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AbstractÐIn this paper, we examine the effectiveness of a new hardware mechanism, called Register Queues (RQs), which

effectively decouples the architected register space from the physical registers. Using RQs, the compiler can allocate physical

registers to store live values in the software pipelined loop while minimizing the pressure placed on architected registers. We show that

decoupling the architected register space from the physical register space can greatly increase the applicability of software pipelining,

even as memory latencies increase. RQs combine the major aspects of existing rotating register file and register connection

techniques to generate efficient software pipeline schedules. Through the use of RQs, we can minimize the register pressure and code

expansion caused by software pipelining. We demonstrate the effect of incorporating register queues and software pipelining with

983 loops taken from the Perfect Club, the SPEC suites, and the Livermore Kernels.

Index TermsÐSoftware pipelining, modulo variable expansion, rotating register file, register queues, VLIW, register connection.
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1 INTRODUCTION

MANY code transformations performed in optimizing
compilers trade off an increase in register pressure for

some desirable effect (lower instruction count, larger basic
block size, etc.). Perhaps this is most clearly shown in the
software pipelining [3], [20], [19], [4], [10], [15] of a loop
which interleaves instructions from multiple iterations of
the original loop into a restructured loop kernel. This
restructuring improves pipeline throughput by enabling
more instructions to be scheduled between a value being
defined by a high latency operation (e.g., multiplication,
memory load) and its subsequent use. Software pipelining
thus decreases the time between successive loop iterations
by spreading the def-use chains in time. This rescheduling
increases the number of simultaneously live instances of
loop variables from different iterations of the original loop
body. To accommodate these variables, each of the
simultaneously live instances needs its own register.
Furthermore, each instance must be uniquely identified to
permit matching a use of a variable to the correct definition;
there must be some mechanism to differentiate among live
instances of a variable defined in previous iterations and the
definition in the current iteration.

Two common schemes that support this form of register

naming are modulo variable expansion (MVE) [15] and the

rotating register file (RR) [21], [22]. MVE is a software-only

approach which gives each simultaneously live variable

instance its own name, unrolling the loop body as necessary

to insure that any later uses can directly specify the correct

instance (more on this later). MVE both increases the

architected register requirements and expands the loop

body to accommodate the register naming constraints of the

software pipelined loops. In contrast, RR is a hardware-
managed register renaming scheme that eliminates the code
expansion problem by dynamically renaming the register
specifier for each instance of a loop variable. This renaming
is achieved by adding an additional level of indirection to
the register specification to incorporate the loop iteration
count; this makes it possible to explicitly access a variable
instance that was defined n iterations ago. However, since
the rotating register file contains architected registers, RR
still requires a large number of architected registers to
permit generating efficient schedules.

Each of these techniques satisfy the register requirements
for a variable by assigning the instances defined in
successive loop iterations to distinct architected registers
in some round-robin fashion. The number of architected
registers required for a software pipelined (SP) loop
therefore grows linearly with increased functional unit
latencies [17], i.e., a longer latency operation within the loop
will lead to a greater number of interleaved instances of the
original loop in the SP loop kernel and, therefore, more live
instances of the loop variables. Therefore, a shortage of
architected registers either limits the number of interleaved
loop iterations or introduces spill code, each of which
degrades performance. Thus, efficient software pipeline
schedules that account for realistic memory latencies are
difficult, and often impossible, to achieve with MVE or RR
for architectures with small or moderately sized register
files. One solution is to dramatically increase the number of
architected registers available. This may be achieved when
a new instruction set architecture is proposed (e.g., the
IA-64 or EPIC instruction set [1], which supports 128 integer
and 128 floating point registers). In this paper, we propose
an alternative register addressing mechanism which can be
integrated into existing instruction set architectures with
minimal modification while alleviating the register pressure
and register naming issues that are inherent in SP.

In this work, we demonstrate that, by introducing
Register Queues (RQs) and the rq-connect instructions, the
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architected register space is no longer a limiting factor in
achieving efficient software pipelined loop schedules. The
design of these register queues is derived from the
interprocessor queues that support asynchronous commu-
nication in decoupled architectures [23], [25]. Software
pipelining using queues has also been studied in VLIW
architectures [16], [7], [8] and decoupled processors [24], but
not in general purpose superscalar designs. In particular, [8]
proposes the use of a queue register file (QRF) to support
the execution of software pipelined loops in VLIW
machines. This extends prior work on VLIW processors
[12] by making the queues architecturally visible; earlier
work scheduled values in pipeline registers, also organized
as queues, for a specific VLIW implementation. By making
the queues architecturally visible, portability between
VLIW implementations is provided. Our work proposes
the register queue mechanism for conventional superscalar
processors, as well as software/hardware techniques to
ease the integration of RQs into existing instruction set
architectures and machine implementations with out-of-
order pipelines.

In the context of this research, register queues can most
clearly be viewed as a combination of the rotating register
file ([2], [22]) and register connection [14] concepts. This
combination enables a decoupling of the total register space
for SP into a small set of architected registers and a large set
of physical registers that are organized as circular buffers
and accessed indirectly. By using register queues, the
architected register requirements of a software pipelined
loop are independent of the latencies of the scheduled
instructions. Integrating RQs into an existing architecture is
also straightforward. We will show that the inclusion of a
single new instruction, rq-connect, is all that is necessary to
add RQs to any instruction set architecture while maintain-
ing full backward compatibility. Experimental results show
that the RQ method significantly reduces both the archi-
tected register and the code size requirements of software
pipelined loops.

The remainder of this paper is organized as follows:
Section 2 provides a brief introduction to software pipelin-
ing and describes previous work in both software pipelin-
ing and register file organization. Section 3 describes the
concept of register queues and the architectural modifica-
tions required to support this approach. Section 4 presents
our experimental evidence of the performance advantage of
register queues over existing schemes. We offer conclusions
in Section 5.

2 PRIOR WORK

As a simple example of SP, consider Fig. 1, which shows the
intermediate level code of one iteration of a loop that
accumulates the elements of a floating point array into a
scalar (loop control instructions have been eliminated for
clarity). For this example, we assume a two-wide issue
machine with a latency of 3 for the load operation, 2 for
floating-point addition, and 1 for integer addition. The
scheduling process is governed by two constraints: resource
constraints, determined by the resource usage requirements
of the computation, and precedence constraints, derived
from the latency calculations around elementary circuits

when they exist in the dependence graph for the loop body
due to a loop-carried dependence. With an issue width of
two and a loop body consisting of three instructions, we do
not have the resources (issue width in this case) to start a
new loop iteration more often than once every two cycles.
The interval between starting new instances of a loop is
termed the initiation interval (or II) of the loop (in this case
we must make II � 2). This loop also contains a loop-
carried dependence between instances of the floating-point
add with a latency of 2 (again, we must make II � 2).

Fig. 1 shows a software pipelined code sequence, for
II � 2. Instructions at time steps 1-4 form the prologue of
the software pipelined loop, time steps 5-6 are the steady-
state segment (or kernel of the loop), and 7-10 form the loop
epilogue. The prologue and epilogue are executed once and
the steady-state kernel is executed repeatedly (nÿ 2 times
to execute n iterations of the original loop).

The example in Fig. 1 demonstrates a problem with
register names in software pipelined schedules. The fload
instruction from iteration i� 1 starts executing before the
fadd instruction from iteration i uses the value created by
the fload of iteration i. This creates two simultaneously live
instances of the register f2. One way to overcome the
register overwrite problem (WAR hazard) is to increase the
initiation interval to 4 to allow the fadd operation from the
ith iteration to complete before the fload of iteration i� 1 is
issued. However, this would halve the loop throughput to
one iteration every four cycles. We now describe several
alternative solutions that have been proposed to address
this register naming problem.

Modulo variable expansion (MVE) [15] is a compiler
transformation (requiring no hardware support) which
schedules a software pipelined loop. The purpose of MVE
is to manage the naming problem by making sure that
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Fig. 1. Software pipeline example. This sample program adds elements
of a floating-point array and stores the sum in a scalar. Shown are
multiple iterations of the loop with an initiation interval of two cycles
(II � 2).



instances of a variable whose lifetimes overlap are allocated
to distinct architected registers. So, if the lifetime of a value
spans three iterations of the pipelined loop and its lifetime
overlaps the instances of that variable in the next two
iterations, three registers will be allocated in the loop kernel
for that variable. In general, at least d lIIe registers are
required for each variable in the loop, where l is the
variable's lifetime in cycles. Since successive definitions of a
variable must be assigned to different registers (since they
are simultaneously live), the kernel has to be unrolled, thus
lengthening the steady state loop body. The kernel of the
loop must therefore be expanded by a factor of at least d lIIe
to account for the different register specifiers required for
successive definitions of the variable. The actual degree of
unrolling is, however, determined by the requirements for
all the variables, given the minimum number of registers
required for each variable.

When expanding the loop kernel, two techniques are
examined. One technique (which we will call MVE1)
minimizes register pressure at the expense of increasing
the degree of loop unrolling that is necessary. Each variable,
vi, is allocated its minimum number of registers, qi, and the
degree of unrolling, umve1, is given by the lowest common
multiple (lcm) of the qi. The other schedule (which we will
call MVE2) favors minimizing the number of times that the
loop is unrolled, at the expense of more register pressure.
This minimum degree of unrolling, umve2, is the max qi,
which, of course, is never more than lcm�qi� required by
MVE1. However, rather than requiring exactly qi registers
for each variable as in MVE1, MVE2 requires qi for a
variable if and only if umve2 mod qi � 0, but otherwise
requires that the number of registers allocated to store the
instances of a variable increase from qi to the smallest
divisor of umve2 that is greater than qi.

Several additional techniques have been proposed to
minimize register requirements in SP loops. In [11], Huff
proposes a heuristic based on a bidirectional slack-schedul-
ing method that schedules operations early or late,
depending on their number of stretchable input and output
flow dependences. Integer programming has been used in
[5], [9] to lower register requirements by optimizing
according to several potentially conflicting constraints and
objectives, such as resource constraints, scheduling opera-
tions along critical dependence cycles, maximizing the
throughput, and minimizing the schedule length of the
critical path. Stage scheduling [6] breaks the schedule into
two steps. In the first step, a modulo scheduler generates a
schedule with high throughput and a short schedule length.
In the second step, a stage scheduler reduces the register
requirements of a modulo schedule by reassigning some
operations to different stages. All of these schemes aim at
reducing the number of architected registers in the software
pipelined loops. The best of these schemes can reduce
register pressure by as much as 25 percent in the
configurations studied. However, since all live values must
be allocated to architected registers, they are unable to
decouple the architected register requirements from the
physical requirements. In this paper, we concentrate on
modulo scheduling, while recognizing that our results can
be applied to other scheduling algorithms as well.

Rau et al. [22] addressed the naming problem in software
pipelined loops by employing a new method of addressing
a processor register file in the Cydra-5 minisupercomputer
[2]. The Rotating Register File (RR) is a register file that
supports compiler managed hardware renaming by adding
the register address (specified in the instruction) to the
contents of an Iteration Control Pointer (ICP) (modulo the
number of registers in the RR). This register specifier is then
used to index into the architected register space. A special
loop control operation decrements the ICP each time a new
iteration starts, giving each loop iteration a distinct set of
physical registers from those used by the previous iteration
(thus, a value referenced as r5 in iteration i will be
addressed as r6 in i + 1). Since register access includes an
additional indirection (i.e., adding the ICP to the specifier),
unrolling is unnecessary and the loop kernel is not
expanded from its original form. RR can therefore eliminate
the code expansion problem from SP, but it still requires a
large number of architected registers because all of the
physically addressable registers are part of the architected
rotating register file [21].

The problem of increasing a limited architected register
space without dramatically changing an existing instruction
set has also been explored. The Register Connection (RC)
[14] method tolerates high demand for the architected
registers by adding a set of extended registers to the core
register set and incorporating a set of instructions to remap
architected register specifiers into the extended set of
physical registers. RC architectures use these instructions
to dynamically connect architected registers to extended
registers. Accesses to an architected register are automati-
cally directed to its most recently connected physical
register of the extended register file. A register mapping
table with one entry per architected register is used to map
each architected register to its own core physical register
(by default) or to any register in the extended register file
(as setup by a connect instruction). The indirection of RC is
similar to that found in register renaming tables [13] used in
many superscalar architectures, except that the mapping is
performed under compiler control, which enables more live
values to reside in the extended register file than can be
addressed at any point in time by the operand specifiers of
the current instruction. This RC work did not target
software pipelined loops; however, we show that, by
decoupling the architected register set from a much larger
physical register file, the RC method can greatly reduce the
architected register requirements of these loops. Although
using RC to perform SP in the context of modulo variable
expansion significantly reduces architected register require-
ments, RC (like MVE) still requires loop unrolling to solve
the register naming problem. Furthermore, RC adds some
connect instructions to the loop kernel, prologue, and
epilogue.

3 REGISTER QUEUES

We now propose an alternative scheme, called Register
Queues (RQs). RQs incorporate both a hardware-managed
register renaming feature similar to RR and the register
decoupling of RC to ameliorate both the code size and the
architected register problems from SP. When scheduling for
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an SP loop, variables with multiple live instances will be

placed in a queue; all other variables in the loop will be

assigned to conventional registers. The register file in an

RQ design consists of three parts, as shown in Fig. 2:

. A set of register queues: Each queue has a Qtail
pointer, analogous to the ICP in the RR, and a set of
contiguous registers which share a common name-
space with the physical register file, but are logically
(and probably physically) separate. In Fig. 2, the
registers that constitute register queue 1 are physical
registers pr0 through pr3; physical registers pr4

through pr7 make up register queue 2, etc. These
registers are analogous to the registers in the RR and
use the same modulo arithmetic to index into the
queue. They differ from RR registers in that registers
in the queue must be explicitly mapped to an
architected register before being accessed. Like the
RR registers, the registers in the queues become part
of the state of the processor and must be saved
during context switch.

. A physical register file: The physical register file
contains the remaining set of physical registers not
allocated to a register queue. This set of registers is
equivalent to the physical register file found on most
superscalar processors. In Fig. 2, the physical
register file contains registers pr4n through pr255.

. An architected register map table: This table maps
each architected register to either a physical register
(using standard register renaming logic) or a register
queue (using an rq-connect instruction). Each entry in
the map table contains a particular physical register
index (pri) and a read offset (ro). The index specifies
that either some free physical register or a particular

register queue is to be mapped to the architected
register. The read offset, used only for register queue
mappings, contains an offset into the queue specify-
ing which register in the queue is mapped to the
architected register.

A single instruction is added to the ISA to manage the

RQ: rq-connect maps, remaps, or unmaps an architected

register to one of the register queues. The semantics of the

rq-connect instructions are:

. rq-connect $rq, $ar, imm: maps an architected
register $ar to register queue $rq ($rq = 1, 2, ..., n)
by writing the queue number into the pri field of the
map table. Furthermore, the read offset (ro) in the
queue is specified by the immediate field imm.
Subsequent reads of architected register $ar will now
map to the immth entry from the Qtail of register
queue $rq. Note that the semantics for a read are
different than for real queues; instead of destruc-
tively reading from the head of the queue, an
architected register is mapped to some location in
the queue and reads occur from that location in a
nondestructive manner. This greatly increases the
flexibility of using register queues (though the term
queue is somewhat of a misnomer).

. rq-connect $0, $ar, 0: remaps architected register $ar
to a free register from the physical register file. By
numbering the register queues from 1 to n, we leave
the $rq = 0 operand in the rq-connect instruction free
to indicate that the architected register $ar should be
disconnected from its register queue.

A read access to an architected register that is mapped to

a register queue causes the following events to take place:

1. Use the register specifier in the operand field of the
machine instruction to index into the Map Table and
extract the register queue identifier (the pri field of
the register map table entry) and an offset into the
queue (the ro field).

2. Index into the queue specified by pri at the specified
read offset. To compute the offset, the Qtail is added
to ro, modulo the number of registers in the queue.
The physical register specifier is the index bits in the
pri field with the least significant 2 bits replaced by
the computed offset. Note that, in this example, the
circuit used to perform the mapping is a 2-bit
adderÐnot a 7-bit adder as used in the Cydra-5 RR.

3. Read the contents of that physical register or pass
that physical register identifier to later pipeline
stages if the results must be forwarded from an
earlier instruction that has yet to retire.

A write into the register queue involves the following

sequence of steps:

1. Use the register specifier in the operand field of the
machine instruction to index into the map table and
extract a register queue identifier (the pri field). This
selects the register queue; the read offset is not

772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 8, AUGUST 2001

Fig. 2. Microarchitectural extensions to support RQs for a machine with

32 architected registers, n queues of length 4, and 256 physical

registers.



needed since a write value is always appended to
the tail of the queue.

2. Decrement the Qtail pointer for the queue. This is
analogous to decrementing the ICP in the RR. Note
that, in RQs, the update of Qtail automatically occurs
on each write to the queue, whereas, in the RR, the
ICP is updated using a special branch instruction.
Both solutions effectively manage the register nam-
ing problem.

3. Pass the physical register identifier of this new Qtail
position in the queue (along with the instruction) to
the appropriate reservation station. Note that, at this
point, all register identifiers found in the reservation
station are standard physical register specifiers,
leaving the reservation station and operand for-
warding logic unchanged.

It should now be apparent that the offset (ro) field of the
map table entry is used only for reads from queues; it
should be 0 to reference the most recently defined variable
instance, 1 to reference the previous instance, etc. Further-
more, since there is only one ro field for each architected
register, it is not possible to read two different queue offsets
using a single architected register except by using an
intervening connect instruction and at most one connect
instruction can be issued in one cycle for the same
architected register. Finally, if a read and a write are issued
in the same cycle to the same architected register which is
mapped to a queue, which physical register is accessed by
that read is unaffected by that write. Furthermore, if the
read and the write are to the same physical register, the
value in that register prior to that write will be read.

3.1 SP Scheduling Using Register Queues

Managing the dynamic mapping of variable instances as a
queue enables implementing efficient software pipeline
schedules with little change in code size or architected
register requirements. Each register queue, like a rotating
register in RR, provides a set of registers to contain
instances of a variable for several successive iterations. RR
uses a contiguous set of RR architected registers to enable
unconstrained access to any physical register. By contrast,
RQ assigns each variable that is read one or more
iterations after its definition in a software pipelined loop
to a distinct register queue that holds all live instances of
that variable. Architected registers with unique operand
specifiers are then connected to particular locations in the
queue which contain live instances that are read. If a
value is read three iterations after its definition, i.e., after
two other intervening writes to the same variable, its
architected register is mapped to the third most recent
definition by using an rq-connect instruction to set the
offset, ro, for that register to 2. In general, for a particular
use of a variable, ro is set to the number of intervening
writes that occur to that variable (or register queue)
between the definition of interest and the use.

The two more recent definitions are (at the time of this
read) associated with positions of that queue that now have
offsets of 0 and 1; no architected registers need ever be
mapped to these queue locations if they will not be
referenced until a later iteration. This mapping mechanism

eliminates the need for unrolling the software pipelined
loop kernel since architected registers are only mapped to
offset positions in the queue that are actually read; writes to
variables assigned to queues are always to the decremented
Qtail. This reduces the pressure on the register operand bits
of the instruction set architecture since the architected
registers that must have unique operand bit patterns is
determined by the number of registers that are actually
connected to queues at various read offsets. Since at most
one register is needed for each read offset, the total register
requirements are much less than the total of all simulta-
neously live instances.

The functionality of RQs can be demonstrated by
reexamining the loop fragment from Fig. 1. Fig. 3a shows
the code fragment after SP is appliedÐincluding the
prologue, kernel, and epilogue of the loop. The prologue
code includes instructions 1 through 5. Instruction 1 creates
a mapping between architected register f2 and register
queue q1 at read position 1. Writes to f2 will now decrement
q1's Qtail and overwrite the register pointed to by the new
value of Qtail. Once the read offset is set to 1, subsequent
reads of f2 will retrieve the contents of q1 register (Qtail + 1)
mod queue size. The remaining instructions in the prologue
load the first two memory values and increment the pointer
(r1) twice.

Instructions 6-8 in Fig. 3a represent the loop kernel. The
read from register f2 in instruction 6 returns the second
most recent write to q1 (i.e., (Qtail + 1) mod queue size). The
variable in f6 has only one live instance at any time and
does not require a queue. Instruction 7 increments the
pointer (r1). Instruction 8 writes the next load value into
register f2, decrements Qtail for register queue q1, and puts
the loaded value into the register pointed to by the new
Qtail. This loop kernel iterates until the last load operation
is performed, leaving uses of the final two memory data for
the epilogue.

Instructions 9-12 form the epilogue of the SP loop
schedule. Instruction 9 uses the second to last memory
value in the same manner as the loop kernel access.
However, the last value loaded will remain in the tail of
the queue since no further writes to the queue are
performed. To use this value, we need to remap f2 to
reference the offset 0 position in q1. This is performed with
another rq-connect instruction (instruction 10). Instruction 11
can then read from f2 and access the final load value from
the Qtail position. Finally, architected register f2 is
remapped to a free register in the physical register file,
completing the SP schedule.

Fig. 3b shows how the SP schedule interleaves instruc-
tions from different loop iterations. The prologue instruc-
tions are issued on cycles (time) 1-5; these instructions
include the rq-connect and iadds and floads for the first two
iterations of the original (unscheduled) loop (we will refer
to the original loop iterations by uppercase lettersÐA and B
in this case). The kernel of the loop is shaded and, in this
example, executes three times (cycles 6-7, 8-9, 10-11); the
first iteration of the SP loop kernel executes the fadd
instruction from the original loop iteration A along with
the iadd and fload from iteration C. The second time through,
the kernel will execute instructions from original loop
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iteration B and D at cycles 8-9; the third time through, the
kernel executes instructions from iterations C and E at
cycle 10-11. Finally, the epilogue of the SP schedule is
executed at times 12-15, performing the remaining fadd
instructions (for iterations D and E).

Fig. 3c shows how data is accessed in register queue q1
for the sample code. Queue reads do not change the state of
the register queue; fload instructions at times 3, 5, 7, 9, and
11 are shown to decrement the Qtail and write the new data
in the queue. At cycle time 6, the first fadd instruction reads
the first value written to q1. It retrieves the value f21 by
adding the current Qtail (2) to the read offset (which was set
to 1 by the rq-connect instructions) and accesses q1 at
position 3 (the rightmost, shaded position in q1 in Fig. 3c).
The remaining reads are as shown in Fig. 3c and operate
similarly.

In this example, only a single variable is allocated to a
queue and it contains two live instances. In general, there
may be many variables with multiple simultaneously live

instances. One simple connect strategy employs a single
unique register queue for each such variable to hold all live
instances of that variable. This mechanism works well in
reducing the architected register pressure of SP schedules,
but may require a large number of register queues (one for
each variable containing multiple instances). Furthermore,
with fixed length queues, many of the registers in the queue
may not be required (if there are fewer live instances of a
variable than registers in a particular queue), whereas some
variables with many live instances may not be accommo-
dated by a single queue.

Fortunately, since the read offset values may be changed,
the RQ access capabilities for a single queue are flexible
enough to hold instances of more than one variable. Thus,
we can assign all instances of several variables to the same
queue, connecting read offsets accordingly. It is only
necessary to determine the read offset for each use, given
the sequence of writes for all the variable instances mapped
to the queue. This is simple when writes for each variable
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Fig. 3. Software pipeline schedule for the sample code (see Fig. 1) using RQs. (a) Scheduled code. (b) SP execution of five original loop iterations.

(c) Reads and writes of register (f2) in sample execution.



are unconditionally performed; it is then simply a matter of
counting the definitions that occur between the definition
and use of a particular instance. It becomes more challen-
ging when writes to a variable are conditionally executed
(e.g., instructions in an if-then-else statement). In this case,
we must carefully determine the possible read offsets or
assign the conditionally defined variable to a queue that is
not shared. Alternately, a dummy write on the alternate
path can be inserted to insure that a value will be written to
the queue regardless of the execution path. In the loops
studied, predication was performed on all loops prior to SP,
thereby eliminating this issue.

A second queue register allocation issue arises when the
variables assigned to a particular queue contain more live
instances than the number of registers in the queue. In this
case, we can either increase the initiation interval of the SP
schedule (so as to reduce the number of instances) or we
can concatenate two or more physical queues into a larger
logical queue by copying the head of the first queue to the
tail of the second queue. Each copy costs one extra
instruction in the loop body to perform the copy and one
additional architected register to read the oldest value in the
first queue (offset 3) as the source field of the copy
instruction (any register mapped to the following queue
can be used as the destination of the copy since all writes
append to the queue tail regardless of the read offset). This
will be discussed further in Section 3.2.

Finally, it is possible to run out of architected registers,
even using RQs. In this case, we can avoid spilling values to
memory by reconnecting architected registers inside the
loop body. Indeed, it is possible to use a single architected
register throughout the SP schedule by reconnecting prior
to each definition or use of a variable that is allocated to a
register queue. This strategy would lead to a large number
of connect instructions in the loop body (one for each read
and write), but it would correctly implement the register
requirements of a software pipelined loop. This will be
discussed further in Section 3.3.

3.2 Managing Queue Overflow

If a variable assigned to a particular queue has more live
instances than the number of registers in the queues, we can
concatenate two or more queues by copying the head of the
first queue to the tail of the second queue before it is
overwritten by a new data instance. Suppose, for example,
that the load latency of the machine executing the loop
fragment in Fig. 1 is increased to 11 cycles. To maintain an
initiation interval of 2, the time between definition (fload)
and use (fadd) would span six iterations of the SP kernel,
resulting in six (rather than just two) simultaneously live
instances of the variable, which exceeds the queue size (four
elements).

In scheduling this loop, the prologue code expands to
14 instructions (1-14) spanning six iterations of the original
loop (A-F), as shown in Fig. 4a. The first connect instruction
(at position [A, 1] in the figure) creates a mapping between
architected register f2 and register queue q1 with a read
offset of 3. Writes to f2 enqueue data at the tail of the queue,
while reads from f2 access the oldest element in the queue.
Since the queue size is insufficient to store six items, a
second queue must be allocated to live instances of this

variable; the second connect instruction (at [A, 2]) maps
architected register f4 to q2 to provide the remaining queue
storage for this variable. The fmove pseudoinstructions at
[A, 11] and [B, 13] copy the oldest data from q0 to the tail of
q1. Once the oldest element in q0 is copied to q1, it is safe to
overwrite it by executing another fload instruction. The
queue management performed in the prologue of this SP
scheduled loop is shown in Fig. 4b. The first four elements
are written into q1 by the fload instructions (at [A, 4], [B, 6],
[C, 8], and [D, 10]). The first element is then copied to q2 (at
[A, 11]) freeing that storage for the next write to q1 (at
[E, 12]). This process is repeated to move the second
element written to q1 (at [B, 13]) and allow the final write to
q1 in the prologue (at [F, 14]).

A fourth instruction (at [C, 15]) is added to the loop
kernel to continue moving head elements from q1 to the tail
of q2. The kernel is otherwise unchanged from the schedule
in Fig. 3 except that the fadd instruction now employs
architected register f4 and reads from q2. Assuming that this
kernel is executed once (seven iterations of the original
loop), the epilogue starts at cycle time 17. To perform more
than seven iterations of the original loop, cycles 15 and 16
are simply repeated once per additional iteration. Note that
architected register f4 and, hence, queue q2 is both read and
written at cycle 15. Following common design for multi-
ported register files, we assume that the read uses the old
value of Qtail while the write uses the decremented value as
its index, but does not write into the Qtail register until after
the read access is completed (for the opposite sequence, the
offset, ro for the read, would simply have to be set to 2
rather than 1). Thus, at cycle 15, [A, 15] reads f2 from
position (2 + 1) of q2 while [C, 15] write f23 into position
(2-1) of q2. The fload at cycle 16 then simply overwrites f23

in position (2-1) of q1 with f27.
Queue accesses in the epilogue differ from earlier

references. Since the epilogue code will not enqueue new
data into q1 (i.e., there are no fload instructions in the
epilogue), fmove instructions are not required; instead,
rq-connect instructions are added to change the read offset
to access the correct entry in the queues. Notice that the first
two fadd s in the epilogue reference q2 (through f4) and the
final four references access q1 (through f2). Two final
rq-connect instructions (not shown in Fig. 4) could be added
if necessary to reconnect f2 and f4 to free registers (as done
by instruction 12 of Fig. 3a).

3.3 Reducing Architected Register Pressure

In the event that too few architected registers are available
to support the SP schedule, it is possible to reconnect
architected registers inside the loop body. Fig. 5 illustrates
this approach by reexamining a modified version of the
loop fragment from Fig. 1. For demonstration purposes, we
added a new instruction (fadd f8, f6, f2) requiring an
additional reads of the queue mapped to f2 with a different
offset.1 Normally, each different read location in the queue
would be mapped to a different architected register so as to
eliminate reconnecting; however, in this example, we
assume that only a single architected register is free for

TYSON ET AL.: EVALUATING THE USE OF REGISTER QUEUES IN SOFTWARE PIPELINED LOOPS 775

1. We also change the latency for fadd to 1 for this example in order to
simplify the discussion of the resulting schedule.



use by this variable. The modified source code is shown in

Fig. 5a and the resulting SP scheduled loop is shown in

Fig. 5b.
In the modified loop body, there are two reads from

register f2 at different read offsets. If we had an extra

architected register, it would be connected to the second

read position in the queue. Instead, we reconnect register f2

inside the loop body to the corresponding read positions.

Prologue instruction [A, 1] (Fig. 5b) maps architected

register f2 to register queue q1. fload instructions enqueue

data in q1. The first fadd instruction (at [A, 6]) accesses q1

with read offset1 (to access the value loaded at [A, 3]

despite the intervening fload at [B, 5]). The second fadd

instruction (at [A, 8]) accesses q1 with read offset 2 (since

there has been another intervening fload at [C, 7]). Further

iterations connect similarly.
The loop kernel requires six instructions: the original

four instructions and two additional rq-connect instructions.

In the first cycle of the loop kernel (cycle 8), f2 is mapped to

q1 with a read offset of 2 to enable access to the value

required for the fadd f8, f6, f2 instruction in [A, 8]. The

second cycle of the loop kernel (cycle 9) remaps f2 to access

read offset 1 of q1 to access the value required for the fadd f6,

f6, f2 instruction in [B, 9]. The fload instruction writes a new

element, as before, into the queue and updates the Qtail.
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Fig. 4. Software pipeline schedule with queue overflow (fload latency = 11). (a) SP schedule. (b) Contents of queue 1 and queue 2.



Keeping the initiation interval at two cycles requires

careful management of the queue resources; for example, in

cycle 9, we are changing the mapping of register f2, reading

the queue specified by f2, and writing a new element into

the queue specified by f2. The ordering of these operations

is as follows:

. The read from f2 uses the queue mapping (q1) and
read offset forwarded from the rq-connect instruc-
tion issued the same cycle (instead of reading the
current ro field from the map table) and adds that
to the Qtail value at the start of the cycle (1),
accessing element f22.

. The write to f2 uses the queue mapping forwarded
from rq-connect instruction issued the same cycle,
decrements the Qtail value (to 0) and writes f24 into
q1 at position 0.

Fig. 5c shows the queue requests that occur in the

prologue and the first iteration of the loop kernel. Writes to

the queue occur on cycles 3, 5, 7, and 9. Reads occur on

cycles 6 and 9 for the fadd f6, f6, f2 instruction (using read

offset 1) and on cycle 8 for the fadd f8, f6, f2 instruction

(using read offset 2). The ninth cycle is separated into two

parts to illustrate the details of the queue access: Cycle 9a

shows the queue read performed by fadd f6, f6, f2 using an

offset of 1 from the current Qtail of 1, returning element f22.

The queue location for f24 is allocated and the Qtail of q1 is

updated in the second phase of that cycle. Remapping f2

continues as accesses by the fadd instructions are executed;

otherwise, instruction flow is similar to previous examples.

4 EXPERIMENTAL RESULTS

To demonstrate the capability of the RQ approach, we

compare the register space and kernel code requirements

for various load latencies in the RR and both MVE methods

(labeled MVE1 and MVE2) and compare the results to the

RQ scheme. We then vary the load latency from one cycle to
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Fig. 5. Software pipeline schedule with architected register pressure (fadd latency = 1). (a) Loop body code. (b) SP execution of four original loop

iterations. (c) Reads and writes of register (f2) in sample execution.



45 cycles to assess how the resource requirements might
vary are across a wide variety of machine models.

We use an iterative modulo scheduler (IMS) [18] which
produces a near optimal steady-state throughput for
machines with realistic machine models. IMS constructs a
schedule that minimizes the number of architected registers
required for a given loop L, a machine architecture M, and
initiation interval II.

The benchmark loops studied were obtained from the
Perfect Club Suite, SPEC, and the Livermore Kernels. These
loop kernels were provided by B.R. Rau from HP Labs.
Loops were compiled by the Cydra 5 Fortran77 compiler
performing load-store elimination, recurrence back-substi-
tution, and IF-conversion. The input to our scheduler
consists of the intermediate representation; SP is then
performed, generating a new intermediate representation
with support for RQs. Of the 1,327 loops extracted from the
applications, 983 were selected for this study; the remaining
344 loops did not perform memory references.

In our experiments, we used two target machine models.
One machine model has limited resources, while the other
has no resource constraints. The code sizes of the 983 loops
studied (before SP was performed) are shown in Fig. 6a. A
majority of the loops ranged from five to 20 instructions,
with the largest loops exceeding 100 instructions.

Fig. 6b shows the initiation intervals for the loops
assuming no resource dependencies and with a load latency
of 13 cycles. A majority of the loops have II between two
and 15 cycles, with a few loops requiring 200 cycles.

4.1 Software Pipelining Using MVE, RR and RQs

The results of our experiments show the effects on
architected and physical register requirements as well as
the code expansion of the loop due to software pipelining.
Software pipelining was performed using both methods of
MVE (minimizing register requirements (MVE1) and mini-
mizing unrolling (MVE2)) with no hardware support. SP
was also performed, targeting each of the two machine
configurations with hardware support: RR and RQ. These
results are presented in Fig. 7 and Fig. 8 for the two machine
models (with unlimited and limited resources, respec-

tively). Fig. 7a and Fig. 8a show the architected register
requirements after performing software pipelining on each
loop (averaged over all loops). The graphs show the
increase in register requirements and code expansion of
the loop kernel as memory latency is increased from one to
45 cycles. The two models differ significantly in the
registers required to achieve the best software pipelining.
The unlimited resource model (which has no resource
constraints and, therefore, a small II) requires 2-3 times as
many registers as the more realistic machine model.
However, the trends seen in both models are similar. In
the RR and MVE1 schemes, the number of architected
registers are identical, growing at a linear rate. The
architected register requirements for MVE2 increase more
rapidly since extra registers are added to reduce the code
expansion; this growth rate is also fairly linear. Architected
register requirements for the RQ scheme remain constant as
long as all live instances of each variable can fit in one
register queue. The increased latency only affects the RQ
schedule by increasing the offset specified in the rq-connect
instructions in the loop prologue; as more instances of a
variable are needed to support higher latencies, the offset is
increased to account for the change in the location of the
instance that is read. The number of architected registers in
the RQ scheme is bounded by the number of consumers
(instructions in the loop body which read from the queue)
and is not affected by the latency of the instructions.

Fig. 7b and Fig. 8b show the code expansion caused by
SP as memory latency increases. Code size remains
unaffected by memory latency for both RR and RQ due to
the hardware support for renaming the instances of a
variable. The code size drastically increases in the MVE
schemes because of the additional unrolling required to
handle the explicit, distinct naming of the additional live
instances of the variables defined by load instructions as
latency increases. MVE1 is not shown in this graph because
of its tremendous code expansion; for a load latency of 13,
the kernel code size in MVE1 averages 149,256 instructions!

Fig. 7c and Fig. 8c show the code expansion of the
prologue code as latency increases. Each bar shows the
number of instructions moved from early iterations of the
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Fig. 6. Loop statistics. (a) Code size of initial loops. (b) Initiation interval of loops.



original loop to initialize the software pipeline, as well as
extra instructions required in the RQ model to connect
architected registers to register queues (the darker shaded
portion at the top of each bar). The additional overhead in
the prologue to initialize the register mappings required in
the RQ scheme is seen to be minimal. Fig. 7d and Fig. 8d
show similar code requirements for the loop epilogue. Here,
the overhead for the RQ scheme is higher; caused by the
necessity to remap architected registers to read the final
instances in the queue since no more writes to the queue are
performed to align the queue read offset automatically.

Fig. 9 shows the number of variables with multiple
instances over all loops. The vertical axis shows how many
loops have a specified number of variables with multiple
live instances. For instance, the leftmost column (at 2 on the
horizontal axis) shows that 130 loops have exactly two
variables with multiple live instances. Almost all of the
loops have fewer than 16 variables with multiple live
instances. Since the register queues are allocated only to
those variables with multiple live instances, the register
queue allocation problem need only address those (few)
variables.

Fig. 10 shows the number of simultaneously live
instances for each of the variables identified in Fig. 9. Over

half of the variables require only two instances, resulting in

little physical register pressure in the queue. This result also

makes finding a very close to optimal bin-packing solution

to register queue mapping quite easy. The largest number

of live instances found was 13. Unlike the number of

variables with multiple instances (Fig. 9), the number of

instances for each of those variables will increase in

proportion to the memory latency.
Fig. 11 shows the rate of increase in the number of

instances (averaged over all variables in all loops) as load

latency increases. The growth is linear, ranging from 2.5

with low latency (since we only count variables with

multiple instances, 2 is an absolute minimum) to 6.5 (for the

machine model with limited resources) or 17 (for the

machine with unlimited resources) when memory latency is

45. This number is very large when allocating the small

number of physical registers found on most machines,

making SP intractable. However, since these are only

physical register requirements in the RQ model, it becomes

much more feasible to perform SP.
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Fig. 7. A study of RR, MVE, and RQ schemes for Machine Model 2 (with limited resources). (a) Architected register requirements. (b) Code size

requirements. (c) Prologue code size. (d) Epilogue code size.



4.2 Scheduling Multiple-Use Lifetimes for FIFO
Queues with and without Destructive Reads

The implementation of register queues presented in this

paper might more descriptively be called circular register

buffers. Unlike FIFO queues, reads can access any element

in the buffer and reads are nondestructive. We chose this

design to enable more flexible access to live variable

instances. In this section, we examine the effects of this

flexible access on the SP schedules by comparing our access
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Fig. 8. A study of RR, MVE, and RQ schemes for Machine Model 1 (with unlimited resources). (a) Architected register requirements. (b) Code size

requirements. (c) Prologue code size. (d) Epilogue code size.

Fig. 9. Histogram of the number of multi-instance variables in a loop.

Fig. 10. Histogram of the number of instances of variables containing

multiple live instances (averaged over all loops).



mechanism with conventional FIFO organizations which
read from the head of the queue. We examine two FIFO
designs, one which utilizes a destructive read and a second
which employs both destructive and nondestructive reads
of the queue.

The first experiment performed to evaluate the effective-
ness of our more flexible queue access mechanism was to
characterize the usage of all variables that are allocated to a
queue in the benchmark loops. For each write to a queue,
the number of reads of that element are counted. If there is a
single read, then a FIFO organization with destructive reads
is sufficient to access the element; destroying the data is
allowed since it will not be reaccessed and the data will be
located at the head of the queue when accessed, provided
that the queue does not hold instances of some other
variable. However, writes of a variable which is read
multiple times make destructive reads unacceptable since a
destructive read of the first read access eliminates the data,
preventing further reads. In this event, additional code
must be inserted to retain the data in some other storage
(e.g., a general purpose register) to support multiple reads.
Fig. 12 shows how many variables have multiple readers.
The horizontal axis shows the number of readers for a
variable and the vertical axis shows what percent of all the
variables allocated to register queues have a given number
of readers. Note that 55 percent of variables written to a
register queue are read only once; these references require
no access method more sophisticated than a FIFO queue
structure. The remaining 45 percent of writes require at
least two reads, making destructive reads problematic. At
least one FIFO queue design [24], proposed allowing both
destructive and nondestructive reads from the head of a
queue to provide more flexible access to queue elements.
This approach increases the number of variables that can be
allocated to a queue without the overhead of moving them
to a conventional register prior to using the data; however,
it is still too restrictive for some SP pipelined variables.
About one third of the variables with multiple reads require
reads of the same instance in different iterations of the SP
kernel. This means that the first read does not occur when
the element is at the head of the queue since it must remain

in the queue until the last read. In this event, a FIFO queue
structure requires multiple queues: one queue to store the
data from the write to the first read, a second to store the
data between successive reads in different SP kernel
iterations, and, possibly, additional queues if reads occur
on three or more different iterations.

To determine the instruction overhead required within
the SP kernel if FIFO queues were used, we rescheduled
each of the loops with at least one variable that was written
to a queue and read two or more times. The loop kernel
instruction count was increased by 60 percent for those
loops when only destructive FIFO accesses were provided.
This overhead included register queue to general purpose
register moves and requeuing instructions when reads
occurred in different loop iterations. The overhead was
reduced to 19 percent when nondestructive reads from the
head of the queue were allowed. This overhead consisted of
register queue to register queue moves for variables with
reads in different SP kernel iterations.

5 CONCLUSIONS

Existing SP implementations have limited effectiveness due
to their high architected register requirements, particularly
as operational latencies grow. In this paper, we have
introduced the RQ technique, which limits architected
register pressure and code size increases from software
pipeline schedules by combining a modification to the
architecture and microarchitecture of a processor with a
modified register allocation algorithm in the compiler.

RQ achieves this goal by combining the features of RR (to
enable instances of a variable defined in earlier iterations to
be accessed efficiently) with the features of RC (to decouple
architected registers from the physical registers holding live
variable instances). By including the dynamic register name
mechanisms found in RR, we can achieve a software
pipelined loop without unrolling the kernel and, by adding
the register decoupling capabilities of RC, we can allocate
multiple instances of a loop variable without increasing
architected register pressure. This enables RQ to schedule
loops for expected memory latencies when a cache miss
occurs; the alternative is to assume that all memory accesses
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Fig. 11. Average queue size as latency increases for machine models 1

(limited resources) and 2 (unlimited).

Fig. 12. Number of uses for each element of variables with multiple

instances.



will hit in the L1 cache and stall the processor when a miss
occurs, which leads to nonoptimal schedules, particularly
when cache miss rates are high.

Our experiments on the loops from a large benchmark
suite showed that RQ provides a significant reduction in the
number of architected registers and code size requirements
(compared to RR and MVE). Furthermore, memory latency
increases have little effect on either code size or architectur-
al register requirements. RQ thus enables more aggressive
implementation of software pipelining. Finally, by allowing
reads to occur nondestructively and from any location in
the queue, RQ can significantly reduce the instruction
overhead required to access the values stored in conven-
tional FIFO queues.

RQ can also be incorporated into existing instruction set
architectures with the addition of a single new instruction
and a modification of the register renaming microarchitec-
ture. Furthermore, the complexity of the implementation
approximates that of RR, requiring a single level of
indirection and modulo arithmetic of small (4 or 5 bit)
offsets to address the physical registers in the queue (for
queues of length 16 or 32). The physical register require-
ments of RQ can also be scaled by reducing the number of
registers in a queue and/or by restricting the number of
queues. The results show that a small number of modest
size queues is sufficient to support software pipelining,
even as instruction latencies increase.
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