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Abstract—Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new

volumetric rendering algorithms that are suited to modern parallel processing architectures.

First, we describe the three major

categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most
acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends
of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel® architecture code-named
Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We
further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well

to large numbers of Larrabee cores.

Index Terms—Volume Compositing, Parallel Processing, Many-core Computing, Medical Imaging, Graphics Architecture, GPGPU.

1 INTRODUCTION

The past two decades have seen unprecedented growth in the amount
and complexity of digital medical image data collected on patients in
standard medical practice. The clinical need to accurately diagnose
disease and develop treatment strategies in a minimally-invasive man-
ner has required developing new image acquisition methods, high res-
olution acquisition hardware, and novel imaging modalities. All of
these place computational burdens on the ability to synergistically use
the image information. With increasing quality and utility of medical
image data, clinicians are under pressure to generate more accurate di-
agnoses or therapy plans. The challenge is to provide improved health
care efficiently, which is complicated by the magnitude of the data.
Despite the availability of several general purpose and specialized ren-
dering engines, volume visualization has not been widely adopted by
the medical community except in certain specific cases [2, 5].

There are several barriers to adopting volume visualization in the
clinic, including the quality of visualization and overall performance
of rendering engines on commodity hardware. While real-time volume
rendering has been shown using GPU [15], performance is usually
gained at the cost of image quality. Custom rendering hardware solu-
tions have been developed to provide high-quality rendering, but the
cost associated with these systems limits their wide-spread adoption.
Examples include the VolumePro [24], which uses a custom rendering
chip, and Nvidia Tesla [23], which uses a standard graphics chip in a
special purpose product. To ease adoption, it is desirable to provide
medical-quality rendering using commodity hardware. The purpose
of this work is to evaluate medical-quality volume rendering on mod-
ern commodity parallel hardware including a general purpose CPU
(Intel® architecture code-named Nehalem), a GPU (Nvidia GeForce
GTX280), and a many-core architecture (Intel Larrabee).

Main Contributions: Our contributions are as follows:

e Through an image scientist-guided evaluation, we demonstrate
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ray-casting to be the most acceptable of three volume rendering
techniques for high-fidelity requirements of medical imaging.
e We map, evaluate and compare performance of two ray-casting
implementations on three modern parallel architectures. We op-
timize our implementation to take full advantage of each archi-
tecture’s salient hardware features.
e We demonstrate that our sub-volume based implementation of
ray-casting, designed for low memory bandwidth and high SIMD
efficiency, achieves best performance on all three architectures.
e To mitigate the overhead of data transfer and take advantage of
wide SIMD units, we propose and evaluate robust lossless com-
pression schemes with fast SIMD-friendly decompression.
Results Summary: Our parallel implementation of ray-casting de-
livers close to 5.8x performance improvement on quad-core Nehalem
over an optimized scalar baseline version running on a single core
Harpertown. This enables us to render a large 750x750x1000 dataset
in 2.5 seconds. In comparison, our optimized Nvidia GTX280 im-
plementation achieves from 5x to 8x speed-up over the scalar base-
line. In addition, we show, via detailed performance simulation, that
a 16-core Intel Larrabee [26] delivers around 10x speed-up over sin-
gle core Harpertown, which is on average 1.5x higher performance
than a GTX280 at half the flops. At higher core count, performance
is dominated by the overhead of data transfer, so we developed a loss-
less SIMD-friendly compression algorithm that allows 32-core Intel
Larrabee to achieve a 24x speed-up over the scalar baseline.

The remainder of the paper is organized as follows. We describe
a clinical study of three volume rendering algorithms in Sec. 2. Sec-
tion 3 discusses challenges in mapping ray-casting to modern paral-
lel architectures and presents our implementation of sub-volume algo-
rithm to address these challenges. Section 4 describes the three archi-
tectures and the medical datasets used in the evaluation, followed by
the architectural characteristics of ray-casting in Sec. 5 and detailed
performance analysis in Sec. 6. We summarize our findings in Sec. 7.

2 EVALUATION OF VOLUME RENDERING TECHNIQUES

There are several approaches to direct volume rendering. Each bal-
ances performance and quality. In this section we compare three clas-
sic approaches to volume rendering and demonstrate that ray-casting
is the preferred method for diagnosis due to its quality.

2.1 Methods for Direct Volume Rendering

The most direct approach to volume rendering is ray-casting [6]. The
traditional implementation of ray-casting, which is used in our base-
line application, traces rays through a volume in the viewing direction.
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The volume is segmented: each voxel is labeled with the ID of an ob-
ject the voxel belongs to. When a ray hits a voxel, the object ID is
used to determine whether the voxel is visible. If so, it is shaded using
a surface normal, which is generated by calculating a gradient from
the voxel data. This is done using a 3x3x3 filter, which has fewer
aliasing artifacts than a smaller filter [11]. The surface normal is com-
bined with the color of the voxel as well as the color of the segmented
object to generate a new composited color. This method is generally
recognized as the slowest of the methods.

In order to overcome the high computational complexity of ray-
casting, several alternative approaches to volume rendering were de-
veloped. Splatting [30] projects individual voxels onto the screen. As
the result, the voxels are visited in contiguous fashion and only once.
This reduces computational complexity compared to ray-casting and
takes advantage of the SIMD architecture found in modern processors.
Techniques like voxel over-sampling and depth normalization [21] are
used to reduce the rendering artifacts. We implemented a custom splat-
ting algorithm for this evaluation.

The shear-warp method by Lacroute et al. [16] shears the volume
data in order to generate distorted intermediate images. Ray-casting is
then applied to the data in order to generate the final rendering. Shear-
ing the data allows a one to one mapping between volume slice and
the image plane and as a result is also SIMD-friendly. Techniques
such as interpolation of intermediate slices and use of smoother opac-
ity transfer functions [27] aid in reducing the resulting artifacts. We
used VolPack library for shear-warp rendering.

While alternative algorithms change image quality, there are several
alternative optimizations which ensure the quality of the data while
still improving the performance. We divide these optimizations into
two categories. In the first category there are algorithms designed for
specific hardware features. These include hardware-accelerated pre-
integration [25], coherent ray tracing [29], and interval SIMD arith-
metic [13]. In some cases, these methods require pre-processing which
can increase the initial rendering time or the memory required by the
method [10]. On the other hand there are algorithms that are designed
to efficiently manage image data. For example, ray-casting algorithms
can adopt a presence acceleration and/or early termination strategies
[18] and [4] to avoid unnecessary computation. Multi-resolution trees
can store the compressed data for efficient retrieval of contributing
voxels [14].

2.2 Quality Comparison

In order to determine which rendering methods generate clinically use-
ful renderings, we rendered high-resolution CT Angiography (CTA)
data using these three methods and conducted a blind comparison.
Each CTA was acquired isotropically with resolution of .742 mm on a
side and covered the entire pelvis. A transfer function was chosen to
clearly delineate the inferior epigastric artery (IEA) — a vessel that is
critical to the outcome of certain reconstructive surgeries. The IEA can
be difficult to visualize because of its size and position in the pelvis.

After selecting the transfer function, we used each method to gen-
erate volume renderings spanning 180 degrees around the data. Our
blind comparison application presented pairs of corresponding render-
ings to the user in a random order. Each of the rendering methods
was paired with the other rendering methods during the comparison.
Five different individuals reviewed the relative quality of the paired
images. Quality was determined by the fidelity of the image in terms
of visibility of the branches of the IEA and sharpness of the vessel.

Table 1 shows the preference of each observer for one method over
another. We pooled the results and compared them using a Fisher
exact statistical significance test [7] for categorical data. The Fisher
exact test specifically excludes the cases where the two images are
considered equivalent; the number of comparisons that were deemed
equivalent is also shown.

Ray-casting was statistically preferred over either of the other meth-
ods (p<0.0001 for both comparisons). Splatting was preferred over
shear-warp (p<0.001). Although statistically different, splatting and
ray-casting had the most number of equivalent renderings. Statistical
analysis were not conducted for each observer seperately because of
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Fig. 1: Comparison of three rendering methods. Ray-casting (top),
Splatting variant (middle), and Shear-warp (bottom). When viewed
from an orthogonal angle (left side), the results are consistent. When
viewed obliquely (right side), artifacts and blurring is present.

the low sample size, but according to the results, Observer B preferred
the Shear Warp renderings. Following the evaluation, the observers
commented that the shear-warp images were more blurry when viewed
at a non-orthogonal angle, and splatting showed an artifact in some of
the non-orthogonal views. Representative images of orthogonal and
non-orthogonal renderings are shown in Figure 1. As a result of this
blind comparison, it was determined that only the ray-casting method
has acceptable quality for medical applications.

3 RAY-CASTING IMPLEMENTATION

This section describes challenges of mapping ray-casting to modern
many-core architectures and proposes two approaches to overcome
these challenges. This work focusses on volume compositing [17] and
orthographic projection, which are both widely used clinically (for ex-
ample, planning pedicle screw placement in the spine [1]).

3.1 Challenges in Mapping to Modern Architectures

Modern processors are equipped with vector execution units and mul-
tiple cores. Vectorization and parallelization are necessary to harness
the massive computing capability in these processors. Parallelizing
ray-casting is relatively trivial: every cast ray can be traced through
the volume independently from every other ray. However, vectorizing
ray-casting is not as simple because of irregular data access and con-
trol flow divergence. Moreover, some modern parallel systems require
high data transfer overhead over a slow interface line, such as PCle.
When accounted for, this overhead can significantly limit performance
of such systems.

In ray-casting, as the rays traverses through the volume, they ac-
cess voxels with a non-constant stride. While caches capture some
temporal and spatial locality in the neighboring accesses, the irregular
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Table 1: Results of Observer Study. In a blinded manner, each ob-
server selected a “preferred” rendering. If the two renderings were
equivalent, the observer could select equivalent. The Fisher exact test
was used to determine significance.

server asting/Splatting asting/Shear  Splatting/Shear
Ob Casting/Splatti Casting/Sh Splatting/Sh
A 10/2 20/0 1377
B 11/5 3/10 4/12
C 12/9 18/4 15/6
D 6/1 19/0 1772
E 15/2 21/1 1472
Equivalent 37 14 18
Total 54/19 81/15 63/29
p<0.0001 p<0.0001 p<0.001

access pattern makes it difficult for hardware to prefetch data to reduce
access latency. To improve data locality, our implementation traces a
packet of rays that are spatially adjacent in the 2D image plane [28].

To exploit the vector (a.k.a. SIMD) architecture, the packets of 2D
rays are processed in SIMD fashion. However, the control flow for
each ray is data-dependent and often incoherent, which lowers SIMD
efficiency. For example, some rays may exit the volume earlier than
other rays. Such rays become inactive and should not be processed.
We use predicated SIMD execution with vector masks to address this
problem. As ray terminate, the corresponding SIMD lane is masked
off; this prevents it from doing computation or accessing memory.
A disadvantage of predicated execution is that as rays terminate, the
SIMD efficiency drops. Re-packing active rays is done to maintain
good SIMD efficiency [3].

Non-contiguous data accesses pose another challenge to SIMD pro-
cessing. As we mentioned earlier, rays access non-contiguous lo-
cations in memory. To utilize SIMD execution, these data must be
packed from memory to SIMD registers. Such operation is known as
gather . Gathering non-contiguous data often requires multiple mem-
ory accesses which reduces SIMD efficiency. In volume composit-
ing, large number of gathers comes from gradient estimation which
requires accesses to each of 26 neighbors by each ray in a packet. It
results in 26 gather operations and can be extremely costly for archi-
tectures with little or no hardware support for gather.

Lastly but not least, modern systems tend to have special processing
units to accelerate operations. For example, volume rendering can be
offloaded to accelerators such as Nvidia GTX280 [22], or more spe-
cialized hardware such as [24]. Such accelerators are connected to
the host’s main CPU via a slow interface line, such as PCle, which can
deliver at most 10GB/s bandwidth. In cases, where the time to transfer
data to accelerators exceeds the speed of volume rendering computa-
tion, performance is limited by low bandwidth of the interface.

3.2 Sub-volume-based Rendering

To address the challenges in our base-line implementation of ray-
casting, we adapt an implementation based on partitioning the full
volume into sub-volumes. Each sub-volume is rendered independently
into its local sub-image, which are combined to form one final image
in a front-to-back order. Correctness follows from the linear and asso-
ciative nature of the color/opacity computation. While this sub-volume
based implementation has been proposed before [19], we are the first
to evaluate this idea in the context of a many-core architecture.

The sub-volume approach provides solutions to the key problems of
ray-casting. It significantly improves cache locality because the size of
the sub-volume can be chosen to fit into available on-die memory. Pre-
computing the gradients before processing each sub-volume replaces
gathers with regular accesses that map well onto SIMD, at the cost of a
small amount of temporary memory. Pre-computing gradients for the
entire volume would require a prohibitive amount of memory. Finally,
the sub-volume also mitigates data communication overhead over slow
links, since it allows rendering one sub-volume to proceed in parallel
with transferring the next sub-volume.
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Fig. 2: Sub-volume based rendering. Three highlighted sub-volumes
svl, sv2 and sv3 are rendered in parallel into three local images /i1, [i2,
and /i3. Local images are combined to produce a single global image.
Combining is performed in parallel on non-intersecting regions grl
through gr5. Each region is computed by combining corresponding
local images in front to back order.

In our SIMD implementation we project all sub-volumes in paral-
lel into local images, which we then combine into the global image.
The boundaries of the local images define regions in the global image.
Each such region combines its local images sequentially in front to
back order. Due to the fact that global regions do not intersect, multi-
ple regions are combined in parallel. Figure 2 illustrates sub-volume
algorithm with an example. Here three sub-volumes, sv1, sv2, and sv3,
project into local images /i1, /i2, and /i3 in parallel. The global image
consists of five regions, grl through gr5. For example, global region
grl is produced from /i3, while gr2 combines /i3 and /i2. All five
regions are computed in parallel. Our parallel combining algorithm
renders one slice at a time in front-to-back order. Moreover, slices
are chosen in the direction that is most perpendicular to the viewing
plane. This assures that the projection of any sub-volumes within a
slice will only overlap with the projection of at most eight of its im-
mediate neighbors. This significantly reduces inter-thread communi-
cation as well as overhead of combining within overlapped regions.

3.3 Volume Rendering With Lossless Compression

Since the introduction of Computed Tomography (CT) in 1972, volu-
metric datasets have been continually growing in size. The first com-
mercial CT scanners produced volumetric resolutions of 643 voxels.
Datasets in current clinical practice can consist of 5123 voxels and are
expected to increase more than sixteen time to 20483 in the next few
years. As mentioned in Section 3.1, transferring this massive amount
of data may result in significant overhead.

One important technique to reduce this overhead is data compres-
sion. There are two key requirements for a compression algorithm
for medical imaging (1) It should be lossless because we cannot toler-
ate any image quality degradation. (2) It should be fast enough to be
real-time to support interactive clinical usage. To meet these require-
ments, we propose and implement application-specific data compres-
sion mechanisms for the two most important data structures. Our spe-
cialized algorithms compress much better than generalized compres-
sion schemes and achieve significant bandwidth savings. Although
there exist other schemes like lossless JPEG and lossless wavelet com-
pression [31], their corresponding compression/decompression times
are prohibitively large. Finally, our scheme takes advantage of the
wide SIMD units in today’s processors.

Raw Volume Compression

A volume data structure is a 3D array containing raw data values.
Each data element is a 16-bit integer. Our compression mechanism
is based on the value locality property of medical volume datasets.
We observe that data elements with spatial proximity exhibit similar
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values. Therefore, instead of storing each piece of volume data using
16 bits, we store only the difference from a nearby data point. This
value difference takes fewer bits due to the value locality. Specifically,
an N3 compression block is divided into multiple N2 2D planes. For
each 2D plane, we first store a base value, and then the difference
of each data point from the base. We use the same number of bits
to store the differences within each block, and hence the number of
bits per element is dictated by the maximum difference computed at
any volume element within the 2D slice. Another variant is to store
difference from its direct neighbor instead of the base. Since the 2D
planes can be oriented in any of the X, Y or Z directions, we choose
the orientation that minimizes the length of the resultant compressed
stream. A value of N equal to 4 produced the best compression ratios
for the datasets we tested on.

The compression/decompression scheme described above maps
well to a SIMD implementation. During decompression, we essen-
tially load the data for multiple elements (eight in the case of 128-bit
SSE), and expand the stored differences into 16-bit values. These val-
ues are then added to the base value to obtain the final values. Since
different blocks may have different number of bits per element, we
pre-compute and store the different shift patterns in a separate table,
and at run-time simply look up the appropriate data shuffle patterns to
expand the data into 16-bit values. In practice, the overhead of lookups
is negligible. Section 6.2.1 has detailed analysis on the achieved com-
pression ratios and decompression run-times.

Object Compression

An object data structure is a 3D array of the segmented object IDs.
Each data element is represented by an 8-bit unsigned value. To com-
press object datasets, we exploit the knowledge that there are very
few objects within a small region, often only one. For each N3 com-
pression block, we identify unique object IDs, for which we create a
dictionary and assign indices. Then, instead of storing the actual 8-bit
object IDs, we store the corresponding dictionary indices. The size
of the dictionary index is usually smaller than the size of the object
ID. We use the same number of bits for each dictionary index within a
block, and hence the number of bits is dictated by the number of dis-
tinct object IDs within the block. Above all, about 50% of the blocks
(for N = 4) in our datasets are completely contained inside a single ob-
ject, and hence consist of a single distinct object ID. We optimize such
cases by storing only one 8-bit value without any per-element dictio-
nary index. The SIMD implementation for object data decompression
is similar to the raw volume data decompression described above.

4 EXPERIMENTAL ENVIRONMENT

In this section, we describe our experimental setup, followed by the
relevant hardware characteristics of the evaluated systems and present
an overview of the analyzed medical datasets.

4.1 Experimental Testbed
We performed our experiments on the following three architectures.

Intel Quad-core CPU

Intel Nehalem is an x86-based multi-threaded multi-core archi-
tecture that offers four cores on the same die, running at 3.2 GHz.
Nehalem cores feature an out-of-order superscalar microarchitecture,
with newly added 2-way hyper-threading. In addition to scalar units, it
has 4-wide SIMD units that support a wide range of SIMD instructions
called SSE4 [12]. Each core is backed by a 256KB L2 cache. All four
cores share an 8SMB L3 cache.

Intel Larrabee x86-based Architecture

Larrabee [26] is a homogeneous many-core architecture based on
small in-order IA cores. Each core is a general-purpose processor,
which has a scalar unit based on the Pentium processor design, as well
as a vector unit that supports 16 32-bit float or integer operations per
clock. Vector instructions can be predicated by a mask register that
controls which vector lanes are written. To improve SIMD efficiency,
Larrabee has packed load and store instructions to enable bundling to-
gether sparse strands. This enables efficient re-packing of active rays.
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Larrabee also includes hardware support for gather and scatter oper-
ations, which allow loading from and storing to 16 non-contiguous
memory addresses.

Larrabee has two levels of cache: low latency 32KB 1st level data
cache and larger globally coherent 2nd level cache that is partitioned
among the cores. Each core has a 256KB partition. To further hide
latency, each core is augmented with 4-way multi-threading. Since
Larrabee has fully coherent caches, standard programming techniques
such as pthreads or OpenMP can be used for ease of programming.

We measure workload performance in terms of Larrabee units. A
Larrabee unit is defined to be one Larrabee core running at 1 GHz,
corresponding to a theoretical peak throughput of 32 GFLOPS, count-
ing fused multiply-add as two operations. The machine configuration
is chosen solely for ease of calculation. Real devices would ship with
a variety of core counts and clock rates. Performance data were ob-
tained from detailed simulations of 16, 32, and 64 core configurations.
We performed these simulations on a cycle accurate system simulator,
which is used and validated in designing Intel multi-core CPUs.

Nvidia GeForce GTX280 [22]

GTX280 is composed of an array of 30 multiprocessors. Each mul-
tiprocessor has 8 scalar processing units running at 1.3 GHz. The hard-
ware SIMD structure is exposed to programmers through thread warps.
Although it can handle thread divergence within a warp, it is important
to keep such divergence to a minimum for best performance. To hide
memory latency, GTX280 provides hardware multi-threading support
that allows hundreds of thread contexts to be active simultaneously. To
alleviate memory bandwidth, the card includes various on-chip memo-
ries such as multi-ported software-controlled 16KB memory and small
non-coherent read-only caches. GTX280 can be programmed using
the CUDA environment. It allows programmers to write a scalar pro-
gram that is automatically organized into thread blocks across a set
of parallel threads. Because GTX280 has very limited support for
memory consistency and inter-thread synchronization, programmers
should synchronize kernel invocations manually through the host to
assure data consistency across parallel regions.

4.2 Datasets and Viewing Directions

Three sets of human 16-bit CT data are used in our evaluation. Table
2 shows image resolution and the size of each. The original data are
collected at 1mm x 1mm x lmm voxel resolution. The objects are
segmented into bones, skin, blood pool, etc. Datasets ds1, ds3 and ds5
are rasterized with one transfer function, the remaining datasets are
rasterized with another. Figure 3(a, b) shows representative renderings
of dsl and ds2. Performance characteristics such as memory access
pattern vary drastically with viewing direction, as well as with changes
in the transfer function. We report the average over a range of angles
obtained by uniformly sampling a unit sphere for each dataset.

Table 2: Dataset characteristics. Six diverse datasets were used in
evaluation. Each dataset consists of raw data grid (2 bytes per voxel)
and object data grid (1 byte per voxel). Each grid is rendered into an
image of comparable resolution.

Data Resolution Data Size (MB)
Dataset Grid | Image Raw | Object
ds1&2 300x300x443 443x443 76 38
ds3&4 512x512x756 756x756 378 189
ds5&6 750x750x1107 | 1107x1107 | 1188 594

5 HIGH-LEVEL CHARACTERISTICS OF VOLUME RENDERING

To gain insights into performance delivered by each evaluated plat-
form, we provide high-level characteristics of two implementations of
ray-casting algorithms: (1) the original, full-volume based and (2) the
sub-volume based algorithm described in Section 3.2.

Execution Time Breakdown: Table 3 shows execution time breakdown
for the full-volume implementation gathered on Harpertown platform.
We see that ds1, ds3 and ds5, spend over 70% of execution time in
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(a) (b)

Fig. 3: Example of data renderings used in our evaluation: (a)
volume compositing rendering of torso, (b) volume compositing ren-
dering with segmented lungs.

[ Dataset [ ds1 | ds3 [ ds5 [ ds2 [ ds4 [ ds6 |
Gradient Calc. 29% | 24% | 19% | 61% | 61% | 61%
Compositing T1% | 76% | 81% | 39% | 39% | 39%

Table 3: Time breakdown of full-volume implementation. Due
to differences in transfer function, execution time breakdown differs
across datasets.

the compositing function, whereas ds2, ds4 and ds6 spend most of
their time in gradient calculation. This is due to the fact that trans-
fer function used in ds2, ds4 and ds6 visualizes more objects. The
sub-volume implementation incurs some overhead due to maintaining
ray transitions between sub-volumes. It also performs more updates
to the global image than full-volume due to combining local images.
This overhead decreases with increasing sub-volume size. For 163
sub-volumes, the overhead ranges from 20% to 48% and for 643 sub-
volumes, the overhead is only 4% to 18%. The sub-volume overhead
is further amortized for images with more visual objects (ds2, ds4 and
ds6).

Memory Accesses Characteristics: To understand memory access lo-
cality, we perform working set analysis by varying the size of the cache
from 16KB to 32MB and measuring the miss rate. Figure 4 shows an
analysis of four datasets. The top curve shows the working set for the
original full-volume algorithm, while the other two curves show the
working set for the sub-volume algorithm, sizes 16> and 323, respec-
tively. We only present data for ds1, ds2, ds3 and ds4: ds5 is similar
to ds3 and ds6 is similar to ds4. Several levels of working set are
observed at the distinct knees in the curves. As cache size increases,
eventually all data structures fit entirely in the cache and only compul-
sory misses remain. We make the following observations. First, for
full-volume, ds1 and ds3 have larger working set than ds2 and ds4.
This is due to the fact ds2 and ds4 spend more time in gradient cal-
culation which has better locality than compositing. Second, the sub-
volume algorithm requires a smaller working set than the full-volume
algorithm. This is due to the fact that data accesses are localized to the
sub-volumes which are much smaller than original data. For 16> sub-
volumes, a 256KB cache is enough to capture most of the working set
for all datasets, while for 323 sub-volumes, a IMB cache is enough,
since in both cases the miss rate is reduced to under 0.5%.

SIMD Characteristics: To better understand SIMD scalability, we
characterize various SIMD overheads due to control incoherence and
gathers. Rows two and three of Table 4 show percentage of control
incoherence for SIMD width 4, 16 and 32. We report data for ds3 and
ds4 - other datasets exhibit similar patterns. Ray packets of size 4, 16
and 32 are traced simultaneously. As long as all rays in the packet fol-
low the same control flow path, they execute in lock step. When some
of the rays diverge, they serialize, which reduces SIMD efficiency. We
see that for 4-wide SIMD the loss of efficiency is only a few percent.
While efficiency drops further for wider SIMD, it remains higher than
70% for all datasets on 32-wide SIMD. Overall volume rendering ex-
hibits good control coherence even on architectures with wide SIMD.

Rows 5 and 6 shows the fraction of the total number of dynamic
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Fig. 4: Working Set Analysis. Sub-volume has smaller working set
than full-volume. 256K cache reduces miss rate down to 0.5% when
163 sub-volume is used.

Table 4: Characteristics of SIMD Level Parallelism. Relatively
small control incoherence even for 32-wide SIMD. Up to 6.8% of dy-
namic instructions are vector gathers. Half of the accesses within each
gather are to a single 64-byte block. Tiling improves block locality.

[ Row [[ SIMD Width | 4-wide | 16-wide [ 32-wide |
1 Control Incoherence
2 ds3 7.7% 19.2% 27.9%
3 ds4 2.6% 10.2% 10.9%
4 % of data gathers
5 ds3 4.3% 4.5% 4.0%
6 ds4 6.8% 6.8% 6.4%
7 Data Incoherence
(average 64-byte blocks / gather)
8 ds3 2.54 6.96 11.30
9 ds4 2.86 8.63 15.04
10 Data Incoherence after tiling
(average 64-byte blocks / gather)
11 ds3 2.03 4.14 7.20
12 ds4 2.29 5.13 8.91

instructions that are gathers from non-contiguous memory locations.
We see that 7% of dynamic instructions are gathers. This can have
significant performance impact on SIMD efficiency for architectures
without hardware support for vector gathers.

To get further insight into gather overhead, rows 8 and 9 show the
average number of contiguous 64-byte memory blocks accessed by
each gather. These statistics are important because some architectures,
such as Nvidia GTX280 and Intel Larrabee, can coalesce memory ac-
cesses from a single gather if they belong to same block. This reduces
number of memory accesses and improves the performance. We see
however that the average number of blocks per gather is quite high:
roughly half of accesses within each gather are to distinct cache lines.
This is expected, because in each traversal step rays in the packet touch
voxels which are far apart in memory. On architectures with a lim-
ited number of memory ports or that cannot overlap gathers with other
computation, this can significantly reduce SIMD efficiency. However,
the average number of blocks can be reduced by tiling volume and
object data, which captures spatial 3D locality that is absent in linear
order. The last two rows show that tiling reduces the average number
of blocks accessed per gather by 20% for 4-wide SIMD and 40% for
16- and 32-wide SIMD.

6 ANALYSIS ON THREE HARDWARE ARCHITECTURES

We mapped, optimized and analyzed full-volume and sub-volume im-
plementations on three parallel architectures. Our optimizations take
full advantage of each architecture’s most relevant hardware features.
Table 5 shows absolute performance (in ms) of our optimized baseline
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Fig. 5: Performance on quad-core CPU.Sub-volume (right bar) is
faster than full-volume (left bar) due to improved cache locality and
fewer gathers.

implementation, which implements full-volume ray-casting and was
measured on one core of Intel Harpertown running at 3.2 GHz. The
rest of this section reports performance as the speed-up over this base-
line. We also use geomean to average performance across datasets.

Table 5: Absolute performance of baseline volume rendering. Run-
time in ms of scalar full-volume running on single core of the CPU.
Dataset dsl ds3 ds5 ds2 ds4 ds6
Time(ms) | 311 | 1,566 | 4,663 | 1,017 | 4,889 | 14,218

6.1 Intel Nehalem

Our parallel implementation of full-volume on a quad-core CPU parti-
tions the ray packets among threads. The sub-volume implementation
partitions sub-volumes among threads. We also mapped both algo-
rithms to SSE4. To map control statements, we used _mm_blendv_ps
instruction, which blends two SSE registers based on the value of a
source mask. The quad-core CPU does not have hardware support for
gather, so we hand-coded an optimized instruction sequence to gather
from 4 non-contiguous memory locations into a SSE register. Our se-
quence contains 13 instructions, in comparison to 20 instructions in
compiler generated code.

Figure 5 shows speed-up results for all six datasets measured on the
quad-core CPU over single core baseline. For each dataset we show
two bars. The left bar shows the speed-up achieved by our SSE4-
optimized full-volume implementation (speed-up of 4.6x-5.9x). The
right bar shows the speed-up for our SSE4-optimized sub-volume im-
plementation (speed-up of 5.3x-6.61x). Full-volume gets almost no
benefit from SSE, mainly due to the overhead of gathers. Quad-core
CPU super-linear speed-up over single core baseline comes primar-
ily from hyper-threading as well as improved micro-architecture and
memory sub-system of Intel Nehalem compared to the Intel Core2 mi-
croarchitecture used for the single core baseline.

Sub-volume achieves a 1.1x-1.2x improvement over full-volume.
For ds1, ds3 and ds5 the improvement mainly results from improved
cache locality (Figure 4). For ds2, ds4 and ds6 the improvement is due
to gradient precomputation, which eliminates large fraction of gathers
and therefore improves SIMD efficiency.

6.2 Intel Larrabee

Since Larrabee is an x86-based cache-coherent many-core architec-
ture, the parallelization mechanism is similar to quad-core CPU. How-
ever, a single sub-volume is rendered by 4 hardware threads, where
each thread traces a subset of rays. This avoids cache thrashing, which
could occur if each thread processed its own sub-volume.

Larrabee also features a 16-wide SIMD. To exploit SIMD, we have
coded both algorithms using Larrabee SIMD vector instructions. In
addition to hardware masks we take advantage of pack/unpack instruc-
tions to re-pack the rays across multiple packets, when some of the
rays terminate earlier. This improves SIMD efficiency and is similar
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Fig. 6: Performance on Larrabee without data transfer time. Scal-
ing is linear with 16 (lower bar), 32 (middle bar) and 64 (upper bar)
cores. Hardware gather enables 2x-3.5x improvement due to SIMD.

to on-the-fly ray re-ordering [3], except that it is done using hardware
support available on Larrabee. Gathers are mapped to Larrabee’s spe-
cial gather-scatter unit. We have not used texture sampler hardware
on Larrabee to sample along the ray, because our implementation uses
nearest neighbor interpolation, and therefore cannot benefit from in-
terpolation hardware.

Figure 6 shows Larrabee’s speed-up over the single core baseline
implementation. Here we ignore the overhead of data transfers. The
left bar for each dataset shows full-volume, while the right bar shows
sub-volume. Each bar is further broken into three sub-bars. Lower,
middle and top sub-bars correspond to 16-, 32- and 64-core Larrabee
configurations, respectively, each simulated at a nominal 1 GHz clock
rate. Each sub-bar shows an incremental improvement over the pre-
vious sub-bar. For example, for dsl, sub-volume achieves speed-ups
of 10.7x, 19.7x and 35.2x on 16-, 32- and 64- core configurations,
respectively. We also observe that a single CPU core requires from
2x-3.5x more clock cycles than a single Larrabee core. This shows the
effectiveness of the Larrabee instructions and wide SIMD. In partic-
ular, this is due to the fact that the Larrabee hardware gather support
significantly improves SIMD performance.

Sub-volume outperforms full-volume because of smaller working
sets and better cache locality. We see that sub-volume benefits all
datasets except for ds2 and ds4. For these two datasets, the majority
of the execution time is spent in gradient estimation, which already
has very good cache locality. We also observe that the code scales
nearly linearly with the number of cores. Large on-die caches and
high memory bandwidth enable Larrabee to achieve high scalability
even for large number of cores.

6.2.1 Reducing Transfer Overhead With Compression

The lower sub-bars of Figure 7 account for the data transfer overhead
that is omitted from Figure 6. Here we only discuss sub-volume imple-
mentation. Left, middle and right sub-bars correspond to 16-, 32- and
64-core Larrabee configurations, respectively. Comparing to Figure 6,
we observe that transfer overhead is very small on 16-core Larrabee
and can be mostly overlapped with computation. On average, 16-core
configuration achieves speed-up of 13.5x without data transfer and
10.2x with data transfer. Data transfer overhead significantly degrades
performance of 32-core and 64-core configurations. For example, ds5
achieves almost 17x speed-up on 32 cores when transfer overhead is
ignored. However, with transfer overhead is included, the speed-up is
reduced to 6.1x — 3-fold performance loss.

We now show how the lossless compression scheme described in
Section 3.3 can reduce the transfer overhead. We evaluate performance
of our compression algorithm against ZLIB [8], which is a commonly
used lossless compression technique. Other competing schemes like
lossless variants of JPEG and wavelet compression [31] have a runtime
complexity of O(NlogN) for N data points, resulting in larger runtimes
as compared to ZLIB. Table 6 summarizes average compression ra-
tio and decompression time. For raw volume datasets, our scheme
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Fig. 7: Overall performance on Larrabee. Data transfer overhead is small on 16 cores, but significantly reduces speedup on 32 and 64-cores.

Using domain specific compression with fast SIMD-friendly decompression hides at least 60% of this overhead.
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Table 6: Summary of compression results. Compression ratio, com-
pression/decompression times and SIMD scalability are shown for
ZLIB and our compression algorithm.
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achieves 37% to 44% higher compression ratio than ZLIB and 11%
to 24% faster decompression time (row 1 in the table). For the object
datasets, ZLIB achieves better compression ratio than our algorithm.
However, because raw data is two times larger than object data, overall
our scheme achieves up to 1.3x more compression than ZLIB.

In addition to higher compression ratio, our scheme achieves faster
decompression times than ZLIB. This is shown in the row 5 and 6.
When integrated with our ray-casting, our approach shows 20% de-
compression overhead, while ZLIB shows 27%. Most importantly, our
schemes is significantly more SIMD-friendly than ZLIB. While ZLIB
is inherently sequential, our fixed-length decompression scheme maps
straightforwardly to wide SIMD architectures. Specifically, as shown
in row 7 and 8, we achieve 6x speed-up due to SIMD on raw data and
14x on object data. Finally, our scheme has faster compression times
than ZLIB, as shown in row 3 and 4. We see that the overhead of
compression is 2x higher than the overhead of decompression for vol-
ume data and almost 8x higher for object data. However compression
overhead is less important than decompression overhead since com-
pression occurs less frequently than decompression, since raw volume
data is compressed once but rendered multiple times.

Figure 7 shows the results of using compression in our sub-volume
based algorithm. For each dataset there are three bars which corre-
spond to 16-, 32- and 64-core configurations. The upper sub-bars
show the Larrabee speed-up with transfer overhead and compression.
We see that compression significantly reduces overhead of data trans-
fer on 32 and 64 cores, while adding a small computational overhead
for decompression. Namely, for 32 cores we observe on average only
20%-30% slowdown, compared to the data in Figure 6. For exam-
ple, for dataset 4 the right bar of Figure 6 shows that on 32 cores
sub-volume achieves 32x speed-up when transfer overhead is ignored.
However, as seen in Figure 7, after compression, the speed-up is 26x
for the same dataset, including both transfer time as well as overhead
of decompression. For 64 cores, for some datasets, we cannot com-
pletely recover performance loss due to transfer overhead. But even in
the worst case, exemplified by ds5, compression hides at least 60% of

Fig. 8: Performance on GTX280/CUDA Architecture. Sub-volume
is up to 1.6x faster than full-volume, because its smaller working set
fits better in texture cache.

this overhead.
6.3 Nvidia GTX280

We used the CUDA SDK [22] to map volume rendering to the Nvidia
GTX280, assigning a packet of rays to each thread block. While cod-
ing a CUDA kernel is relatively simple, most of our time was spent
optimizing its performance. The key optimizations involved mapping
key data structures, such as volume data, object map, and composite
table to various available on-die memory types, such as multi-ported
shared memory, constant memory, and texture memory. We tried all
feasible combinations of memory type and data structures. For full-
volume we could only use textures for both object and volume data,
because each of these data structures is too big to fit into shared mem-
ory. We found that 1D textures performed best for smaller datasets.
Due to constraints on the size of 1D textures, we were forced to use 3D
textures for larger datasets to be able to run full-volume on GTX280.

Aggressively allocating data to various memories on the card re-
duces most of global memory accesses but not all, as reported by the
CUDA profiler. Some of the remaining accesses come, for example,
from the rendered image, which has to be kept in global memory. It
is too large to fit into shared local memory and cannot be treated as a
texture because it requires write accesses.

Figure 8 shows GTX280 performance for the 6 datasets. The left
bar shows performance for the full-volume implementation, while the
right bar shows performance for the sub-volume implementation. Full-
volume bars are missing for ds5 and ds6 because they are too big to
fit into GTX280 memory. We see that sub-volume is between 1.2x to
1.6x faster than full-volume. This is due to the fact that sub-volume
has better memory locality, which is likely to result in fewer misses
in the texture cache. The CUDA profiler reported many more global
memory stores in case of sub-volume than full-volume. Due to the fact
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that each sub-volume is projected into a local image (see Section 3.2),
the areas of overlap of two projections require double the amount of
stores compared to full-volume. However, the impact of extra stores
on performance is negligible, compared to global loads. At this level
of performance, PCle transfer time is not a bottleneck. For example,
ds2 achieves 9x over single core CPU baseline. As Figure 7 shows,
for this dataset to be limited by transfer overhead, its performance has
to be at least 20.4x over the baseline.

In contrast, there are several GPU implementations of ray-casting
using fragment shaders [9, 15]. Mensmann, et al. compared CUDA
and fragment-shader ray-casters, both implemented in Voreen render-
ing engine (http://www.voreen.org/), and found that their CUDA code
was from 18% slower to 40% faster [20]. These results are not di-
rectly comparable to our CUDA implementation, due to their using
a 6-neighbor gradient, a different transfer function, and other differ-
ences. We performed a more direct comparison by importing our med-
ical imaging datasets and transfer functions into the Voreen fragment
shader, as well as by modifying it to compute 26-neighbor gradients.
Table 7 gives the results in frames-per-second for the four data sets
that we were able to run through Voreen. ds5 and ds6 did not fit into
the graphics card’s texture memory.

Table 7: Comparison between CUDA and fragment-shader ray-
casting. Voreen was adapted as the fragment-shader implementation.

Dataset dsl ds3 ds2 ds4
CUDA (FPS) 19.61 | 2.75 8.75 1.45
Fragment-shader (FPS) | 22.56 | 3.08 | 10.76 | 1.83

We see that the Voreen fragment shader is 1.12x to 1.26x faster
than our CUDA implementation, which is comparable to the obser-
vations made by Mensmann et al. We believe this is largely due to
taking advantage of hardware rasterization to perform empty space
skipping [15], which is not an option for our CUDA implementation.
As the result, for datasets with many empty voxels (Table 3), such as
ds2 and ds4, Voreen achieves speedups of 1.23x and 1.28x, respec-
tively, over our CUDA implementation. For datasets with few empty
voxels, such as dsl and ds3, a significant portion of the execution
time is spent in gradient computation. As a result, Voreen achieves
smaller speedups of 1.12x and 1.15x, respectively. Overall, we see
both CUDA and fragment-shader implementations of ray-casting are
comparable in performance.

7 CONCLUSIONS

This paper maps and evaluates performance of volume rendering
application on three modern parallel architectures: Intel Nehalem,
Nvidia GTX280 and Intel Larrabee. Overall our parallel implemen-
tation of ray-casting delivers close to 5.8x speed-up on quad-core Ne-
halem over an optimized scalar baseline version running on a single
core Harpertown. This enables us to render a large 750x750x1000
dataset in 2.5 seconds. In comparison, we achieve 5x to 8x speed-up
on Nvidia GTX280 over the scalar baseline. In addition, we show,
via detailed performance simulation, that 16-core Larrabee delivers
around 10x speed-up over single core Harpertown, which is on aver-
age between 1.5x higher performance than GTX280 at half the flops.
For 32-core and 64-core Larrabee the performance is dominated
by the overhead of data transfer. When the overhead is ignored, we
simulate 24x and 42x speed-up on 32-core and 64-core Larrabee, re-
spectively, over scalar baseline. When transfer time is accounted for,
the measured speed-up is reduced to 11x for both configurations. To
this end, we have developed a lossless SIMD-friendly compression al-
gorithm which on average compresses our dataset by more than 3x,
while decompression overhead is less than 30%. With such compres-
sion, we are able to reduce the transfer time overhead to 20%-30% on
average. This results in 19x and 31x speed-ups on 32-core and 64-core
Larrabee, respectively.
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