
Construction and Performance Characterization of
Parallel Interior Point Solver on

4-way Intel ltanium 2 Multiprocessor System

P. Koka st T. Suhst M. Smelyanskiyf R. Grzeszczuk5 c. DulongS

+Department of ECE $Department of ECE §Architecture Research Lab

University of Wisconsin Madison Georgia Institute of Technology Intel Corporation

ABSTRACT
In recent years the interior point method (IPM) has be-
came a dominant choice for solving large convex optimiza-
tion problems for many scientific, engineering and commer-
cial applications. Two reasons for the success of the IPM are
its good scalability on existing multiprocessor systems with
a small number of processors and its potential to deliver
a scalable performance on systems with a large number of
processors. The scalability of a parallel IPM is determined
by several key issues such a s exploiting parallelism due to
sparsity of the probIem, reducing communication overhead
and proper load balancing.

In this paper we present an iiriplementation of a parallel
linear prograniniing IPM workload and characterize its scal-
ability 011 a &way Itaniuma 2 system. We show a speedup
of up to 3-times for some of the datasets. W e also present a.
detailed nricro-archifectural analysis of the workload using
VTuiie”” performance analyzer. Our results suggest that
a good 1Ph.l implemeritatioa is latency-bound. Based on
these findiiigs, we make suggestions on how to improve the
perforniarice of the IPM workload in the future.

1. INTRODUCTION
Dramatic progress tnade i n recent years in speed and robust-
ness of convex optimization algorithm can be attributed to
a combination of hardware and software improvements. T*
day, optimization problems involving millions of variables
and constraints are solved routinely on a reasonably priced
desktop workstation. This made optimization software an
iridisperisable tool in numerous application domains, such
as VLSI design, manufacturing, telecommunications, travel,
etc.

I n the past decade, the interior poitit method has b e
come a method of choice for solving large convex optimiza-
tion problems. As parallel processing hardware continues to
make tts way into the mainstream computing, it becomes
important to investigate whether parallel computation can
iinprove the perforirrauce of this cotnmercially vital applica-
tion.

I n this work, we describe a shared-memory formulation of
a scalable parallel linear programming IPM, which we call
Interior Point Solver, or IPS. IPS combines a robust, pub-
lidy available interior-point predictor-corrector linear prw
grainming package, called PCx (4, 181, with a highly opti-

mized arallel routines from Intel@ Math Kernel Library
(I n t e d M K L) 191 and our own parallel implementation of
several sparse-matrix routines.

We perform a scalability analysis of IPS on a 4way
ItaniumB 2 shared-memory multiprocessor system. To es-
tablish the baseline, we compare the runtime of IPS against
the industrial-strength solver called CPLEX@ IS] . We show
that for a number of challenging linear programs, our im-
plementation runs at about half the speed of CPLEX. We
then continue to present a detailed scalability analysis of the
entire workload and of each parallel region.

We also perform a detailed micro-architectural character-
ization of IPS. We break down the CPU-time into inde-
pendent components such as processor idle time, pipeline
flushes and cache misses. We also analyze the bus t,ransr
action events and the bus bandwidth. We find that IPS
is memory latency-bound rather than bandwidth-limited,
which suggests that future performance improvements are
likely to come from larger caches and hardware/software la-
tency hiding techniques such as prefetching, multi-threading
and code scheduling optimizations.

The remainder of the paper is organized as follows. Sec-
tion 2 describes previous work on parallelization and perfor-
mance analysis of interior point methods. Section 3 presents
a high level overview of the application, while Section 4 gives
details on the construction and implementation of IPS. Sec-
tion 5 describes our experimental methodology and presents
performance analysis of IPS on a 4-way Itanium 2 system.
The final section presents the conclusions.

2. RELATEDWORK
In this paper we focus on using the interior point method [24]
to solve linear programming problems. The same framework
can be used to solve other classes of convex optimization
problems, with important practical applications, such as
quadratic programming and second order cone programming
[3J. Our implementation of the IPM is based on a primal-
dual predictor-corrector algorithm introduced by Mehrotra

Recent advances in building parallel solvers for symmet-
ric and unsymmetric sparse linear systems of equations are
central to this work. A new parallel distributed-memory
multi-frontal approach, called MUMPS [l], uses a fully asyn-
chronous approach with dynamic scheduling of the compu-

1171.

0-7803-8S28-3/04/$20~00 8 2004 IEEE 73

tational tasks. Asynchronous communication was chosen to
enable overlapping between communication and computa-
tion and ensures good scalability of the algorithm on systems
with large number of processors.

PARDKSO [22] is a parallel direct solver for sparse sym-
metric and structurally symmetric systems of equations de-
signed for shared-memory multiprocessing systems. The
algorithm uses a dynamic two-level scheduling scheme to
significantly reduce synchronization events. I t tries to re-
duce cache conflicts and interprocessor communication while
maintaining good processor load balance and Level 3 BLAS
performance. We describe the algorithm in more detail in
Section 4.3. PARDISO now ships with Intel MKL. We
choose it as the factorization engine for our interior point
solver.

Lustig and R.otbberg present results of parallelization of
the CPLEX interior point solver on a shared-memory system
in [7], Rothberg et al. 1191 use a detailed cache simulation to
analyze and characterize the cache performance of different
implementations of Cholesky factorization. To the best of
our knowledge, no other prior work has been reported on a
detailed micro-architectural study of the IPM on a commer-
cial multiprocessor system.

The impact of fill-reducing ordering on large-scale linear
pragrainming problems is analyzed in [ZO],

3. lNTERXOR POINT METHOD
The primal-dual predictor-corrector algorithm for linear pro-
gramming simultaneously solves a primal and a dual linear
problem. The primal linear problem is

minimize cTx subject to Ax = b, x 2 0, (1)

where c E R" and b E R" are given and A is a matrix
describing m constraints in TI variables. The corresponding
dual problem is

maximize bTy subject to A'y + z = c , z 2 0, (2)
where y E R" is B vector of dual variables and a E R". See
(4, 241 for details.

Figure 1 outlines the kth iteration of the main optimiza-
tion loop of interior point solver following 171. The iteration
starts with the primal and dual variables (x k , y k , zk) from
Eqttations (1) and (2). The algorithm proceeds to compute
a new search direction d, = (d,9,, ds8, dsG) (Step 81, and
the new interior point (xI;+I, yh+l, zk+l) is obtained in Step
10. The algoritliiri terminates when the optimal solution
(x, y, z) is foniici. Note that, niatrices X and Z are diag-
onal matrices fortried by putting vectors XI; and zb on the
diagonal. Similarly, matrices Dlrr and D,, are diagonak ma-
trices fornied by putting vectors d,, and d,, on the diagonal
(Steps 8.1 and 8.2).

Computationally intensive steps of the IPM iteration are
1. Matrix-matrix multiplication M = AQAT (Step 3)
2. Cholesky factorization M = LDLT (Step 4)
3. Solviug for dliy and d,, (Steps 5.1 and 8.1)
4. Matrix-vector products AV (Steps 1, 5.1, 8.1) and

Depending on the problem structure, either the Cholesky
factorization or the matrix-matrix multiply are the most

ATv (Steps I, 5.2, 8.1) for different vectors v.

1
2
3
4
5

Coinpule rp = b - Axl and r,, = f - z - ATyk
Check for convergence. using the no17115 of rp and rJ
Form M = AQAT, where Q = X Z ' i s a diagonal matrix
Coinpnte Cholesky factor M = l,DL7, where Lis lower triangular
Compute the predictor directions, d, = (d,,, d,,j., d,)
5.1 d , , . = M ' [r , + A Q (r ~ - ~ ~) 1
5.2 d, = Q [A' dpi + X Z c - rd]
5.3 d,>: = -Ze - Q.'f&
Do a ratio test to compute a,, and a(,, by computing
6.1 a,=min{-*;.iD,~,:D,,<Oand / = I . . n)
6.2 a,, = min(-q i D,: D, < 0 and .I = I .. n)
Compute the harrier"parameter" I I based an (.n.y*, rh), a,, and a,(
Compute the search direction d, = (dL,, d,,. d,J
8.1 d*v = ML'[r,# + AQ (r,) -+ ue- XZe - D,,,D,,,e)]
8.2 d, = Q [A'd, - uc + XZc + D,,,n,c - r,,]
8.3 d,,= u X " c - % e - Q ' D,D,e-Q"d,,
Do a ratio test to compute 8,' and at,
4.1 o,=piiiin(-x,~'~>.~,: U,-< Oand j= l . .n ; . wherey=0.99995
9.2 oJ=pini1i{-qiD,: U,<Oandj=l..n),wherey=0.99995

6

7
8

9

10 Update the iterate as

iO,Zyt.$ = y' t add,,
I O . I X ~ + I ~ X ~ + L I ~ , ~ , ~ ~

10.34-1 = XI; + a,, d,:

Figure 1: One i t e ra t ion of primal-dual IPM

time-consuming portions of the IPM iteration. For prob-
lems with many mare columns than rows, the computation
of AQAT is dominant, but for dense problems, or problems
with a large number of rows, the factorization time is dom-
inant. However, in many instances, each of the other two
routines listed above consumes a significant fraction of the
execution time. I t is therefore important to have an effi-
cient parallel implementation for each of these routines BS

we discuss next.

4. WORKLOAD CONSTRUCTION
This section outlines the implementation details of our par-
allel shared-memory interior point solver. Section 4.1 starts
by describing the software environment that we used to con-
struct our workload. Section 4.2 discusses the preprocessing
step which must be performed before the main optimization
Loop. Sections 4.34.6 present a parallel shared-memory im-
plementation of the four main IPS routines.

4.1 SofCware Environment
IPS is based on PCx-an interior-point predictor-corrector
linear programming pachge developed at Argonne National
Laboratory in collaboration with Northwestern University
(4, 181. Our implementation of the Cholesky factorization
and the solver routines uses a parallel sparse direct solver
package, called PARDISO, developed at University of Basel
1231, which is now included as part of Intel's Math Kernel
Library. In addition, we implemented the routines for paral-
lel sparse matrix-vector multiplication (MVM) and matrix-
matrix multiplication (MMM).

To avoid the overhead of copying data between PCx and
PARDISO, we replaced PCx's internal data structures for
sparse matrices A and M with PARDISO's compressed row
storage (CRS) format. This format is also used for the MVM
and MMM routines.

74

Problem
dfl001
fomel3
qismondi

Ipds-20 I 338741

Rows Columns] Nonzeros in A 56 nonzeros
6071 122301 35632 0.0480

48568 978401 285058 0.0060
16262 232111 136324 0.0322

Table 1: T h e s ta t is t ics of the problems used in our
exper iments . The last column shows the percentage
of nonzero ent r ies in matrix A.

Table 2: The run- t ime comparison of IPS and the
CPLEX barrier LP solver.

Table 1 summarizes the statistics for the datasets used
in our experiments. They mostly come from the standard
NETLIB [5] test set and represent realistic linear models
from several application domains. The problems are fairly
large and difficult arid some of them are very sparse.

Table 2 reports the total number of iterations to converge
to the optimal solution and the total run-time of IPS and
CPLEX 011 our test datasets. The run-times were measured
using the system described in Table 3. As can be seen from
the table, our implementation compares quite favorabIy with
a highly optimized, industrial strength solver. IPS is on av-
erage only two times slower than CPLEX. This makes us
confident that our application will not diverge significantly
from what we would expect from a highly optimized soft-
ware.

The last cotunin reports a number of floating point oper-
ations required to factor matrix M. It shows a correlation
between the amount of work required to factor the constraint
matrix anti the time to solve the corresponding LP.

.

4.2 Preprocessing
Proper initialization is crucial for ensuring a good perfor-

-malice of the IPM. The goal of this step is to read the linear
model, convert it into a sparse matrix representation A, an-
alyze the sparsity structure of M and L, and determine a
reasonable way to partition independent tasks across proces-
sors in the system. The initialization involves several steps,
which we outline subsequently.

Preso lver
The presoloer enhances efficiency and robustness of the lin-
ear programming algorithm by eliminating empty and du-
plicate rows and columns. The algorithm performs multiple
passes through the da ta until no further improvements are
found. The computational cost of the presolver is negligible
compared to the cost of one iteration of IPM. Our workload
uses the presolver provided by PCx.

Matrix Ordering
A typical constraint matrix A is very large and sparse. See
Table 1 for sample statistics. Applying Cholesky factoriza-
tion directly to the matrix M can significantly increase the
number of non-zero entries in the factor matrix L. In case
of very sparse problems, this has highly adverse effects on
computation and memory requirements for the factorization.
Through an ordering of row and columns of matrix M, it is
possible to reduce the amount of fill-in. While the problem
of finding an optimal matrix ordering is NP-complete, many
ordering techniques exist that perform well in practice.

Beside minimizing fill-ins, a good matrix ordering can also
increase the amount of parallelism of a given factorization
problem, since it determines the load balancing and the task
scheduling during parallel factorization. In our implementa-
tion, fitbin reducing permutation matrix P is computed us-
ing the nested dissection algorithm [14]. The other popular
choice for fill-reducing ordering is the minimum degree alge
rithm [15]. These ordering algorithms are included as part
of MKL implementation of Cholesky factorization. While
the time to compute an ordering can be significant, this
operation needs to be done only once before the main o p
timization loop. Therefore, its cost is amortized over the
course of running the interior point solver. Although there
exists parallel implementations of the ordering algorithms
[13], they are currently not included into MKL.

Eiimination Tree
For a given ordering of matrix M, there exists an elimination
tree-a directed acyclic graph with nodes corresponding to
the columns of the matrix and the edges marking the depen-
dence relations among columns during the factorization 1161.
Column j of M can be processed only after the columns that
are descendants of j in the elimination tree have been pi-*
cessed. However, columns in different subtrees correspond
to the independent tasks tha t can be executed in parallel.
Thus, in parallel implementation of Cholesky factorization,
the elimination tree helps determine which columns can be
factorized independently.

Note that different matrix orderings result in different
elimination trees and therefore different amount of paral-
lelism. See [12] for an analysis of the impact of the matrix
ordering on load balancing and fill-in and [6] for an analysis
of its impact on memory usage.

Symbol ic Fac tor iza t ion
The symbolic factorization precomputes locations of non-
zeros in the factor matrix M. Since the non-zero structure
of M remains fixed for every iterations of IPM, we can al-
Locate all required storage for M prior to the main opti-
mization loop. This procedure afso identifies the supemodes
in factorization, which constitute groups of columns with
identical nonzero structure. Grouping of columns into su-
pernodes is an important source of instruction and task-level
parallelism. Each supernode can be represented and stored
as a dense matrix and take advantage of Level 3 BLAS o p
erations [19]. To take better advantage of the parallelism,
the code performs so called node amalgamation [Z], which
introduces extra fill-ins in the matrix (by treating some zero
elements as non-zeros) in order to increase the width of the
supernodes.

75

4.3 Parallel Cholesky Factorization
As mentioned earlier, we have chosen PARDISO as the fa-
torization engine for our interior point solver. PARDISO is
designed to exploit different sources of parallelism existing
in direct methods of solving sparse systems of equations 1221.
Elimination tree parallelism is reldcively easy to achieve but,
in practice, it often accounts for a relatively small improve-
ment in concurrent performance, since much of the factor-
ization cost is located in the large nodes near the root of the
tree.

To explore more parallelism and reduce load imbalance,
PARDISO implements a two-phase parallel scheduling algc-
rithni. In the first parallel phase of scheduling, PARDISO
statically maps independent subtrees of the elimination tree
to different processors. Since the subtrees are independent,
each processor interrialIy factorizes the nodes in its own sub-
tree in parallel with other processors, hence there is no inter-
processor communication. When each processor is finished
with its own subtree, it waits on a barrier for other proces
sors to finish. As soon as all processors reach the barrier,
the second parallel phase hegins. In this phase, each pro-
cessor that has completed (factorized) a number of supern-
odes stores theni iiito the dynamic queue. Each processor
monitors tlie queue, picks up a new factorized supernode
as so011 as it becomes available, and performs an external
update to its ancestor supernodes. Note that the ancestor
may reside on a different processor. Therefore, in contrast
to the first phase, this ph,ase may incur inter-processor com-
munication. The processor that performs the last update to
the supernode puts the completed supernode into the work
queue. Since the queue is shared among the processors, it is
guarded by R mutcz so that only one processor can access
it a t a time. The inutex may result in additional waiting
time for processors that are trying to access the queue at
the same time.

4.4 Parallel Forward and Backward Solve
Sparse triangular solver uses Cholesky factorization LLT
to the sgsteiii of equations LLTy = x. The forward and
backward substitution performed' by tlie solver is difficult
to parallelize. These t a s b have a low computation-tc-
communication ratio with inherent recursion. Still, some
paralleliaation is possible. PARDISO provides a parallel tri-
angular solver which works together with its Cholesky fac-
torization. The solver uses the same supernode partitioning
and the same etiniination tree to order the computation as
the factorization [21].

4.5 Parallel Matrix-Matrix Multiply
~~

Our software foriris the symmetric niatrix M = AQAT one
elenient at a time. The element m i 3 of M is computed as

T I L i j = Ai Q AT = ClSk q k k Ujk,
bE1

where Ai arid A, are the rows i and j of matrix A, respec-
tively; a,] is tlie element of A ill i th row and j t h column,
and q t k is the kth diagonal element of Q.

Siuce each element of niatrix A is computed indepen-
dently, this routine is highly parallel. The load balaiicing
during tlie parallel romputation is achieved by evenly dis-

Table 3: Summary of the base system configuration.

tributing the rows of matrix M among the processors based
on the computation required to evaluate all non-zero ele-
ments mi, in row i . This load assignment is performed stat-
ically before the first iteration of the IPM. Since the non-zero
structure of matrix M remains fixed at every iteration, the
assignment does not have to be recomputed,

The MMM routine maintains one work vector w of length
m per processor. The elements of AiQ are scattered into w.
The indices of non-zero entries of A, are used to determine
the appropriate locations in w. The indices of non-zero en-
tries of A, are then used to compute the dot-product wA,
to obtain mi,.

4.6 Parallel Matrix-Vector Multiply
At each iteration of the interior point solver; matrix-vector
multiplications A x and ATx are computed for three differ-
ent values of x. This computation can be expensive for large
problems with many non-zeros.

When computing Ax, we partition the rows of matrix
A into submatrices Si in such a way as to maximize the
load balance. Each product Six can be computed entirely
independently. When computing ATx, we again distribute
the rows of A among the processors. In this case, however,
each processor computes STxi, where vector xi corresponds
to the row partition of submatrix Si. When all processors
are finished, the local work vectors are added into the main
result vector in parallel.

5. WORKLOAD CHARACTERIZATION

5.1 Experimental Methodology
This section presents several characteristics of IPS workload
obtained using hardware performance counters on a 4-way
Itanium 2 Dell 7250 server with Intel E8870 chip-set. The
Itanium 2 processor, which is an implementation of the IPF
architecture, is an in-order machine. I t can issue up to 6 in-
structions including 4 memory and 2 floating point instruc-
tions in a single cycle from its 11-issue ports. The Itanium
2 has a low-latency, high bandwidth memory system com-
prising three Levels of cache hierarchy. The L1D cache is a
write-through, no-write allocate cache with one-cycle load
latency. The L l D cache serves only integer loads. Ail float-
ing point load instructions receive da ta directly from the
unified L2 cache. The L2 cache is arranged in an array of
16 banks with a latency of 5,7 or 9 cycles. Both L2 and L3
use MESl protocol to enforce cache coherency. The main
system parameters are summarized in Table 3.

The Itanium 2 system has a rich set of performance events,
with Four performance counters measuring over 200 unique
events. The counters can be selected by setting the appto-

76

Figure 2: Scalability of a single i t e ra t ion of the IPS
for 1, 2, 3, and 4 processors.

priate control registers. The performance monitoring sys-
tem on Itanium 2 is non-invasive and does not affect the
execution of the workload. We use the Vtune performance
analyzer to setup and configure the performance counters.
The Vtune analyzer is a system wide measurement tool that
can gather performance data at thread granularity.

We use Intel C and Fortran compilers version 8.0 to com-
pile our workloads. For all experiments, we run IPS for
two iterations prior to taking measurements. This warm
up period allows the workload to warm-up the data caches
and enter into steady-state triode. All datasets were run for
ten iterations during the measurement phase. The results
were averaged and reported for a single iteration of IPS. We
instrumented IPS with the Vtune API t o characterize all
parallel regions in our workload.

5.2 Scalability of Parallel Regions
Figure 2 reports the speedup of IPS for the test datasets
on 2, 3, and 4 processors. The scalability appears to be
correlated with the amount of work required to factor the
constraint matrix M (see the discussion for Table 2 in Sec-
tion 4.1). This is encouraging ay it seems to suggest. that
parallel computation improves the performance on harder
problems.

Figure 3 shows the breakdown of total execution time into
the four parallel regions discussed earlier and the remaining
serial code. For each dataset, we show four bars correspond-
ing to 1, 2, 3, and 4 procesors, respectively. Each bar is
broken into five parts, one for each execution region.

The factorization routine achieves a good scalability on
many datasets, which correlates well with the scalability
results of PARDISO reported in [21]. Unfortunately, the
solver scales poorly compared to the factorization and it
emerges as the main obstacle in scalability of IPS on a large
number of processors. We plan to address the performance
of the solver in the near future.

Contrary to the expectations, MVM takes more time than
MMM in aImost all cases. We conjecture that the thread
creation/termination and the synchronization overhead are
the culprit. After the solver, the MVM routine is the next
candidate for performance improvement.

5.3 CPU Cycle and Instruction Breakdown
CPU Cycle Breakdown
This section focuses on analyzing the micro-architectural be-
havior of our workload. We begin by decomposing the avail-

Table 4: CPU cycle component definitions.

able CPU cycles into two primary contributing components,
the idle time and the runtime. We define and measure the
idle time as the difference between the total execution time
and the CPU time. A processor is idle when a thread is
blocked on synchronization or a barrier. Itanium 2 perfor-
mance counters can accurately decompose the runtime stalls
into five categories, Flush, RSE, LID, F E , and EArE. The
time spent retiring instructions is categorized as Work. Ta-
ble 4 defines the components. A mote detailed description
can be found in [Ill.

Figure 4 shows the CPU cycle time breakdown. For e&h
dataset, three stacked bars are shown corresponding to I, 2
and 4 processors. Each bar segment shows the contribution
of that component toward the total CPU time. We see that
on average 50% of the cycle time is Work, i.e., at least one
instruction is retired during that cycle. Of all the stall events
the EXE stalls, which occur primarily due to L3 misses,
account €or more than 50% of all staIl cycles on average.

For most datasets, the EXE stalls decrease as we go from
2 to 4 processors despite an increased ratio of coherence
misses. We speculate that this is because for 4 processors
the reduction in capacity misses overcomes the increase in
coherence misses. In the future, we plan to do additional
analysis to verify this claim.

Unfortunately, we were not able to separate 'busy wait-
ing' from Work using VTune analizer because a substantial
part of IPS is implemented using OpenMP directives. How-
ever, we found that looking at the increase in the number
of executed instructions when the number of processors is
increased, as reported a t the top of Figure 5, gives a good
estimate of the amount of busy waiting.

We also see that the pipeline Rush stalls due to branches
increase with the number of processors far all datasets. Far
example, for pds-10 this number doubles when we go from
2 to 4 processors. This behavior could be attributed to
the dynamic load balancing in the factorization routine. As
mentioned in Section 4.3 and Section 4.4, toad balancing is
implemented using a centralized queue that supplies dynam-
ically created tasks to each processor. This dynamic change
in the computation on each iteration must be adversely af-
fecting the training of the branch predictor.

As the number of processors increases, the idle time in-
creases. For example, for osa-60 the idle time constitutes al-
most 20% of the total execution time on 4 processors. Since
in this case the MVM routine dominates the execution time,
we conclude that the idle time is due to the thread cre-
ation/termination and the synchronization overhead, as ex-
plained in Section 5.2. (There is almost no idle time in the
factorization and the solver: each thread performs a large

77

1 2 3 4 $ 2 3 4 1 2 3 1 9 2 3 4 j 2 3 4 1 2 3 4 1 2 3 4

dfllOl lam13 gsmXxt1 bn-16 0.6180 pds-iD Fds-22

-_I_____ _I___f.

Figure 3: Execution time breakdown into individual parallel regions.

~t TZ ~4 TI R r4 ~t n ~4 T I ~2 r4 TI R r4 T T ~2 ~4 TI ~2 ~4

O$a-60 df 1001 fowl3 ken-18 pds-$0 pds-20 gismndi

RSE i; 0 Ffush

El Jdle

I
Figure 4: Breakdown of CPU cycles.

amount of computation and all synchronization in these two
routines is performed using busy-waiting.)

Instruction Breakdown
Figure 5 shows instruction breakdown for each dataset. We
split the instructions into integers, loads, stores, Boating-
points and branches. For each dataset we show three bars
corresponding to 1, 2, and 4 processors. Above each bar we
report the total executed instructions (in billions).

Using the existing Itanium 2 performance counters, we
cannot separate FP and integer loads. However, given that
our application is FP intensive and assuming that each FP
operation requires 2 FP loads for its two source operands,
the percentage of FP loads can be approximated from the
number of FP operations.

We see that the number of instructioris increases with the
number of processors. For example, in the case of pds-IO,
the total iiiimber of instructions more than doubles when
we move from 1 to 4 processors. This increase is largely due
to busy-waiting i11 the two time-dominating routines-the
factorizcr and the solver.

5.4 Memory System Characterization
Cache Misses Behavior
Figure 6 shows the da ta miss rates per memory reference for
the 3 levels of caches on ltanium 2: LlD, L2 and L3. For

all the datasets, the L2 miss rate is higher than the L1 miss
rate because the floating point loads on Itanium 2 system
bypass the L1 cache and get data directly from L2. The L2
miss rate is the highest for gismondz because, as is shown in
Figure 5, this dataset has the largest number of loads.

Although the L3 miss rate is small in absolute t e r m , it
has the highest impact an the overaH performance of our
application, since an average L3 miss costs 210 cycles [IO].'

Also, the ratio of L3 misses to L2 misses seems quite
h i g h - o n average, the L3 cache is catching only about 25%
of the L2 misses. In the future, we plan to coilact the L3-
cache-miss statistics per routine to get a better idea how
these are distributed in the application and if there is a way
of reducing them through prefetching.

Coherence Traffic
Figure 7 shows the breakdown of L3 cache misses based on
where the miss was serviced according to MESI cache cc-
herence protocol. Each bar represents the breakdown of L3
misses into five distinct categories. R-MEM represents the
L3 read misses serviced from memory. R-S/E represents the
read misses serviced from a remote cache with the block in

'Take for example ken-18 running on two processors. A
simple calculation reveals t ha t an L3 miss Occurs every 500
instructions. The impact js even higher if we consider that
Itanium 2 can issue up to 6 instructions in parallel.

I DO%
90%
80%

70%
60%
50%
do%
30%
20%
10%

0%

I
W Integer
0 Branches

Stores

i
!

I TI T2 T4 TI TZ T4 T1 T2 T4 T1 T2 T4 T1 T2 T4 T I 52 T4 TI T2 T4

osa-60 dfDOl form13 ken-18 pdS- fO pds-20 glsrmndi

Figure 5: Instruction Breakdown. Above each bar i s the total number of executed instructions (in billions).

100%

80%
la

2 60%
E
2 40%

.-

20%

0%

0 W-MOE

U R-MOD

R-SE

I3 R-MEM

Tf R T4 T I I2 T4 Ti T2 T4 T1 T2 T4 T1 T2 Til TI T2 TA T1 T2 T4

ma-60 &MO1 form 13 ken-f8 pds-10 pds-20 gismndi

Figure 7: Breakdown of L3 cache misses based on the source servicing the miss.

Figure 6: L1, L2 and L3 data miss rates.

either shared or exclusive state. R-MOD represents the read
misses from a remote cache with the block in the modified
state, W-MOD represents the L3 write misses serviced from
a remote cache with the block in a modified state. W-MSE
represents the L3 write misses serviced either from memory
or a remote cache with the block in either exclusive or shared
state. Currently, we cannot separate these latter misses into
more distinct categories.

Figure 7 indicates that memory traffic decreases (R-
MEM) and coherence traffic increases (sum of R/SE, R-

1---- i .,
1.0

I
I

1 2

: 7

O B

0 6

0 4

0 2

Figure 8: Sustained Memory Bandwidth

MOD, W-MOD, and part of W-MSE) with the'number of
processors. However, for most datasets, this change is less
dramatic when we go from 2 to 4 processors, indicating that
2 processors have enough aggregate L3 cache capacity to fit
most of their working set.

Note that memory traffic does not decrease for gismondz.
Most likely, the working set .for its supernodes is too big to
fit into the L3 cache, hence it is evicted from the L3 cache
after each iteration, increasing memory, but not coherence
traffic.

79

Memory Bandwidth
Figure 8 shows the memory bandwidth usage of IPS €or each
dataset on I , 2 and 4 processors. As expected, the band-
width increases with the number of processors. However, the
bus remains under-utilized: even on four processors only less
than 25% of the maximum available bandwidth (6.4 GB/s)
is used.

This observation combined with cachsmiss data (Fig-
ure ti) might suggest that IPS is latency-bound, rather than
bandwidth-limited. However, in the future we would like to
compute the bandwidth usage over time, since we suspect
that some parallel regions might be using much higher band-
width than others. Only then will we be able to definitively
establish the impact of bandwidth on performance.

6. CONCLUSIONS
In this work we have described our implementation of a scal-
able parallel interior point method and studied its perfor-
mance on a $-way Intel ltanium 2 shared-memory system.

We performed a detailed scalability study of the appli-
cation ancl shown that , for certain datasets, t h e application
achieves up to 3X speedup on 4 processors. Scalability seems
t o correlate well with problem sizes-the harder problem
scale better.

Additionally, we performed a detailed micro-architectural
analysis of the application. Our results indicate that a good
iinplementation of interior-point method is Iatency-bound
rather than bandwidth-limited. This suggests that the
future performance improvements to interior-point meth-
ods are likely to come frotn larger caches and hard-
ware/software latency liitlirig techniques, such as: prefetch-
ing, multi- threading arid code scheduling optimizations.

7. ACKNOWLEDGMENTS
We would like to thank our colleagues: Skip Macy for help
studying scalability of CPLEX, and Stephen Skedzielewski
for editing the paper. We also thank Murali Annavaram,
Richard Hankiris from Intel Research and Richard Greco
from Enterprise Product Group for their help with VTune
performance analysis. We are greatly indebted t o Edward
Rothberg from ILOG, Inc. for his help and guidance through-
out this work. Finally, we thank the reviewers, and other
members of the Architecture Research Lab for their useful
insights and suggestions.

8. REFERENCES
(11 P. R. Amestoy, I . S. Duff, J.-Y. L’Excellent, and J. Koster.

A Fully Asynchronous hlultifrontal Solver Using Distributed
Dynamic Scheduling. SIAM J O U ~ Q ~ on Matviz Analysis and

121 C. Ashcraft and R.. Grimes. The Influence of Relaxed Su-
pernode Partitions on the Multifrontal Method. ACM Trans.
OQ Math. S~Ittu~am, 15:291-309, 1989.

[3] S. Boyd and L. Vandenberglie. Conues Optinbization. Cam-
bridge University Press, 2003.

141 .I. Cryzyk, S. Mehrotra, and S. J . Wright. PCx User
Guide. Technical Report OTC 96/01, Optimization Tech-
nology Center at Argonne National Lab and Northwestern
University, May 19’36.

Apptication.~, 23(1):15-41, 2001.

151 D.M. Gay. Electronic Mail Distribution of L h e a r Pmgmm-
ming Test Problems. Mathematical Programming Society
COAL Newsletters, 1988.

[6] A. Guermouche, J.-Y. L’Excellent, and G. Utdrd. Impact of
Reordering on the Memory of a Multifrontal Solver. Parallel

[7] I.J. I. J. Lustig and E. Rothberg. Gigaflops in Linear P r e
gramming. Operations Research Letters, 18(4):157-165, May
1996.

C~mput . , 29(9):1191-1218, 2003.

[SI ILOG CPLEX. http://w. ilog.com/products/cplex.
191 Intel Corporation. Math Kernel Library version 7.0.

http:/ /uvv. intel .com/softuare/products/~~/ ind%x.htm.

[lo] Intel Corporation. Intmductzon to Macrourchitcctvml Opti-
mization for Itanizbm 2 Processors Reference Manunl. Intel
Reference Manual, Document Number 251464001, 2002.

[11] S. Jarp. A Methodology for using the Intel Itanium 2 per-
fomance counters for bottleneck analysis. HP Laboratories
Technical Report, August 2002.

j12] 6. Karypis, A. Gupta, and V. Kumar. A Parallel Formu-
lation of Interior Point Algorithms. In Proceedings Super-
computrng ’9.4 (Washsngtoa, D.C. , USA, November lS941,
pages 204-213. IEEE Computer Society, New York, NY,
USA, 1994.

(131 G. Karypis and V. Kumar. A ParalleI Algorithm for Mul-
tiIevel Graph Partitioning and Sparse Matrix Ordering. J .
P a d l d Distrib. Comput., 48(1):71-95, 1998.

[I41 G. Karypis and V. Kumar. Multilevel k-way Partitioning
Scheme for Irregular Graphs. J . Parallel Distrib. Comput.,

[I51 J. W. H. Liu. Modification of the Minimum-Degree Alge
rithm by Multiple Elimination. AGM Trans. Math. Softw.,

[16] d . W. H. Liu. The Role of Elimination Tree in Sparse Factor-
kation. SIAM Journal o n Matrir Analysts and Applrcations,

On The Implementation OF a Primal-DuaI
Interior Point Method. S I A M Journal o n Optimrzation,
2(4):575401, November 1992.

[le] Optimization Technology Center, Arganne National L a b
oratory and Northwestern University. PCx LP Solver.
h t t p : //vvw-fp . ~ c s . a111 .gov/otc/Tools/PCx.

[19] E. Rothberg and A. Gupta. Techneques for Improving the
P e t f o n a n c e of Sparse Matrix Factorization on Multippmces-
SOT Workstations. Department of Computer Science Techni-
cal Report STAN-CS-YO- 1318, Stanford University Stanford,
California 94305, June 1990.

[ZO] E. Rothberg and B. Hendrickson. Sparse Matrix Ordering
Methods for Interior Point Linear Programming. INFORMS

1211 0. Schenk. Scalable Parallel Sparse LU Factorization Meth-
ods on Shared memory Multiprocessors. Ph.D. Dissertation,
Swiss Federal Institute of Technology, Zurich, Switzerland,

[22] 0. Schenk and K. Gartner. Two-Level Dynamic Scheduling
in Pardiso: Improved Scalability on Shard Memory Mul-
tiprocessing Systems. Parallel Computing, 28(2):187-197,
2002.

1231 University of Basel. PARDISO Direct Sparse Solver.
http://urv.computational,unibas.ch/cs/scicomp.

1241 S. J . Wright. Primal-Oud Interior-Point Methods. SIAM,
1997.

48(1):96-129, 1998.

1 l (2): 141-153, 1965.

11: 134-1 72, 1990.

[17] S. Mehrotra.

J. on Computing, 10(1):107-113, 1998.

2000.

80

http://w
http://urv.computational,unibas.ch/cs/scicomp

