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ABSTRACT 
In recent years the interior point method (IPM) has be- 
came a dominant choice for solving large convex optimiza- 
tion problems for many scientific, engineering and commer- 
cial applications. Two reasons for the success of the IPM are 
its good scalability on existing multiprocessor systems with 
a small number of processors and its potential to deliver 
a scalable performance on systems with a large number of 
processors. The scalability of a parallel IPM is determined 
by several key issues such a s  exploiting parallelism due to 
sparsity of the probIem, reducing communication overhead 
and proper load balancing. 

In this paper we present an iiriplementation of a parallel 
linear prograniniing IPM workload and characterize its scal- 
ability 011 a &way Itaniuma 2 system. We show a speedup 
of up to 3-times for some of the datasets. W e  also present a. 
detailed nricro-archifectural analysis of the workload using 
VTuiie”” performance analyzer. Our results suggest that  
a good 1Ph.l implemeritatioa is latency-bound. Based on 
these findiiigs, we make suggestions on how to improve the 
perforniarice of the IPM workload in the future. 

1. INTRODUCTION 
Dramatic progress tnade i n  recent years in speed and robust- 
ness of convex optimization algorithm can be attributed to 
a combination of hardware and software improvements. T* 
day, optimization problems involving millions of variables 
and constraints are solved routinely on a reasonably priced 
desktop workstation. This made optimization software an 
iridisperisable tool in numerous application domains, such 
as VLSI design, manufacturing, telecommunications, travel, 
etc. 

I n  the past decade, the interior poitit method has b e  
come a method of choice for solving large convex optimiza- 
tion problems. As parallel processing hardware continues to  
make tts way into the mainstream computing, it becomes 
important to investigate whether parallel computation can 
iinprove the perforirrauce of this cotnmercially vital applica- 
tion. 

I n  this work, we describe a shared-memory formulation of 
a scalable parallel linear programming IPM, which we call 
Interior Point Solver, or IPS. IPS combines a robust, pub- 
lidy available interior-point predictor-corrector linear prw 
grainming package, called PCx (4, 181, with a highly opti- 

mized arallel routines from Intel@ Math Kernel Library 
( I n t e d M K L )  191 and our own parallel implementation of 
several sparse-matrix routines. 

We perform a scalability analysis of IPS on a 4way 
ItaniumB 2 shared-memory multiprocessor system. To es- 
tablish the baseline, we compare the runtime of IPS against 
the industrial-strength solver called CPLEX@ IS] .  We show 
that for a number of challenging linear programs, our im- 
plementation runs at about half the speed of CPLEX. We 
then continue to  present a detailed scalability analysis of the 
entire workload and of each parallel region. 

We also perform a detailed micro-architectural character- 
ization of IPS. We break down the CPU-time into inde- 
pendent components such as processor idle time, pipeline 
flushes and cache misses. We also analyze the bus t,ransr 
action events and the bus bandwidth. We find that IPS 
is memory latency-bound rather than bandwidth-limited, 
which suggests that  future performance improvements are 
likely to come from larger caches and hardware/software la- 
tency hiding techniques such as prefetching, multi-threading 
and code scheduling optimizations. 

The remainder of the paper is organized as follows. Sec- 
tion 2 describes previous work on parallelization and perfor- 
mance analysis of interior point methods. Section 3 presents 
a high level overview of the application, while Section 4 gives 
details on the construction and implementation of IPS. Sec- 
tion 5 describes our experimental methodology and presents 
performance analysis of IPS on a 4-way Itanium 2 system. 
The final section presents the conclusions. 

2. RELATEDWORK 
In this paper we focus on using the interior point method [24] 
to solve linear programming problems. The same framework 
can be used to  solve other classes of convex optimization 
problems, with important practical applications, such as 
quadratic programming and second order cone programming 
[3J. Our implementation of the IPM is based on a primal- 
dual predictor-corrector algorithm introduced by Mehrotra 

Recent advances in building parallel solvers for symmet- 
ric and unsymmetric sparse linear systems of equations are 
central to  this work. A new parallel distributed-memory 
multi-frontal approach, called MUMPS [l], uses a fully asyn- 
chronous approach with dynamic scheduling of the compu- 
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tational tasks. Asynchronous communication was chosen to 
enable overlapping between communication and computa- 
tion and ensures good scalability of the algorithm on systems 
with large number of processors. 

PARDKSO [22] is a parallel direct solver for sparse sym- 
metric and structurally symmetric systems of equations de- 
signed for shared-memory multiprocessing systems. The 
algorithm uses a dynamic two-level scheduling scheme to 
significantly reduce synchronization events. I t  tries to re- 
duce cache conflicts and interprocessor communication while 
maintaining good processor load balance and Level 3 BLAS 
performance. We describe the algorithm in more detail in 
Section 4.3. PARDISO now ships with Intel MKL. We 
choose it as the factorization engine for our interior point 
solver. 

Lustig and R.otbberg present results of parallelization of 
the CPLEX interior point solver on a shared-memory system 
in [7], Rothberg et al. 1191 use a detailed cache simulation to 
analyze and characterize the cache performance of different 
implementations of Cholesky factorization. To the best of 
our knowledge, no other prior work has been reported on a 
detailed micro-architectural study of the IPM on a commer- 
cial multiprocessor system. 

The impact of fill-reducing ordering on large-scale linear 
pragrainming problems is analyzed in [ZO], 

3. lNTERXOR POINT METHOD 
The primal-dual predictor-corrector algorithm for linear pro- 
gramming simultaneously solves a primal and a dual linear 
problem. The primal linear problem is 

minimize cTx subject to Ax = b, x 2 0, (1) 

where c E R" and b E R" are given and A is a matrix 
describing m constraints in TI variables. The corresponding 
dual problem is 

maximize bTy subject to A'y + z = c ,  z 2 0, (2) 
where y E R" is B vector of dual variables and a E R". See 
(4, 241 for details. 

Figure 1 outlines the kth iteration of the main optimiza- 
tion loop of interior point solver following 171. The iteration 
starts with the primal and dual variables ( x k , y k ,  zk) from 
Eqttations (1) and (2). The algorithm proceeds to compute 
a new search direction d, = (d,9,, ds8, dsG) (Step 81, and 
the new interior point (xI;+I, yh+l, zk+l) is obtained in Step 
10. The algoritliiri terminates when the optimal solution 
(x, y, z) is foniici. Note that, niatrices X and Z are diag- 
onal matrices fortried by putting vectors XI; and zb on the 
diagonal. Similarly, matrices Dlrr and D,, are diagonak ma- 
trices fornied by putting vectors d,, and d,, on the diagonal 
(Steps 8.1 and 8.2). 

Computationally intensive steps of the IPM iteration are 
1. Matrix-matrix multiplication M = AQAT (Step 3) 
2.  Cholesky factorization M = LDLT (Step 4) 
3. Solviug for dliy and d,, (Steps 5.1 and 8.1) 
4. Matrix-vector products AV (Steps 1, 5.1, 8.1) and 

Depending on the problem structure, either the Cholesky 
factorization or the matrix-matrix multiply are the most 

ATv (Steps I, 5.2, 8.1) for different vectors v. 

1 
2 
3 
4 
5 

Coinpule rp = b - Axl and r,, = f - z - ATyk 
Check for convergence. using the no17115 of rp and rJ 
Form M = AQAT, where Q = X Z '  i s  a diagonal matrix 
Coinpnte Cholesky factor M = l,DL7, where Lis  lower triangular 
Compute the predictor directions, d, = (d,,, d,,j., d,) 
5.1 d , , . = M ' [ r , + A Q ( r ~ - ~ ~ ) 1  
5.2 d, = Q [A' dpi + X Z c  - rd] 
5.3 d,>: = -Ze - Q.'f& 
Do a ratio test to compute a,, and a(,, by computing 
6.1 a,=min{-*;.iD,~,:D,,<Oand / = I  . . n )  
6.2 a,, = min(-q i D,: D, < 0 and .I = I .. n )  
Compute the harrier"parameter" I I  based an (.n.y*, rh), a,, and a,( 
Compute the search direction d, = (dL,, d,,. d,J 
8.1 d*v = ML'[r,# + AQ (r,) -+ ue- XZe - D,,,D,,,e)] 
8.2 d, = Q [A'd, - uc + XZc + D,,,n,c - r,,] 
8.3 d,,= u X " c - % e - Q '  D,D,e-Q"d,, 
Do a ratio test to compute 8,' and at, 
4.1 o,=piiiin(-x,~'~>.~,: U,-< Oand j= l . .n ; .  wherey=0.99995 
9.2 oJ=pini1i{-qiD,: U,<Oandj=l..n),wherey=0.99995 

6 

7 
8 

9 

10 Update the iterate as 

iO,Zyt.$ = y' t add,, 
I O . I X ~ + I ~ X ~ +  L I ~ , ~ , ~ ~  

10.34-1 = XI;  + a,, d,: 

Figure 1: One i t e ra t ion  of primal-dual IPM 

time-consuming portions of the IPM iteration. For prob- 
lems with many mare columns than rows, the computation 
of AQAT is dominant, but for dense problems, or problems 
with a large number of rows, the factorization time is dom- 
inant. However, in many instances, each of the other two 
routines listed above consumes a significant fraction of the 
execution time. I t  is therefore important to  have an effi- 
cient parallel implementation for each of these routines BS 

we discuss next. 

4. WORKLOAD CONSTRUCTION 
This section outlines the implementation details of our par- 
allel shared-memory interior point solver. Section 4.1 starts 
by describing the software environment that  we used to  con- 
struct our workload. Section 4.2 discusses the preprocessing 
step which must be performed before the main optimization 
Loop. Sections 4.34.6 present a parallel shared-memory im- 
plementation of the four main IPS routines. 

4.1 SofCware Environment 
IPS is based on PCx-an interior-point predictor-corrector 
linear programming pachge developed at Argonne National 
Laboratory in collaboration with Northwestern University 
(4, 181. Our implementation of the Cholesky factorization 
and the solver routines uses a parallel sparse direct solver 
package, called PARDISO, developed at University of Basel 
1231, which is now included as part of Intel's Math Kernel 
Library. In addition, we implemented the routines for paral- 
lel sparse matrix-vector multiplication (MVM) and matrix- 
matrix multiplication (MMM). 

To avoid the overhead of copying data between PCx and 
PARDISO, we replaced PCx's internal data structures for 
sparse matrices A and M with PARDISO's compressed row 
storage (CRS) format. This format is also used for the MVM 
and MMM routines. 
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Problem 
dfl001 
fomel3 
qismondi 

Ipds-20 I 338741 

Rows Columns] Nonzeros in A 56 nonzeros 
6071 122301 35632 0.0480 

48568 978401 285058 0.0060 
16262 232111 136324 0.0322 

Table 1: T h e  s ta t is t ics  of the problems used in our 
exper iments .  The last column shows the percentage 
of nonzero ent r ies  in matrix A. 

Table 2: The run- t ime comparison of IPS and the 
CPLEX barrier LP solver. 

Table 1 summarizes the statistics for the datasets used 
in our experiments. They mostly come from the standard 
NETLIB [5] test set and represent realistic linear models 
from several application domains. The problems are fairly 
large and difficult arid some of them are very sparse. 

Table 2 reports the total number of iterations to converge 
to the optimal solution and the total run-time of IPS and 
CPLEX 011 our test datasets. The run-times were measured 
using the system described in Table 3. As can be seen from 
the table, our implementation compares quite favorabIy with 
a highly optimized, industrial strength solver. IPS is on av- 
erage only two times slower than CPLEX. This makes us 
confident that our application will not diverge significantly 
from what we would expect from a highly optimized soft- 
ware. 

The last cotunin reports a number of floating point oper- 
ations required to  factor matrix M. It shows a correlation 
between the amount of work required to factor the constraint 
matrix anti the time to solve the corresponding LP. 

. 

4.2 Preprocessing 
Proper initialization is crucial for ensuring a good perfor- 

-malice of the IPM. The goal of this step is to read the linear 
model, convert it into a sparse matrix representation A, an- 
alyze the sparsity structure of M and L, and determine a 
reasonable way to partition independent tasks across proces- 
sors in the system. The initialization involves several steps, 
which we outline subsequently. 

Preso lver  
The presoloer enhances efficiency and robustness of the lin- 
ear programming algorithm by eliminating empty and du- 
plicate rows and columns. The algorithm performs multiple 
passes through the da ta  until no further improvements are 
found. The computational cost of the presolver is negligible 
compared to the cost of one iteration of IPM. Our workload 
uses the presolver provided by PCx. 

Matrix Ordering 
A typical constraint matrix A is very large and sparse. See 
Table 1 for sample statistics. Applying Cholesky factoriza- 
tion directly to the matrix M can significantly increase the 
number of non-zero entries in the factor matrix L. In case 
of very sparse problems, this has highly adverse effects on 
computation and memory requirements for the factorization. 
Through an ordering of row and columns of matrix M, it is 
possible to  reduce the amount of fill-in. While the problem 
of finding an optimal matrix ordering is NP-complete, many 
ordering techniques exist that  perform well in practice. 

Beside minimizing fill-ins, a good matrix ordering can also 
increase the amount of parallelism of a given factorization 
problem, since it determines the load balancing and the task 
scheduling during parallel factorization. In our implementa- 
tion, fitbin reducing permutation matrix P is computed us- 
ing the nested dissection algorithm [14]. The other popular 
choice for fill-reducing ordering is the minimum degree alge 
rithm [15]. These ordering algorithms are included as part 
of MKL implementation of Cholesky factorization. While 
the time to  compute an  ordering can be significant, this 
operation needs to be done only once before the main o p  
timization loop. Therefore, its cost is amortized over the 
course of running the interior point solver. Although there 
exists parallel implementations of the ordering algorithms 
[13], they are currently not included into MKL. 

Eiimination Tree 
For a given ordering of matrix M, there exists an  elimination 
tree-a directed acyclic graph with nodes corresponding to  
the columns of the matrix and the edges marking the depen- 
dence relations among columns during the factorization 1161. 
Column j of M can be processed only after the columns that 
are descendants of j in the elimination tree have been pi-* 
cessed. However, columns in different subtrees correspond 
to the independent tasks tha t  can be executed in parallel. 
Thus, in parallel implementation of Cholesky factorization, 
the elimination tree helps determine which columns can be 
factorized independently. 

Note that different matrix orderings result in different 
elimination trees and therefore different amount of paral- 
lelism. See [12] for an  analysis of the impact of the matrix 
ordering on load balancing and fill-in and [6] for an analysis 
of its impact on memory usage. 

Symbol ic  Fac tor iza t ion  
The symbolic factorization precomputes locations of non- 
zeros in the factor matrix M. Since the  non-zero structure 
of M remains fixed for every iterations of IPM, we can al- 
Locate all required storage for M prior to  the main opti- 
mization loop. This procedure afso identifies the supemodes 
in factorization, which constitute groups of columns with 
identical nonzero structure. Grouping of columns into su- 
pernodes is an important source of instruction and task-level 
parallelism. Each supernode can be represented and stored 
as a dense matrix and take advantage of Level 3 BLAS o p  
erations [19]. To take better advantage of the parallelism, 
the code performs so called node amalgamation [Z], which 
introduces extra fill-ins in the  matrix (by treating some zero 
elements as non-zeros) in order to  increase the width of the 
supernodes. 
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4.3 Parallel Cholesky Factorization 
As mentioned earlier, we have chosen PARDISO as the fa- 
torization engine for our interior point solver. PARDISO is 
designed to  exploit different sources of parallelism existing 
in direct methods of solving sparse systems of equations 1221. 
Elimination tree parallelism is reldcively easy to achieve but, 
in practice, it often accounts for a relatively small improve- 
ment in concurrent performance, since much of the factor- 
ization cost is located in the large nodes near the root of the 
tree. 

To explore more parallelism and reduce load imbalance, 
PARDISO implements a two-phase parallel scheduling algc- 
rithni. In the first parallel phase of scheduling, PARDISO 
statically maps independent subtrees of the elimination tree 
to different processors. Since the  subtrees are independent, 
each processor interrialIy factorizes the nodes in its own sub- 
tree in parallel with other processors, hence there is no inter- 
processor communication. When each processor is finished 
with its own subtree, it waits on a barrier for other proces 
sors to  finish. As soon as all processors reach the barrier, 
the second parallel phase hegins. In this phase, each pro- 
cessor that  has completed (factorized) a number of supern- 
odes stores theni iiito the dynamic queue. Each processor 
monitors tlie queue, picks up a new factorized supernode 
as so011 as it becomes available, and performs an external 
update to its ancestor supernodes. Note that the ancestor 
may reside on a different processor. Therefore, in contrast 
to the first phase, this ph,ase may incur inter-processor com- 
munication. The processor that  performs the last update to  
the supernode puts the completed supernode into the work 
queue. Since the queue is shared among the processors, it is 
guarded by R mutcz so that only one processor can access 
it a t  a time. The inutex may result in additional waiting 
time for processors that  are trying to  access the queue at 
the same time. 

4.4 Parallel Forward and Backward Solve 
Sparse triangular solver uses Cholesky factorization LLT 
to  the sgsteiii of equations LLTy = x. The forward and 
backward substitution performed' by tlie solver is difficult 
to  parallelize. These t a s b  have a low computation-tc- 
communication ratio with inherent recursion. Still, some 
paralleliaation is possible. PARDISO provides a parallel tri- 
angular solver which works together with its Cholesky fac- 
torization. The solver uses the same supernode partitioning 
and the same etiniination tree to order the computation as 
the factorization [21]. 

4.5 Parallel Matrix-Matrix Multiply 
~~ 

Our software foriris the symmetric niatrix M = AQAT one 
elenient at a time. The element m i 3  of M is computed as 

T I L i j  = Ai Q AT = ClSk q k k  Ujk, 
bE1 

where Ai arid A, are the rows i and j of matrix A,  respec- 
tively; a,] is tlie element of A ill i th row and j t h  column, 
and q t k  is the kth  diagonal element of Q. 

Siuce each element of niatrix A is computed indepen- 
dently, this routine is highly parallel. The load balaiicing 
during tlie parallel romputation is achieved by evenly dis- 

Table 3: Summary of the base system configuration. 

tributing the rows of matrix M among the processors based 
on the computation required to evaluate all non-zero ele- 
ments mi, in row i .  This load assignment is performed stat- 
ically before the first iteration of the IPM. Since the non-zero 
structure of matrix M remains fixed at every iteration, the 
assignment does not have to be recomputed, 

The MMM routine maintains one work vector w of length 
m per processor. The elements of AiQ are scattered into w. 
The indices of non-zero entries of A, are used to determine 
the appropriate locations in w. The indices of non-zero en- 
tries of A, are then used to  compute the dot-product wA, 
to obtain mi,. 

4.6 Parallel Matrix-Vector Multiply 
At each iteration of the interior point solver; matrix-vector 
multiplications A x  and ATx are computed for three differ- 
ent values of x. This computation can be expensive for large 
problems with many non-zeros. 

When computing Ax, we partition the rows of matrix 
A into submatrices Si in such a way as to  maximize the 
load balance. Each product Six can be computed entirely 
independently. When computing ATx, we again distribute 
the rows of A among the  processors. In this case, however, 
each processor computes STxi, where vector xi corresponds 
to the  row partition of submatrix Si. When all processors 
are finished, the local work vectors are added into the main 
result vector in parallel. 

5. WORKLOAD CHARACTERIZATION 

5.1 Experimental Methodology 
This section presents several characteristics of IPS workload 
obtained using hardware performance counters on a 4-way 
Itanium 2 Dell 7250 server with Intel E8870 chip-set. The 
Itanium 2 processor, which is an  implementation of the IPF 
architecture, is an  in-order machine. I t  can issue up to  6 in- 
structions including 4 memory and 2 floating point instruc- 
tions in a single cycle from its 11-issue ports. The Itanium 
2 has a low-latency, high bandwidth memory system com- 
prising three Levels of cache hierarchy. The L1D cache is a 
write-through, no-write allocate cache with one-cycle load 
latency. The L l D  cache serves only integer loads. Ail float- 
ing point load instructions receive da ta  directly from the 
unified L2 cache. The L2 cache is arranged in an array of 
16 banks with a latency of 5,7 or 9 cycles. Both L2 and L3 
use MESl protocol to enforce cache coherency. The main 
system parameters are summarized in Table 3. 

The Itanium 2 system has a rich set of performance events, 
with Four performance counters measuring over 200 unique 
events. The counters can be selected by setting the appto- 
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Figure 2: Scalability of a single i t e ra t ion  of the IPS 
for 1, 2, 3, and 4 processors. 

priate control registers. The performance monitoring sys- 
tem on Itanium 2 is non-invasive and does not affect the 
execution of the workload. We use the Vtune performance 
analyzer to  setup and configure the performance counters. 
The Vtune analyzer is a system wide measurement tool that 
can gather performance data at thread granularity. 

We use Intel C and Fortran compilers version 8.0 to com- 
pile our workloads. For all experiments, we run IPS for 
two iterations prior to taking measurements. This warm 
up period allows the workload to warm-up the data caches 
and enter into steady-state triode. All datasets were run for 
ten iterations during the measurement phase. The results 
were averaged and reported for a single iteration of IPS. We 
instrumented IPS with the Vtune API t o  characterize all 
parallel regions in our workload. 

5.2 Scalability of Parallel Regions 
Figure 2 reports the speedup of IPS for the test datasets 
on 2, 3, and 4 processors. The scalability appears to be 
correlated with the amount of work required to factor the 
constraint matrix M (see the discussion for Table 2 in Sec- 
tion 4.1).  This is encouraging ay it seems to  suggest. that 
parallel computation improves the performance on harder 
problems. 

Figure 3 shows the breakdown of total execution time into 
the four parallel regions discussed earlier and the remaining 
serial code. For each dataset, we show four bars correspond- 
ing to 1, 2, 3, and 4 procesors, respectively. Each bar is 
broken into five parts, one for each execution region. 

The factorization routine achieves a good scalability on 
many datasets, which correlates well with the scalability 
results of PARDISO reported in [21]. Unfortunately, the 
solver scales poorly compared to  the factorization and it 
emerges as the main obstacle in scalability of IPS on a large 
number of processors. We plan to address the performance 
of the solver in the near future. 

Contrary to the expectations, MVM takes more time than 
MMM in aImost all cases. We conjecture that the thread 
creation/termination and the synchronization overhead are 
the culprit. After the solver, the MVM routine is the next 
candidate for performance improvement. 

5.3 CPU Cycle and Instruction Breakdown 
CPU Cycle Breakdown 
This section focuses on analyzing the micro-architectural be- 
havior of our workload. We begin by decomposing the avail- 

Table 4: CPU cycle component definitions. 

able CPU cycles into two primary contributing components, 
the idle time and the runtime. We define and measure the 
idle time as the difference between the total execution time 
and the CPU time. A processor is idle when a thread is 
blocked on synchronization or a barrier. Itanium 2 perfor- 
mance counters can accurately decompose the runtime stalls 
into five categories, Flush, RSE, LID,  F E ,  and EArE. The 
time spent retiring instructions is categorized as Work. Ta- 
ble 4 defines the components. A mote detailed description 
can be found in [Ill. 

Figure 4 shows the CPU cycle time breakdown. For e&h 
dataset, three stacked bars are shown corresponding to  I, 2 
and 4 processors. Each bar segment shows the contribution 
of that component toward the total CPU time. We see that 
on average 50% of the cycle time is Work, i.e., at least one 
instruction is retired during that cycle. Of all the stall events 
the EXE stalls, which occur primarily due to L3 misses, 
account €or more than 50% of all staIl cycles on average. 

For most datasets, the EXE stalls decrease as we go from 
2 to 4 processors despite an increased ratio of coherence 
misses. We speculate that this is because for 4 processors 
the reduction in capacity misses overcomes the increase in 
coherence misses. In the future, we plan to do additional 
analysis to verify this claim. 

Unfortunately, we were not able to separate 'busy wait- 
ing' from Work using VTune analizer because a substantial 
part of IPS is implemented using OpenMP directives. How- 
ever, we found that looking at the increase in the number 
of executed instructions when the number of processors is 
increased, as reported a t  the top of Figure 5, gives a good 
estimate of the amount of busy waiting. 

We also see that the pipeline Rush stalls due to branches 
increase with the number of processors far all datasets. Far 
example, for pds-10 this number doubles when we go from 
2 to 4 processors. This behavior could be attributed to 
the dynamic load balancing in the factorization routine. As 
mentioned in Section 4.3 and Section 4.4, toad balancing is 
implemented using a centralized queue that supplies dynam- 
ically created tasks to  each processor. This dynamic change 
in the computation on each iteration must be adversely af- 
fecting the training of the branch predictor. 

As the number of processors increases, the idle time in- 
creases. For example, for osa-60 the idle time constitutes al- 
most 20% of the total execution time on 4 processors. Since 
in this case the MVM routine dominates the execution time, 
we conclude that the idle time is due to the thread cre- 
ation/termination and the synchronization overhead, as ex- 
plained in Section 5.2. (There is almost no idle time in the 
factorization and the solver: each thread performs a large 
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Figure 3: Execution time breakdown into individual parallel regions. 
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Figure 4: Breakdown of CPU cycles. 

amount of computation and all synchronization in these two 
routines is performed using busy-waiting.) 

Instruction Breakdown 
Figure 5 shows instruction breakdown for each dataset. We 
split the instructions into integers, loads, stores, Boating- 
points and branches. For each dataset we show three bars 
corresponding to  1, 2, and 4 processors. Above each bar we 
report the total executed instructions (in billions). 

Using the existing Itanium 2 performance counters, we 
cannot separate FP and integer loads. However, given that  
our application is FP intensive and assuming that each FP 
operation requires 2 FP loads for its two source operands, 
the percentage of FP loads can be approximated from the 
number of FP operations. 

We see that  the number of instructioris increases with the 
number of processors. For example, in the case of pds-IO, 
the total iiiimber of instructions more than doubles when 
we move from 1 to 4 processors. This increase is largely due 
to busy-waiting i11 the two time-dominating routines-the 
factorizcr and the solver. 

5.4 Memory System Characterization 
Cache Misses Behavior 
Figure 6 shows the da ta  miss rates per memory reference for 
the 3 levels of caches on ltanium 2: LlD, L2 and L3. For 

all the datasets, the L2 miss rate is higher than the L1 miss 
rate because the floating point loads on Itanium 2 system 
bypass the L1 cache and get data directly from L2. The L2 
miss rate is the highest for gismondz because, as is shown in 
Figure 5, this dataset has the largest number of loads. 

Although the L3 miss rate is small in absolute t e r m ,  it 
has the highest impact an  the  overaH performance of our 
application, since an average L3 miss costs 210 cycles [IO].' 

Also, the ratio of L3 misses to L2 misses seems quite 
h i g h - o n  average, the L3 cache is catching only about 25% 
of the L2 misses. In the future, we plan to coilact the L3- 
cache-miss statistics per routine to  get a better idea how 
these are distributed in the application and if there is a way 
of reducing them through prefetching. 

Coherence Traffic 
Figure 7 shows the breakdown of L3 cache misses based on 
where the miss was serviced according to MESI cache cc- 
herence protocol. Each bar represents the breakdown of L3 
misses into five distinct categories. R-MEM represents the 
L3 read misses serviced from memory. R-S/E represents the 
read misses serviced from a remote cache with the block in 

'Take for example ken-18 running on two processors. A 
simple calculation reveals t ha t  an  L3 miss Occurs every 500 
instructions. The impact js even higher if we consider that 
Itanium 2 can issue up to 6 instructions in parallel. 
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Figure 7: Breakdown of L3 cache misses based on the source servicing the miss. 

Figure 6: L1, L2 and L3 data miss rates. 

either shared or exclusive state. R-MOD represents the read 
misses from a remote cache with the block in the modified 
state, W-MOD represents the L3 write misses serviced from 
a remote cache with the block in a modified state. W-MSE 
represents the L3 write misses serviced either from memory 
or a remote cache with the block in either exclusive or shared 
state. Currently, we cannot separate these latter misses into 
more distinct categories. 

Figure 7 indicates that memory traffic decreases (R- 
MEM) and coherence traffic increases (sum of R/SE, R- 
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Figure 8: Sustained Memory Bandwidth 

MOD, W-MOD, and part of W-MSE) with the'number of 
processors. However, for most datasets, this change is less 
dramatic when we go from 2 to  4 processors, indicating that 
2 processors have enough aggregate L3 cache capacity to fit 
most of their working set. 

Note that memory traffic does not decrease for gismondz. 
Most likely, the working set .for its supernodes is too big to 
fit into the L3 cache, hence it is evicted from the L3 cache 
after each iteration, increasing memory, but not coherence 
traffic. 
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Memory Bandwidth 
Figure 8 shows the memory bandwidth usage of IPS €or each 
dataset on I ,  2 and 4 processors. As expected, the band- 
width increases with the number of processors. However, the 
bus remains under-utilized: even on four processors only less 
than 25% of the maximum available bandwidth (6.4 GB/s) 
is used. 

This observation combined with cachsmiss data (Fig- 
ure ti) might suggest that  IPS is latency-bound, rather than 
bandwidth-limited. However, in the future we would like to 
compute the bandwidth usage over time, since we suspect 
that some parallel regions might be using much higher band- 
width than others. Only then will we be able to definitively 
establish the impact of bandwidth on performance. 

6. CONCLUSIONS 
In this work we have described our implementation of a scal- 
able parallel interior point method and studied its perfor- 
mance on a $-way Intel ltanium 2 shared-memory system. 

We performed a detailed scalability study of the appli- 
cation ancl shown that ,  for certain datasets, t h e  application 
achieves up to 3X speedup on 4 processors. Scalability seems 
t o  correlate well with problem sizes-the harder problem 
scale better. 

Additionally, we performed a detailed micro-architectural 
analysis of the application. Our results indicate that a good 
iinplementation of interior-point method is Iatency-bound 
rather than bandwidth-limited. This suggests that the 
future performance improvements to interior-point meth- 
ods are likely to come frotn larger caches and hard- 
ware/software latency liitlirig techniques, such as: prefetch- 
ing, multi- threading arid code scheduling optimizations. 
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