schedule (b)

cycle. The if-converted code shown in Figure 1(b) is used to illus-
trate LS and its counterpart predicate-aware list scheduling (PALS)
along with IMS and its counterpart predicate-aware modulo schedul-
ing (PAMS).

LS versus PALS
The application of LS to the example results in the 8 cycle sched-

ule presented in Figure 3(a). This schedule is optimal for this ma-
chine model. op4 is scheduled at cycle 5 which is the earliest time
at which it can be scheduled. The earliest schedule time for op5 is
also cycle 5, but due to resource conflict with op4, it gets scheduled
at the next cycle. Hence, the earliest schedule time for op6, which
depends on both op4 and op5, is cycle 7. Note that both op4 and
op5 are executed conditionally but reserve the ALU uncondition-
ally. In fact, only one of these operations is executed at run-time;
the other is nullified. As a result, we effectively waste either cycle
5 or cycle 6 for each iteration of the loop because the ALU is not
utilized during the cycle in which it executes a nullified operation.

With PALS, a 7 cycle schedule can be achieved, as shown in Fig-
ure 3(b). Operations op4 and op5 (from the then and else paths,
respectively) can now be scheduled at their earliest schedule time;
both operations may reserve the ALU in cycle 5 because they are
provably disjoint, so only one will execute at run-time. In the SRT
of Figure 3(b), each resource conceptually has two slots. This
allows up to two disjoint operations to occupy the same resource
at the same time. Two slots is not a restriction of this technique.
Rather, for this example, there are only 2 control paths, thus we
know that there can be at most two disjoint operations.

The overall result of the PALS schedule is that the ALU resource
is always utilized in cycle 5 and the achieved schedule length is 7
cycles, a 14% speedup over the 8 cycle LS schedule shown in Fig-
ure 3(a). Note that for this basic block, a schedule of length 7 is op-
timal for any machine configuration. Since the latency-constrained
lower bound (critical path length) is 7 cycles (in Figure 2).

IMS versus PAMS
The application of IMS to the example results in the II=4 sched-

ule presented in the MRT shown in Figure 4(a). Since each of the
four ALU operations (op2, op3, op4, op5) must reserve the ALU
resource at a different cycle to avoid conflict, ResMII=4 and this
schedule is optimal. Note that RecMII=1.

With PAMS, an II=3 schedule can be achieved as shown in Fig-
ure 4(b). Again, this improvement is achieved by enabling the
provably disjoint operations, op4 and op5, to reserve the ALU in
the same cycle. Note that even though up to two disjoint opera-
tions can simultaneously reserve each function unit, the processor

op4
op2

op1
op6

op7

BA M

op3

op5
Time

2
3

0
1

(a) II = 4

op4

A M B

op5

op3

op2

op1

op6 op7

Time
0
1

2

(b) II = 3

Figure 4: IMS kernel (a) versus PAMS kernel (b) schedule

0

20

40

60

80

100

cjp
eg
djp

egep
ic

g7
21

en
co

de

g7
21

de
co

de

gs
m

de
co

de

gs
m

en
co

de

m
es

am
ipm

ap

m
pe

g2
de

c

m
pe

g2
en

c

pe
gw

itd
ec

pe
gw

ite
nc
ra

sta

ra
wca

ud
io

ra
wda

ud
io

un
ep

ic

gh
os

tsc
rip

t

av
er

ag
e

%
 o

f
p

re
d

ic
at

ed
 o

n
 o

p
s

Figure 5: Ratio of operations predicated True

can only fetch a maximum of three operations per cycle. Thus, the
scheduler must also ensure that the fetch width constraint is not vi-
olated. Overall, PAMS results in a 33% speedup over IMS for this
example. Note, for this particular loop, an II=3 is optimal for any
compiler strategy, because there is only one ALU and three opera-
tions that require it on each control path.

This example shows that by allowing disjoint operations to re-
serve the same resource in the same time-slot, the resource re-
quirement for a code segment can be reduced. For code that is
resource constrained, this results in a tighter schedule and hence
performance improvement. Of course, if resources are not a limit-
ing factor, the benefit of predicate-aware scheduling is lessened. If
the example processor had two ALUs instead of one, both LS and
IMS would achieve the optimal schedules for this example, 7 and 3
cycles, respectively.

2.3 Characteristics of Predicated Code
The previous section showed that an isolated example can derive

benefit from predicate-aware scheduling. The central issue to mo-
tivate further discussion of this technique is whether applications
in general have the properties that make them amenable to the ap-
proach. There are 3 interrelated questions to address: the number of
predicated operations that are nullified at run-time, the fraction of
time spent in regions with disjoint operations, and the potential to
combine disjoint operations. For details related to the experimental
methodology, the reader is referred to Section 4.3.

Figure 5 presents the percent of dynamic operations whose pred-
icates evaluate to True during the program execution. Thus, 100
minus the height of the bar is the percent of nullified operations. On
average, 26% of all dynamic operations are nullified. This means
that 26% of the time that a function unit is reserved, it does no
useful work.

Figure 6 addresses the last two questions. The left bar shows

0

20

40

60

80

100

cjp
eg
djpeg

epic

g721enco
de

g721deco
de

gsm
deco

de

gsm
enco

de

m
esa

m
ipm

ap

m
peg2dec

m
peg2enc

pegwitd
ec

pegwite
nc
ra

sta

ra
wca

udio

ra
wdaudio

unepic

ghosts
cr

ipt

ave
ra

ge

%

% of ops in improved regions % of ops after optimal combining

Figure 6: Optimal predicate-aware scheduling

the percent of dynamic operations that lie a regions with at least
two disjoint operations. On average, 69% of the operations are
from such regions. Of course, the overall benefit of the predicate-
aware technique depends not only on the frequency of the improved
region, but also on the number of disjoint operations in the region
which indicates the potential for the improvement.

The right bar shows the dynamic combining potential. To de-
rive the right bar, we optimistically assume maximal combining of
the predicated code (regardless of operation type and latency) and
count each group of combined operations as one operation. The bar
shows the dynamic operation count after combining as a percentage
of the count without combining. On average, optimal combining
can reduce the total operation count by 13%. Note that this is not
an upper bound on performance with predicate-aware scheduling;
the actual performance benefits can be higher or lower as shown in
the prior example.

3. PREDICATE-AWARE SCHEDULING
In this section, the details of the two predicate-aware scheduling

algorithms are presented. Predicate-aware list scheduling (PALS)
and predicate-aware modulo scheduling (PAMS) are extensions of
conventional LS and IMS, respectively. As discussed in the pre-
vious section, both techniques aim to decrease schedule length by
relaxing resource constraints, specifically by allowing disjoint op-
erations to reserve the same resources in the same cycle.

LS and IMS share much of the same underlying scheduling in-
frastructure. Thus, we begin this section with a unified discus-
sion of both algorithms, referred to as unified scheduling or simply
scheduling. The term reservation table (RT) is used in a generic
sense to represent either an SRT for LS or an MRT for IMS.

3.1 Baseline Unified Scheduling Algorithm
The heart of typical instruction scheduling algorithms employs

two important functions to identify a conflict-free time for each op-
eration to be scheduled. The central data structure used to identify
resource conflicts is the RT. The general realization of an RT (sim-
ilar to Figure 3(a)) is a two-dimensional matrix in which columns
correspond to resources and rows correspond to schedule slots.

In our implementation, the scheduler selects an operation from
the pool of unscheduled operations and calls the FindTimeSlot func-
tion (see pseudo code shown in Figure 7(a)). This function scans
forward from Y��	7LZ[�.��! to Y�\^]_Z[�	�`! looking for the first con-
flict free slot in RT to schedule the operation. MinTime is the ear-

FINDTIMESLOT acbGd*e
f�g�h.i�jEk$l�mniok^pQicq�eNlEm�gOr9p<ioq�e
s3t
/* Successively try each time in the range */
for (u�v"f6fNpQicq�exwym`ick�p<ioq�eEz
u{v9fNfNp<ioq�e{|`m�gOr*pQioqXe6z

u�v"f6fNpQicq�eL}~}) t
while (there are remaining resource alternatives) do t

f�eK�Kj6v"fN�
e g���h = next resource alternative for bxd*e
f�g�h.iMjEk
if a ResourceConflict acf�eK�Kj6v"fN�
e g���hFl8b�d�eKfNg�h.iMj6k$l

u{v"f6fNp<ioq�e
s == FALSE s
return u�v"fNf6pQioqXe ;�

...�
(a) FindTimeSlot() function

RESOURCECONFLICT acf�eK�Kj6v9f��
e g���hFl�b�d*e
fNgOh.ioj6k$l�u{v"f6fNp<ioq�e
s�t
while (there are remaining resources in resource alt) do t

fNeK�EjEv"f��
e = next resource from f�eK�Kj6v9f��
e gO��h ;
if a IS EMPTY(ReservationTable � u�v"fNf6pQioqXeF�o� f�eK�Kj6v"fN�
e���s

wGw��"���V���xs
return TRUE;�

return FALSE;�
(b) ResourceConflict() function

Figure 7: Baseline scheduling functions

liest start time that the operation can have as constrained by its
scheduled predecessors. MaxTime (which can be infinity) is the
latest time at which the scheduler will try to schedule the operation
before giving up. Frequently, an operation may execute on any of
multiple function units; in this case, the operation is said to have
multiple alternatives. All operation alternatives are tried inside the
while loop, and for each alternative, the function ResourceConflict
is called.

The ResourceConflict function, shown in Figure 7(b), checks if
the operation can be scheduled without conflict on the resource re-
source alt at time CurrTime. Each resource alt is a set of resources
that one particular realization of the operation needs during execu-
tion. Therefore, each corresponding entry in the ReservationTable
must be checked. If there are any conflicts, then the operation can-
not be scheduled on this resource alternative at this time; otherwise,
it can. Scheduling is accomplished at this level by reserving the ap-
propriate entries in the RT.

3.2 Predicate-aware Extensions
Predicate-aware scheduling is accomplished by using the Predi-

cate Query System (PQS) [8] to determine the disjointness of two
operations based on their predicates. The PQS analyzes opera-
tions to determine relations between predicate values. These re-
lations (or facts) are stored as Boolean expressions which can be
efficiently manipulated. For a set of predicates, the Boolean ex-
pression essentially represents the disjunction of all the paths on
which these predicates evaluate to True. For example, the predicate
expression that represents p0 in from Figure 1 is True, since the
predicate evaluates to True on all the paths. To check if a predi-
cate is disjoint from another predicate, the corresponding predicate
expressions are ANDed. If the result is False, the predicates are
disjoint, meaning that regardless of the execution path at most one
of the predicates will be True at any given time. Otherwise, the
predicates are not disjoint.

Predicate-aware scheduling uses a predicate-aware RT, as shown
in Figure 8. Each entry in the predicate aware RT has two fields:
a list of disjoint operations which have already reserved the entry,
and a predicate expression (pred expr), which represents the union
of the predicates of the reserving operations.

In predicate-aware scheduling, FindTimeSlot calls the predicate-

Res 1
may

... ...

... ...

... ...

... ...

... ...

op5 pred_exprn2

... ...

op1 op2 pred_expr01

may

......

op4

Res 2Time

0

1

n

...

must
Res m

true

true

op3

Figure 8: Predicate-aware reservation table

RESOURCECONFLICT acf�eK�Kj6v"fN�
e g���hFl�bxd*e
f�g�h.ioj6k$lFu�v"f6fNpQicq�e
s3t
d�fNeE��w get predicate acb�d*e
fNgOh.ioj6k^s8z
while (there are remaining resources in resource alt) do t

fNeE�KjEv"f��
e = next resource from f�eK�Kj6v"fN�
e g���h ;
fEh e
k:h.fN��w������
�N�E�C�C�K�P�"���L�*�3�P�*� u�v"fNf6pQicq�e��M� f�eK�Kj6v9f��
e��
if a IS DISJOINT aofEh eKk:h.f6�:� dCf�eK� e
rCd�f6l.d�fNeE��s_w�w FALSE s

return TRUE;�
return FALSE;�

Figure 9: Predicate-aware ResourceConflict() function

aware ResourceConflict function (see Figure 9) which does the
following. First, the operation’s guarding predicate pred is ob-
tained. For each entry ReservationTable[CurrTime][resource] of
the predicate-aware RT, a call is made to the IS DISJOINT func-
tion. This function takes two arguments: pred and the predicate
expression pred expr for this entry in the RT. If the conjunction
of the two arguments is FALSE, the value returned is TRUE, then
the operation is disjoint from every other operation in the list, and
therefore it can also reserve the resource resource at time CurrTime.
Otherwise the value returned is FALSE and the operation is not dis-
joint from one or more operations currently in the list. Therefore,
this operation cannot reserve this resource at ���$'�'CZH�.�`! .

If there are no resource conflicts, the operation is placed into the
operation list of the corresponding entry in the RT. The operation’s
predicate is ORed into the current pred expr in the RT entry to
reflect the new condition under which the resource is busy.

The predicate-aware scheduler divides machine resources into
two categories: may-use and must-use. May-use resources can be
reserved in the same cycle by disjoint operations. Must-use re-
sources can only be reserved by one particular operation in a given
cycle, as on the baseline machine. The categorization rule is that
every resource that is after the predicate nullification point in the
pipeline is may-use. May-use resources can be reserved by dis-
joint operations because the operations whose predicates evaluate
to False are discarded before those resources are used. Conversely,
resources before the nullification point are must-use, and only one
operation can reserve them at any time as these resources are used
regardless of the operations’s predicate value.

For our implementation, we add a pseudo must-use resource
called the fetch width (or ¢¡) resource. This resource limits the
maximum number of operations that can be fetched in a given clock
cycle. Note that in general the fetch width can differ from the exe-
cution width, which is the number of operations that can be simul-
taneously issued to function units in a given clock cycle. On all our
processor models, these width are the same.

3.3 Additional Extension for PAMS
Up to this point, the predicate-aware extensions are common

to both PALS and PAMS. However, to support PAMS, we must
compute ResMII in a predicate-aware manner. IMS computes the
resource-constrained lower bound (ResMII) by adding the number
of times that each operation uses a particular type of resource to
that resource’s usage count. The cumulative usage count for the

4
5
6
7

Time

0
1
2
3

8

p1 | p2op2
op3

op4

op1

p1 | p2

p1

p1 | p2

MA
may may

B
may

FW1
must

FW2
must

FW3
must

(a) Partial schedule reservation table

M BA
may maymay

Time

0
1
2

op4

FW1
must must

FW2 FW3
must

op5
op3

op2

op1

op6 op7

(b) Final modulo reservation table

Figure 10: PAMS scheduling of the example in Figure 1

most heavily used resource determines ResMII for IMS.
For PAMS, a similar calculation is done, except that whenever

the current resource usage being considered is disjoint from some
previously considered usage of that resource, this current usage is
combined with that previous usage: the usage count of that resource
is not incremented, but the predicate for that previous usage is up-
dated to reflect being combined with the current usage.

3.4 Example of Applying PAMS
To illustrate predicate-aware scheduling, PAMS is applied to the

example in Section 2.1 (see Figure 1). The machine model in Ta-
ble 1 is assumed. Further, the machine is assumed to have a cmpp
latency of 2 cycles and a fetch width equal to the number of func-
tion units (3). The increased latency for cmpp operations is dis-
cussed in Section 4.1.

As each operation is scheduled at some time slot, the appropriate
resource is marked at that time slot in both the SRT and MRT. In
addition, the predicate expression of the corresponding SRT entry
is updated.

Figure 10(a) and Figure 10(b) show the partial (up to op4) SRT
and the final MRT after the PAMS algorithm is applied to this loop.
op1 is scheduled at cycle 0 of SRT and the MRT (there is no MRT
conflict) reserving resource Y , and the predicate expression is up-
dated to p1 £ p2 since this operation occurs on both control paths.
Here and in the rest of the example, one FW resource is reserved
for each scheduled operation. Arithmetic operation op2 is also on
both control paths and is data dependent on two cycle op1. There-
fore, A resource is reserved at cycle 2 in both SRT and MRT, with
its predicate expression set to p1 £ p2 in the corresponding SRT en-
try. op3’s earliest scheduling time is cycle 2, but it has a resource ¤
conflict with the currently scheduled op2 and is, therefore, sched-
uled at the next cycle, 3, of the SRT (cycle 0 of MRT), also with
predicate expression p1 £ p2.

The earliest scheduling time for op4 is cycle 5 (since it is depen-
dent on the two-cycle predicate defining operation op3), but op2
uses resource A at cycle 2, which causes resource conflicts with
cycle 5 since both map to cycle 2 of the MRT (i.e. 2 and 5 are con-
gruent modulo the II of the MRT, which is 3). By the same token,

op4 cannot be scheduled at cycle 6 because of the conflict with op3
currently scheduled at cycle 3. So, op4 gets scheduled at cycle 7 of
the SRT (cycle 1 of the MRT) which has no conflicts. It reserves
resource A and the predicate expression is set to &Q= (op4’s guarding
predicate) to reflect the condition under which the operation will
reserve the resource.

The rest of the schedule is not shown in Figure 10(a) but is
shown in Figure 10(b). For example, the earliest scheduling time
for op5 is also at cycle 5. But similarly to op4 it cannot be sched-
uled until cycle 7. It gets scheduled at cycle 7 of the SRT (cycle 1
of the MRT), which is at the same time with its disjoint operation
op4. op5 also reserves the ¤ resource and updates the predicate
expression to p1 £ p2, which means the resource is now reserved on
both control paths: either op4 will utilize the resource on the False
path (&Q= is True), or op5 will utilize the resource on the True path
(&Q= is False, &VR is True). Next, the operation op6 is scheduled at
cycle 8 of the SRT (cycle 2 of the MRT). Finally, as is customary
in IMS (and hence also in PAMS), the region ending branch is re-
placed with a special control operation (called brtop in [15]) that
is scheduled within the first II rows of the SRT. op7 at row 2 of
the MRT in Figure 10(b) represents this operation. The result is a
successful modulo schedule with II=3.

4. PERFORMANCE EVALUATION

4.1 Predicate-Aware Architecture
As we discussed in Section 3, the generic predicate-aware ar-

chitecture has two categories of resources: may-use and must-use.
Every resource used after the value of the guarding predicate be-
comes known can be may-use, i.e., it can be reserved by disjoint
operations at a time. All the remaining resources are must-use and
can only be reserved by a single operation in a given time. There-
fore, the earlier the predicates are read, the more resources can be
may-use, which can lead to shorter schedules. On the other hand,
accessing the predicate register file earlier in the processor pipeline
increases the latency of the predicate defining operation. This can
be problematic if many of predicate defining operations lie on the
critical path of the application.

In our experiments, we evaluate the baseline pipeline datapath
shown in Figure 11(a). This architecture is similar to the TI ‘C6x
architecture [6], except that the unified register read and execu-
tion stages are separated. The baseline processor pipeline has 6
stages: fetch, dispatch, decode, register read, execute and write
back.The predicates are only read during the execution stage. Thus,
resources in the execute stage and the preceding stages are must-
use. Only the resources in the write-back stage are may-use.

In order to make the baseline pipeline datapath predicate-aware,
four issues must be addressed. First, nullification should be per-
formed earlier in the pipeline to make more may-use resources
available. Second, the disjoint operations should be easily identifi-
able. Third, the cmpp latency should be kept as small as possible.
Fourth, the pipeline complexity should not be increased substan-
tially to compromise the cycle time. To this end, we make two
main changes in the baseline pipeline to make it predicate-aware as
shown in Figure 11(b).

The first change is to move predicate register file (PRF) read to
the dispatch stage. This allows nullification to occur at the end
of the dispatch stage. As a result, all the resources in subsequent
stages (general / floating-point register ports, function units, etc.)
are may-use.

PRF

REG
READ EXECUTEFETCH

WRITE
BACKDECODEDISPATCH

(a) Baseline Machine

DISPATCH

REG
READ EXECUTE

PRED READ /
DECODEFETCH

PRF

WRITE
BACK

(b) Predicate-aware Machine

Figure 11: Baseline vs. Predicate-aware machine models

During the dispatch stage, the PRF is accessed early in the cycle
to read predicates for all operations. Then, the dispatch logic nulli-
fies the disjoint operations guarded under False and assigns the rest
of the operations to their corresponding function units. To identify
the disjoint operations, each operation is augmented with a mutex
bit. If the mutex bit is ’0’, the operation is not disjoint from any
previous operations. If the mutex bit is ’1’, the operation is disjoint
from a previous operation.

The second change, is to reverse the order of the decode and dis-
patch stages. This change is made to delay predicate read by one
stage, so as to reduce cmpp latency by one cycle. The result of
this reordering is that decode occurs before dispatch. As a result,
the complexity of the decode logic is increased. In the worst case,
 ¢¡ general purpose decoders, one per operation in the instruc-
tion word, are required. In the alternative, where decode follows
dispatch, less expensive special purpose decoders can be used.

Notice that in the predicate-aware machine, the 1-bit wide PRF
can be simultaneously accessed in two pipeline stages: predicate
read / dispatch and execute. Thus, twice as many PRF read ports
are required. If this poses a problem, the PRF could be replicated
in each of these two stages.

The primary negative of our design is that since predicate read
has been moved earlier in the pipeline, the distance between cmpp
operations and their disjoint consumers must be increased. With-
out any further changes, the cmpp operation latency is two cycles.
This assumes that full forwarding of predicate values is possible.
However, since the predicates are accessed early in the dispatch
stage and computed later in the execute stage, forwarding to the
dispatch stage is not feasible. Without such forwarding, the predi-
cate-aware scheduler needs to separate cmpp operations from their
disjoint consumers by at least three cycles.

Finally, it is possible to have more pipeline stages between pred-
icate read / dispatch and execute as the result of increased proces-
sor frequency (for example, register read or comparator logic may
be split into multiple stages). As the results in Section 4.3 indi-
cate, higher cmpp latency will degrade the performance of PALS
because cmpp operations are often on the critical paths of acyclic
regions. However, it will not have a significant impact on PAMS
because cmpp operations are rarely on the critical paths of cyclic
regions.

4.2 Evaluation Methodology
We use an existing VLIW compiler technology, Trimaran [19],

to evaluate the effectiveness of our technique. This compiler sys-
tem is capable of performing if-conversion with hyperblock for-
mation [12], scalar and modulo scheduling, and predicate analysis,
among other back-end optimizations. We implemented the bulk of
our optimizations within the resource management module of EL-
COR (Trimaran’s back-end compiler). We also use the Predicate

Query system [8] to analyze predicated code and construct the re-
lationship among predicates in particular the disjointness relation-
ship.

We use the notation (F,E,I,FP,M,B,C) to represent the processor
in this study. F is fetch width, E - execution width, I - number
integer units, FP - number of floating-point units, M - number of
memory units, B - number of branch units, and C - latency of the
predicate defining operation (cmpp). We use two base processors
in our study: (4,4,2,1,1,1,1) and (6,6,4,2,1,1,1) called ��¥.¦_��T"
 and
�x¥.¦_�.§9
 , respectively.

Each baseline processor ��¥.¦_���8
 is compared with three cor-
responding predicate-aware processors �<¨ ¦ ���KJN=C
 , �©¨ ¦ ���
J6R9
 and
� ¨ ¦ ���
JKª9
 with the same number of resources as baseline proces-
sor, but cmpp latency of one, two and three, respectively. Although
maintaining a cmpp latency of one cycle in a predicate-aware archi-
tecture is almost impossible, the results are indicative of the sched-
ule upper bound.

We evaluated the set of 17 MediaBench [11] applications, ap-
plying predicate-aware scheduling optimizations to the entire code.
Clearly, the predicate-aware scheduling can only benefit if-con-
verted regions of code that contain at least one if-then-else clause
(we call these regions pa-ready), and will be ineffective for other
code regions due to their lack of disjoint operations. We assume
that those other regions will execute with predicate-aware support
turned off. In addition, in this study we assume that all predicates
in the predicate-aware scheduled region are read early in the predi-
cate read / dispatch pipeline stage regardless of whether the opera-
tions guarded under these predicates share may-use resources. This
assumption unnecessarily increases the latency of all cmpp opera-
tions in the region. In our future work, only those cmpp operations
that define predicates for the operation in a group of disjoint oper-
ations will have their latency increased.

4.3 Evaluation Results
The goal of the predicate-aware scheduler is to reduce the length

of the resource constrained baseline schedule on the baseline ma-
chine of fixed width. The predicate-aware scheduler takes advan-
tage of the gap between the upper-bound defined by the length
of the baseline schedule and the lower bound which is the maxi-
mum of the resource-constrained and latency-constrained schedule
lengths of the predicate-aware processor. The resource-constrained
schedule length is computed ignoring all data dependencies. The
latency-constrained schedule length is the length of critical path.
The gap between these lower and upper bounds constitutes the
headroom for the predicate-aware scheduler.

Table 2 shows an estimate of the predicate-aware scheduler head-
room on acyclic (columns 2-7) and cyclic (columns 8-13) pa-ready
regions. The data presented is averaged over all benchmarks. Col-
umn 1 shows the two machine models. Column 2 shows the length

Acyclic Scheduling Cyclic Scheduling
Machine SL «	¬ CPL1 CPL2 CPL3 ResMSL «.¬ ResMSL ­ ¬ II «.¬ RecMII1 RecMII2 RecMII3 ResMII «.¬ ResMII ­ ¬

P(4) 29.44 22.37 25.44 28.75 23.65 19.73 29.36 3.73 4.34 4.94 29.26 23.78
P(6) 24.87 22.37 25.44 28.75 12.08 11.29 15.55 3.74 4.34 4.94 14.97 13.13

Table 2: Data to estimate scheduling headroom for predicate-aware scheduler

PALS PAMS
P(4) P(6) P(4) P(6)

Benchmark %Time SP1 SP2 SP3 %Time SP1 SP2 SP3 %Time SP1 SP2 SP3 %Time SP1 SP2 SP3

cjpeg 77.96 1.07 1.00 1.00 80.78 1.00 1.00 1.00 2.02 1.29 1.29 1.27 1.43 1.23 1.23 1.21
djpeg 25.13 1.04 1.00 1.00 33.33 1.01 1.00 1.00 37.37 1.16 1.09 1.09 30.31 1.05 1.05 1.05
epic 4.82 1.03 1.01 1.06 4.74 1.01 1.01 1.01 0.86 1.20 1.20 1.20 0.62 1.00 1.00 1.00
g721encode 38.18 1.13 1.09 1.04 42.84 1.04 1.01 1.01 39.7 1.18 1.16 1.25 33.7 1.07 1.12 1.08
g721decode 41.62 1.12 1.08 1.04 45.95 1.05 1.01 1.01 39.98 1.18 1.16 1.25 33.5 1.07 1.12 1.08
gsmdecode 4.52 1.05 1.00 1.00 7.47 1.00 1.00 1.00 89.97 1.07 1.09 1.09 83.76 1.06 1.05 1.05
mesamipmap 22.1 1.07 1.01 1.00 25.31 1.02 1.00 1.00 26.63 1.34 1.31 1.34 21.46 1.15 1.16 1.15
mpeg2dec 23.81 1.20 1.11 1.02 24.94 1.05 1.00 1.00 32.31 1.10 1.10 1.09 22.83 1.07 1.07 1.07
mpeg2enc 18.69 1.02 1.01 1.00 26.26 1.00 1.00 1.00 67.76 1.24 1.07 1.24 55.01 1.11 1.11 1.07
pegwitdec 42.52 1.01 1.00 1.00 51.34 1.00 1.00 1.00 15.03 1.04 1.04 1.03 12.03 1.06 1.06 1.06
pegwitenc 46.99 1.01 1.01 1.00 55.6 1.00 1.00 1.00 16.07 1.04 1.04 1.03 12.73 1.06 1.06 1.06
rasta 23.27 1.01 1.01 1.00 27.06 1.00 1.00 1.00 2.09 1.14 1.14 1.14 1.29 1.00 1.00 1.00
rawcaudio 0.10 1.18 1.08 1.00 0.11 1.00 1.00 1.00 99.81 1.04 1.00 1.00 99.8 1.00 1.00 1.00
rawdaudio 0.07 1.00 1.00 1.00 0.12 1.00 1.00 1.00 99.84 1.11 1.11 1.11 99.71 1.11 1.00 1.00
unepic 45.45 1.01 1.00 1.00 54.28 1.00 1.00 1.00 6.47 1.20 1.20 1.20 5.23 1.00 1.00 1.00
ghostscript 67.89 1.13 1.05 1.01 73.05 1.04 1.00 1.00 14.73 1.32 1.31 1.28 9.94 1.15 1.15 1.15
average 28.57 1.07 1.03 1.01 32.76 1.01 1.00 1.00 40.32 1.18 1.16 1.18 36.24 1.08 1.08 1.07

Table 3: Speedup breakdown

of the baseline acyclic schedule. Columns 3-5 show the critical path
length for cmpp latencies 1, 2 and 3, respectively. Column 6 and
7 show the resource-constrained schedule length for baseline pro-
cessor, and the predicate-aware processor, respectively. Since the
resource-constrained schedule ignores all data dependencies, cmpp
latency has no effect here. Columns 8-13 show similar data for
the cyclic regions; resource-constrained schedule length is defined
by ResMII, and latency-constrained schedule length is defined by
RecMII for cyclic regions. Relative to the pa-read acyclic region
schedule length on the baseline 4(6)-wide machine (with a cmpp
latency of 1 cycle), we see from Table 2 that on average the critical
path length for cmpp latencies of 1, 2 and 3 cycles respectively is
24%(10.1%), 13.6% (-2.6%) and 2.3% (-15.6%) shorter. Thus, as
the latency of the cmpp operation increases, the latency-constrained
lower bound approaches closely and eventually exceeds the length
of the baseline schedule. Therefore, cmpps are often on the critical
path of the acyclic region leaving little headroom for PALS. On the
other hand, cmpp latency is not limiting in cyclic regions as seen
by the fact that ®X!��CY�¯:¯ ¨ ¦ is much larger than RecMII1, RecMII2,
and RecMII3.

Table 3 (columns 2-9) shows the individual speedups achieved
by predicate-aware scheduling on acyclic regions for each proces-
sor model. Column 1 lists all the benchmarks. Column 2 shows the
percent of execution time on a 4-wide baseline that the application
spends in pa-ready acyclic regions. Columns 3-5 show the speedup
achieved by each predicate-aware 4-wide machine over the 4-wide
baseline machine for all pa-ready acyclic regions. Columns 6-9
show similar data for the 6-wide machines. Columns 10-17 show
the corresponding data for the cyclic regions. The last row shows
the arithmetic mean over all benchmarks.

As stated earlier, the schedule length of acyclic regions is con-
strained by the latencies of the operations, with the cmpp operation
generally being on the critical path. Therefore, the performance
of PALS decreases with increased cmpp latency for both processor

models, resulting in very small speedup (3% and 1%) for cmpp
latency of 2 and 3 cycles for 4-wide machines and no speedup
for 6-wide machines with the same latencies. Notice that speedup
never falls below 1. This is due to the fact that the predicate-aware
scheduling is only applied to regions that can benefit from this tech-
nique; otherwise, the baseline schedule is used for these regions.

On the other hand, as we go to a wider machine, while keep-
ing the latency of the predicate-aware machine fixed, the latency-
constrained lower bound remains the same. However, the length of
the baseline schedule (and the resource-constrained upper bound)
decreases, approaching (and even finally falling below the latency-
constrained lower bound, as resources (¢¡ and/or other resources)
are added. This also reduces the headroom for the predicate-aware
scheduler. This explains the degradation in PALS speedup as we go
from a 4-wide to a 6-wide baseline machine for fixed cmpp latency.

In the case of cyclic regions, the PAMS lower-bound is deter-
mined by the resource-constrained schedule length of the predicate-
aware processor (®�!*�CY�¯:¯N¨ ¦ , see Table 2). Latency-constrained
schedule length (®X!OAOY�¯:¯) is not a limiting factor for either 4-wide
or 6-wide machine models. As Table 2 shows, ®X!OAOY�¯:¯ for, even
for a cmpp latency of 3, is much smaller than ®X!��CY>¯:¯N¨ ¦ . There-
fore, as columns 10-17 of Table 3 show, PAMS achieves substantial
speedups for all cmpp latencies (18%, 16%, 18%). Note that PAMS
performance in cyclic regions is not very sensitive to cmpp latency.

We notice that in some cases, the speedup for higher cmpp la-
tency is greater than the speedup for smaller cmpp latency. For
example, for g721encode, PAMS achieves the speedup of 1.16 on
a 4-wide predicate-aware processor with a cmpp latency of 2 and
a speedup of 1.25 on the processor with a cmpp latency of 3 cy-
cles. This happens due to the fact that the performance of a modulo
scheduled loop is also limited by the loop trip count and the size
of the epilogue. As cmpp latency increases, PAMS fails to find a
schedule with the same II (due to a register limitations). It then
schedules the loop with a higher ¯:¯ , but generally, with a shorter

1.39 / 1.37 / 1.35

0.96

1

1.04

1.08

1.12

1.16

1.2

1.24

cjp
eg
djp

eg
epic

g721encode

g721decode

gsm
decode

gsm
encode

m
esam

ip
m

ap

m
peg2dec

m
peg2enc

pegwitd
ec

pegwite
nc

ra
sta

ra
wcaudio

ra
wdaudio

unepic

ghosts
crip

t

avera
ge

S
p

ee
d

u
p

cmpplat1
cmpplat2
cmpplat3

(a) Speedup of �©¨ ¦ ��T�JO=C�9R*�*ª9
 over �x¥.¦_��T:

0.96

1

1.04

1.08

1.12

1.16

1.2

cjp
eg
djp

eg
ep

ic

g72
1e

nco
de

g72
1d

ec
ode

gsm
dec

ode

gsm
en

co
de

m
es

am
ip

m
ap

m
peg

2d
ec

m
peg

2e
nc

peg
witd

ec

peg
wite

nc
ra

st
a

ra
wca

udio

ra
wdau

dio

unep
ic

ghost
sc

rip
t

av
er

ag
e

S
p

ee
d

u
p

cmpplat1
cmpplat2
cmpplat3

(b) Speedup of �©¨ ¦ �.§�J�=O�9R9��ª"
 over �x¥.¦_�.§9

Figure 12: Overall Speedup

epilogue, so that the overall performance of this loop with a small
trip count can be better than with a smaller cmpp latency, resulting
in higher speedup over the baseline processor.

Figure 12 shows the overall speedup due to predicate-aware
scheduling. Figure 12(a) shows the speedup of each of the three
predicate-aware processors �©¨ ¦ ��T3JO=O
 , �©¨ ¦ ��T3JKR9
 , �©¨ ¦ ��T�JKª"
 over
the corresponding baseline processor ��¥	¦3��T:
 for each application.
Figure 12(b) shows similar data for the baseline processor ��¥.¦_�.§9
 .
The average speedups achieved over all applications is 9%, 6% and
7% for 4-wide machine and 4%, 3% and 2% for 6-wide machine
with cmpp latencies of one, two and three cycles, respectively. For
cmpp latencies of 2 and 3, most of the performance improvement
comes from PAMS. The speedup achieved on the entire application
is smaller than the speedup achieved on pa-ready cyclic regions
alone, since as Table 2 shows, these regions constitute on average
only 36% of the total application baseline execution time.

5. RELATED WORK
Predication is a widely used technique. A number of existing

VLIW machines, both embedded and general-purpose, have hard-
ware support for predication. They do vary as to what stage in the
pipeline predicates are read and when operations are nullified. Re-
gardless of these differences, no architecture that we are aware of
allows disjoint operations to reserve the same resource in the same
clock cycle, as in our predicate-aware technique. However, these
architectures can be extended to support predicate-aware schedules.

Texas Instrument’s TMS320C6000 [6] accesses its predicate reg-
ister file (PRF) early in the execution stage before accessing the
register file. Ideally, this could provide an opportunity to select
among several disjoint operations, and only let those operations
guarded under a True predicate proceed with execution. Neverthe-
less, this is not done. A predicate-aware TI ‘C6x would require
disjoint operations to be scheduled at least two cycles later than its
corresponding cmpp operation (vs. three, as assumed in our pro-
cessor model, see Section 4.1). This is possible since the TI ‘C6x
combines register read and execute in the same pipeline stage.

Intel’s Itanium [7] [16] processor accesses its PRF in the exe-
cution stage of the pipeline. Itanium also accesses the PRF in the
register read pipeline stage in parallel with general registers. This
is done in order to nullify an operation waiting on the result from

a long latency operation which is currently being executed: if the
read predicate is False, the consuming operation is squashed and
execution can continue if there are no other hazards. However, the
impact of this optimization on overall performance is small. Since
the PRF is accessed in parallel with the general registers in the reg-
ister read stage, distinct register ports must be reserved by all si-
multaneously scheduled disjoint operations.

On the compiler side, a number of techniques were proposed
in the past to improve modulo schedules of loops with internal
control flow. Hierarchical reduction [10] collapses all conditional
constructs into a single operation, modulo schedules the resulting
straight-line code, and then regenerates all conditional constructs.
All Path Pipelining [18] pipelines each path separately using a soft-
ware pipelining technique for straight-line loops and then merges
the pipeline kernels of the paths. Modulo Scheduling with Multiple
Initiation Intervals [22] schedules if-converted code so that con-
trol paths with higher execution frequencies have shorter IIs than
paths with lower frequencies. Predicated operations are used to
execute the correct operations and loop-back branch based upon
which path is actually executed dynamically. The advantage of
these techniques is that they do not assume any special hardware
support in the form of predication, but as a result they suffer from
significant code growth in the loop kernel.

Warter’s Enhanced Modulo Scheduling [21] initially modulo
schedules predicated code in which disjoint operations are allowed
to share resources. This is similar to our technique as well as to hi-
erarchical reduction in that its sharing enables the resource require-
ments of operations from disjoint paths to be the union rather than
the sum of the requirements of each individual operation. How-
ever, this scheme assumes no hardware support for predication.
Therefore, in the next step the control flow is regenerated from the
intermediate schedule to obtain the final pipelined schedule. The
intermediate schedule is then discarded; the idea of executing the
shared-resource schedule with predicate-aware hardware is not ex-
plored in their work.

6. CONCLUSIONS
We have proposed and evaluated a new predicate-aware schedul-

ing technique which can achieve better schedules on both acyclic
and cyclic predicated code regions by reducing wasted resources

in VLIW processors with predicated execution. This technique en-
ables the compiler to schedule operations on the same processor
resource in the same cycle as long as two conditions hold: (i) the
compiler can prove that the operations are guarded by disjoint pred-
icates, and (ii) the processor has nullified all operations guarded
under False before using the may-use resource.

The predicate aware modulo and scalar schedulers have been
implemented and evaluated on the suite of Mediabench applica-
tions. The overall results show an average performance gain of
7% and 2% for 4-issue and 6-issue VLIW processors, respectively.
These gains are primarily due to loops where resources, and not
dependences, often limit performance. For loops, predicate-aware
scheduling achieves an average gain of 18% and 7% for the same
processors.

7. ACKNOWLEDGMENTS
We thank Michael Chu, Joel Emer, Trygve Fossum, and the anony-

mous referees for their advice and helpful comments. This re-
search was supported in part by the DARPA/MARCO C2S2 Re-
search Center. Mikhail Smelyanskiy was supported in part by an
Intel Fellowship.

8. REFERENCES
[1] T. Adam, K. Chandy, and J. Dickson. A comparison of list

schedules for parallel processing systems. Communications
of the ACMr, 17(12):685–690, Dec. 1974.

[2] J. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence. In
Proceedings of Tenth Annual ACM Symposium on Principles
of Programming Languages, pages 143–180, Jan. 1983.

[3] E. Davidson, L. Shar, A. Thomas, and J. Patel. Effective
control for pipelined computers. In Proceedings of
COMPCON, pages 181–184, Feb. 1975.

[4] A. E. Eichenberger and E. S. Davidson. Register allocation
for predicated code. In Proceedings of the 28th International
Symposium on Microarchitecture, pages 180–191, November
1995.

[5] D. M. Gillies, R. D. Ju, R. C. Johnson, and M. S. Schlansker.
Global predicate analysis and its application to register
allocation. In Proceedings of the 29th International
Symposium on Microarchitecture, pages 114–125, December
1996.

[6] T. Instruments. TMS320C62x/67x CPU and Instruction Set
Reference Guide.
http://www-s.ti.com/sc/psheets/spru189f/spru189f.pdf, 1998.

[7] Intel. Itanium Processor Microarchitecture Reference for
Software Optimization.
ftp://download.intel.com/design/Itanium/Downloads/, Nov.
2001.

[8] R. Johnson and M. Schlansker. Analysis techniques for
predicated code. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, Dec. 1996.

[9] V. Kathail, M. Schlansker, and B. R. Rau. HPL PlayDoh
Architecture Specifications: Version 1.0. HP Laboratories
Technical Report HPL-93-80, 1994.

[10] M. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 318–327, 1988.

[11] C. Lee, M. Potkonjak, and W. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. In Proceedings of
the 30th Annual International Symposium on
Microarchitecture, Dec. 1997.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. In Proceedings of the 25th
International Symposium on Microarchitecture, pages
45–54, December 1992.

[13] J. Park and M. Schlansker. On predicated execution. HP
Laboratories Technical Report HPL-91-58, 1991.

[14] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages
63–74, Nov. 1994.

[15] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code
Generation Schema for Modulo Scheduled Loops. In
Proceedings of the 25th Annual International Symposium on
Michorarchitecture, December 1992.

[16] H. Sharangpani and K. Arora. Itanium Processor
Microarchitecure. IEEE Micro, Vol. 20, No. 5:24–43,
September/October 2000.

[17] J. W. Sias, D. I. August, and W. W. Hwu. Accurate and
efficient predicate analysis with binary decision diagrams. In
Proceedings of the 33rd International Symposium on
Microarchitecture, pages 112–123, December 2000.

[18] M. Stoodley and C.G.Lee. Software pipelining loops with
conditional branches. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages
262–273, Dec. 1996.

[19] The Trimaran System. www.trimaran.org, 1999.
[20] R. Towle. Control and Data Dependence for Program

Transformations. PhD Dissertation, The University of
Illinois, 1976.

[21] N. Warter, G. Haab, K. Subramanian, and J. Bockhaus.
Enhanced modulo scheduling for loops with conditional
branches. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 170–179, 1992.

[22] N. Warter and N. Partamian. Modulo scheduling with
multiple initiation intervals. In Proceedings of the 28th
Annual International Symposium on Microarchitecture,
pages 111–118, 1995.

