Comput Sci Res Dev (2011) 26: 211-220
DOI 10.1007/s00450-011-0169-x

SPECIAL ISSUE PAPER

Designing and dynamically load balancing hybrid LU

for multi/many-core

Michael Deisher - Mikhail Smelyanskiy -
Brian Nickerson - Victor W. Lee - Michael Chuveley -
Pradeep Dubey

Published online: 14 April 2011
© Springer-Verlag 2011

Abstract Designing high-performance LU factorization for
modern hybrid multi/many-core systems requires highly-
tuned BLAS subroutines, hiding communication latency and
balancing the load across devices of variable processing ca-
pabilities. In this paper we show how single-precision LU
factorization is accelerated on Intel® MIC(Many Integrated
Core) architecture in both native and hybrid (Intel® Xeon®
processor and Intel MIC) configurations. Our SGEMM im-
plementation delivers close to 1 Tflop/s on Intel’s first imple-
mentation of Intel MIC architecture [codenamed Knight’s
Ferry (KNF)] silicon platform. Our implementation takes
full advantage of multiple levels of memory hierarchy on
MIC, and successfully utilizes up to 80% of its peak com-
pute capability. Our LU factorization performance exceeds
570 Gflop/s including matrix transfer overhead when ex-
ecuted entirely on a KNF coprocessor. Our hybrid imple-

M. Deisher (X))
Intel Labs, Hillsboro, OR, USA
e-mail: michael.deisher @intel.com

M. Smelyanskiy - V.W. Lee - P. Dubey
Intel Labs, Santa Clara, CA, USA

M. Smelyanskiy
e-mail: mikhail.smelyanskiy @intel.com

V.W. Lee
e-mail: victor.w.lee@intel.com

P. Dubey
e-mail: pradeep.dubey @intel.com

B. Nickerson
Intel Architecture Group, Santa Clara, CA, USA
e-mail: brian.r.nickerson @intel.com

M. Chuvelev
Software and Solutions Group, Nizhny Novgorod, Russia
e-mail: michael.chuvelev@intel.com

mentation, which offloads parts of LU processing to a dual-
socket multi-core Intel Xeon processor X5680 host, delivers
up to 772 Gflop/s. The novel aspect of our implementations
is dynamic resource partitioning to improve load balance
across the entire system.

Keywords High performance computing - Hybrid
architecture - LU factorization - Intel MIC architecture -
SGEMM - Many-core architecture - Dense linear algebra -
Panel factorization - Partial pivoting - Right looking

1 Introduction

The dense LU factorization, which represents matrix A as
a product of lower and upper triangular matrices, L and U,
is a central kernel commonly used in many linear algebra
operations, such as solving non-symmetric systems of linear
equations or inverting a matrix.

Modern many-core architectures deliver from several
hundreds of Gflop/s to several Tflop/s of floating-point
single-precision performance and from tens of GB/s to over
a hundred GB/s memory bandwidth. Hybrid systems which
consist of one or several multi-core architectures enhanced
with one or several co-processors, connected via slow links,
are also becoming common [10]. To achieve high LU per-
formance on such systems requires careful tuning and opti-
mization of BLAS, hiding communication latency and bal-
ancing the load across devices of variable processing capa-
bilities. In this paper we demonstrate how LU factorization
can be accelerated on Intel® MIC (Many Integrated Core)
architecture in both native and hybrid (Intel Xeon proces-
sor and Intel MIC) configurations. We restrict our discus-
sion to single-precision implementations of LU, even though
the observations noted and insights derived are applicable
to more common double precision implementations as well.

@ Springer

mailto:michael.deisher@intel.com
mailto:mikhail.smelyanskiy@intel.com
mailto:victor.w.lee@intel.com
mailto:pradeep.dubey@intel.com
mailto:brian.r.nickerson@intel.com
mailto:michael.chuvelev@intel.com

212

M. Deisher et al.

We consider the factorization of matrices that reside in the
CPU memory in column-major layout, and whose factor-
ization overwrites the original data. We make the following
contributions:

High performing single coprocessor SGEMM: Our highly
tuned matrix-matrix multiply (SGEMM) implementation
takes full advantage of multiple levels of memory hierar-
chy present on KNF, including a register file and two levels
of caches to satisfy the bandwidth constraints between each
level. Our implementation delivers close to 1 Tflop/s on an
Intel MIC coprocessor [codenamed Knight’s Ferry (KNF)]
for matrices in row-major or column-major format. This
corresponds to almost 80% of the KNF compute peak.

High performing single coprocessor LU: Our optimized
native LU implementation, which runs entirely on a KNF
system, delivers up to 650 Gflop/s of performance without
data transfer overhead and up to 574 Gflop/s of perfor-
mance when transfer time is included. This implementa-
tion employs a novel dynamic core allocation mechanism
to partition cores between panel factorization and trailing
sub-matrix update.

High performing hybrid LU: Our hybrid implementation,
which offloads parts of LU processing to a dual-socket
multi-core Intel Xeon processor X5680 host, achieves up
to 772 Gflop/s. Similar to other implementations, our hy-
brid approach offloads panel factorization and portions of
SGEMM to CPU cores. Here we use a new dynamic core
allocation and matrix partitioning scheme for better load
balance.

The rest of this paper is organized as follows. In Sect. 2
we present the standard LU factorization algorithm and
our experimental environment. Section 3 describes our op-
timized implementation of SGEMM, provides results, and
presents their analysis. Sections 4 and 5 present tuning and
performance analysis of native and hybrid LU implementa-
tions. Results are compared with previous work in Sect. 6.
We conclude and present our future work in Sect. 7.

2 Background
2.1 LU factorization

The LU factorization algorithm decomposes a matrix A into
a product of a lower-triangular matrix L and an upper tri-
angular matrix U. The blocked LU formulation is shown
schematically in Fig. 1. In this algorithm the lower triangu-
lar part of the input matrix is overwritten with L and the up-
per triangular part with U. The algorithm proceeds from left
to right in block steps until the entire matrix is factorized. At
each step, a portion of the column panel of L consisting of D
and L; is first factored. Then a portion of the row panel U; is
updated using a triangular forward solve. The trailing sub-
matrix A; is updated with the matrix-matrix product of L;

@ Springer

Fig. 1 LU factorization

Finished part of U

L| A=A-LY,

Finishedpart of L

Table 1 Architectural characteristics of Intel Xeon processor X5680
and KNF coprocessor

Xeon KNF
Sockets 2 1
Cores/socket 6 32
Core Frequency, GHz 33 1.2
SIMD Width 4 16
SIMD Regs/core 16 32
L1 cache, KB 32 32
L2 cache, KB 256 256
L3 cache, MB 12 n/a
Peak bandwidth, GB/s 64 115
Peak SP, Gflop/s 316 1,228

and U;. Panel factorization and trailing matrix update are the
two most critical LU kernels. Pivots are computed within a
single column, and individual rows, not blocks, are swapped
during pivoting. After this process is completed, the solution
of Ax = b can be obtained by forward and back substitution
with L and U. A more detailed treatment of the algorithmic
issues can be found in [6].

2.2 Modern many-core architectures

Our experimental testbed consists of a dual-socket Intel®
Xeon® processor with a KNF coprocessor attached to it via
PCle 2.0 x 16 interface. We next provide the background on
each of these architectures. Their key features are summa-
rized in Table 1.

Intel Xeon processor: The Intel Xeon processor X5680 is
based on an x86-based multi-core architecture which pro-
vides six cores on the same die. Each core is running at up
to 3.3 GHz. The architecture features a super-scalar out-of-
order micro-architecture supporting 2-way hyper-threading
and 4-wide SIMD. Each core is backed by a 32 KB L1 and
a 256 KB L2 cache, and all six cores share a 12 MB L3
cache. Six-core CPUs each deliver a peak 158 Gflop/s of
single-precision, as well as 32 GB/s of peak main memory
bandwidth. To benchmark SGEMM and LU factorization
on this platform, we used highly optimized BLAS and LA-

Designing and dynamically load balancing hybrid LU for multi/many-core

213

PACK implementations from the Inte]® Math Kernel Li-
brary (MKL) 10.2.

Intel Knight’s Ferry: KNF is an Intel MIC architecture plat-
form. Intel MIC, whose schematic diagram is shown in
Fig. 2, is an x86-based many-core processor architecture
based on small in-order cores that uniquely combines the
full programmability of today’s general purpose CPU ar-
chitecture with compute throughput and memory band-
width capabilities of modern GPU architectures. Each core
is a general purpose processor, which has a scalar unit
based on the Intel® Pentium® processor design, as well as
a vector unit that supports 16 32-bit float or integer op-
erations per clock. KNF has a peak Gflop/s of 1,228 and
peak bandwidth of 115 GB/s. It has two levels of cache:
alow latency 32 KB L1 data cache and a larger globally co-
herent L2 cache that is partitioned among the cores, each
core having a 256 KB partitioned L2 cache. As a result,
widely-used multiprocessor programming techniques, such
as Pthreads or OpenMP apply to KNF. To further hide la-
tency, each core is augmented with 4-way multi-threading.
The KNF pipeline is dual-issue: scalar instructions as well
as pre-fetch instructions can pair and issue in the same cy-
cle as vector instructions.

Fig. 2 Intel MIC architecture
diagram

GDDR
| |

Multi-Threaded
Wide SIMD

3 Matrix-matrix multiply

In this section we describe our design and implementa-
tion of single-precision matrix-matrix multiply (SGEMM),
C =aAB + BC. To avoid inefficient strided memory ac-
cess during pivoting, our matrix is laid out in row-major or-
der. Our implementation can be trivially extended to handle
column-major format.

3.1 Implementation

Basic kernel: Our basic SGEMM kernel, shown in Fig. 3(a)
multiplies a 6 x 4 sub-block of A by a 4 x 64 sub-block of
B and stores the result into a 6 x 64 sub-block of C. The
outermost loop iterates over the rows of sub-blocks of A.
Each 4-element row is multiplied by the entire sub-block
of B and the result is aggregated into a corresponding row
of a sub-block of C. Our implementation performs register
blocking to reduce pressure on the L1 cache. Specifically,
6 x 64 sub-blocks of C are pre-loaded into 24 16-wide
vector registers, vc; j, which are re-used across multiple
invocations of the basic kernel to amortize the overhead
of filling and spilling these registers from and to memory.

GDDR

Multi-Threaded
Wide SIMD

=
S ot
@ 5 b]
% = Il I. O —
5 5 e e —— 3= =
o
(; L2 Cache &
>
= =
(e} — e~ Q (e}
E I-I— 4—1-1 fm E
S Multi-Threaded Multi-Threaded @ =
Wide SIMD Wide SIMD 2

LY

PCle
Registers: ve;;, vb;j, va; A A4 A+8 A+12
each register is 16-wide A: a1 | a2
ve;;are preloaded with m--m < 64 »
Clilli*16:(j+1)*16-1] _ertols broadcast
Input: A:6x4, B:4x32 lane0 | a0 | a1 | a2 | a3 | ©
Operation: C=aAB+BC F
. . lanel | a0 | al | a2 | a3 |2
OQutput: C:6x64 2y 3 B
lane2 | a0 | al | a2 | a3 |3 ‘;En
load vb;; with B[i][j*16:(j+1)*16-1] D &
, | o
unrollfor i=0to 6 do ane3 | a0 |al]a2 | a3 |~
va;=load A[i][0:3] with 4to16 broadcast Lswizzee, N
unrollfor t=0 to 4 do To I5
unrollfor v=0 to 16 do lane0 | a2 | a2 | a2 | a2
= * T1
v, =VC, by *SWIZZLE vay) lanel | a2 | a2 | a2 | a2 A 24| C
endfor T2
endfor lane2 | a2 | a2 | a2 | a2 T
endfor lane3 | a2 | a2 | a2 | a2 —

(a) Basic sgemm kernel

Fig. 3 Basic SGEMM kernel

(b) 4to16 broadcast and swizzle

(c) Four threads work on 24x64 block

@ Springer

214

M. Deisher et al.

Elements of sub-blocks of B are loaded into vb; ; regis-
ters for each invocation of the kernel, but they are reused
across each row of C. To multiply 4-element rows of sub-
blocks of A by the entire sub-block of B, we load the
four elements into va using the 4-to-16 broadcast instruc-
tion shown in Fig. 3(b). This instruction replicates four el-
ements in all four lanes. The inner loop multiplies each
element of a row of a sub-block of A by a row of a sub-
block of B. To do this, we replicate the required element
across the entire vector using in-register swizzle, as shown
in Fig. 3(c). The swizzle is fused with the multiply-add in-
struction and has no additional penalty.

Exploiting data locality: Each of four threads on a single
core calls the basic kernel eight times to multiply a 6 x 32
block of A by a 32 x 64 block of B, and store the result
into a 6 x 64 block of C. Conceptually, a core works on
a 24 x 64 block of C, as shown in Fig. 3(c). Note that
a 32 x 64 block of B fits into L1 cache and is therefore
shared among four threads. Furthermore, blocks of A and
B are combined into panels. A panel of A is some number,
pw, of horizontally adjacent 24 x 32 blocks of A, while
a panel of B is the same number of vertically adjacent
32 x 64 blocks of B. Multiplying these panels together pro-
duces a 24 x 64 block of C. Panel size pw is selected to
fit well into the 256 K L2 cache. To decrease the byte:flop
ratio of SGEMM, each core multiplies ph vertically adja-
cent panels of A (24ph x 32 pw block), by the same panel
of B (32 x 64 block), which stays reused in the L2 cache,
to produce a 24ph x 64 block of C. We seek ph and pw
such that:

— Panels of A and B fit into the L2 cache partition. This re-
quires the following condition to be true: 4(24 x32pw +
32pw x 64) < L2partsizegyy.

— The byte:flop ratio of multiplying pw panels of A by a
panel of B is less than the byte:flop ratio of KNF. This
results in the second condition:

4(24ph32pw + 32pw64 + 24 ph64) bytes
(24ph32pw64 * 2) flops

< byte : flopgyr

There are many values of ph and pw which satisfy these
two conditions. Using auto-tuning we discovered that for
ph =5and pw = 18, SGEMM achieves best performance.
Memory latency optimization: To hide memory latency, our
implementation uses software pre-fetching. KNF has two
types of pre-fetch instructions: an instruction that pre-
fetches data from DRAM into L2 cache, and an instruc-
tion that pre-fetches data from L2 into L1 cache. When we
compute a 24 x 64 block of C, we issue L2 pre-fetches
for the data required by the next block. This reduces L2
warm-up misses as we move across blocks. Due to the fact
that each block takes at least 24 x 32 %64 /16 = 3000 cycles

@ Springer

of computation, L2 pre-fetches have enough time to com-
plete. Each basic SGEMM kernel issues L1 pre-fetches for
the next 6 x 4 sub-block of A and the next 4 x 64 sub-
block of B. Finally, on KNF pre-fetches are queued up in
pre-fetch buffers. There is limited number of these buffers.
Hence, special care is taken to space-out L1 and L2 pre-
fetches so as not to exceed the number of these buffers.
Exceeding the number of pre-fetch buffers results in extra
pipeline stalls.

Thread-level parallelism: Super-blocks of C are divided
evenly between cores to achieve good load balance. To en-
sure that four threads run in sync and thus have constructive
sharing of data in the core’s L1 and L2 caches, we deploy
a low overhead synchronization mechanism. Specifically,
each core has an array of four counters, collocated into
a single cache line, with each core having its own cache
line. At intervals during the processing kernel, each thread
increments its own counter and then compares against all
counters of the core. When unequal, the thread issues a
DELAY instruction for some tunable number cycles; when
equal, the thread continues processing its block. Without
this synchronization mechanism between threads on the
same core, we observed performance degradation of al-
most 2x. The degradation comes from threads getting out
of sync, and as a result working on different parts of B,
which, in turn, results in a large working set that does not
fit into the L1 and L2 caches.

3.2 Performance comparison and analysis

Figure 4 shows the performance of SGEMM on an Intel
Xeon processor X5680 and KNF coprocessor. The bottom
two curves show SGEMM performance on single and dual
socket Xeon processors, respectively. Single socket achieves
a maximum performance of 150 Gflop/s, which corresponds
to 94% efficiency, while dual socket achieves 290 Gflop/s,

——Xeon (single socket) —=-Xeon (dual socket)

MIC (A,B,C: NxN) ——MIC(A: Nx64, B:64xN, C: NxN)

1,000

700

500

Gflop/s

00

300

200 4%
100

64 128 256 512 1,024 2,048 3,072 4,096
N

Fig. 4 Performance of SGEMM on Xeon X5680 and KNF

Designing and dynamically load balancing hybrid LU for multi/many-core

215

which corresponds to 91% efficiency. The top curve shows
KNF performance on a general SGEMM, where all three
matrices have equal numbers of rows and columns, N. KNF
achieves a maximum performance of 956 Gflop/s, which
corresponds to 78% efficiency.

The second curve from the top shows performance of a
special SGEMM which does rank-64 update. As discussed
in Sect. 2, this is the key operation of our blocked LU imple-
mentation. We see that rank-64 SGEMM achieves a lower
efficiency of 71%, compared to the general SGEMM effi-
ciency of 78%. The loss in efficiency is due to the following
reasons. First, for rank-64 update, panel width, pw, must be
64 which exposes the instruction overhead of moving block
C between memory and registers. Second, the number of
vertically adjacent panels of A (a block of 24ph x 32pw el-
ements) must also be 64, which is not a multiple of 6. As the
result, in contrast to the general SGEMM where each call to
a basic kernel works on 6 rows of A, in the rank-64 SGEMM
some calls to the basic kernel work only on 5 rows of A to
make the total work add up to 64. This reduces basic kernel
SIMD efficiency.

4 LU Factorization: KNF implementation

In this section, we describe our implementation of LU, ex-
plain design trade-offs, provide details of optimization of its
modules, and compare its performance on two hardware ar-
chitectures. Our experiments are done for randomly gener-
ated matrices.

Following [12] and [15] we adopt a right-looking imple-
mentation of LU because it exposes the maximum amount
of data- and thread-level parallelism in the SGEMM routine.
Our implementation also uses a static schedule and overlaps
column panel LU with trailing sub-matrix update using a
look-ahead technique. However, in contrast to [15] and [2]
that perform panel LU on the host CPU and trailing sub-
matrix update on a GPU we perform both operations on a
KNF coprocessor.

The main operations of LU are SGEMM, block inverse,
row swapping, and panel LU. Matrix-matrix multiply was
discussed in the previous section. The block inverse (which,
along with an SGEMM, takes the place of triangular solve)
was implemented in a single-threaded section. Sufficient
performance was obtained by implementing it using KNF
vector instructions. Overall it only accounted for 2% of LU
performance for the 8192 x 8192 problem to 13% of LU
for the 1024 x 1024 problem after optimization. The row
swapping operation was implemented using vector load and
store instructions and was parallelized by assigning each
block column of the matrix to a thread. Row major lay-
out makes row swapping bandwidth friendly. Overall row
swapping only accounts for 2.7% of LU performance for the

1024 x 1024 problem to 4.5% of LU performance for the
8192 x 8192 problem after optimization. Since panel LU is
critical for good performance we treat it in greater detail in
the following sub-sections.

4.1 Panel LU performance target

To balance processing resources among the two parallel op-
erations (panel LU and SGEMM), consider the number of
floating point operations required for each. The size of the
panel is (n — k 4 1) x v while the size of the partial previous
trailing sub-matrix is (n —k 4+ 1) x (n —k — v 4+ 1). The
number of floating point operations required for panel LU
is (n — k + 1)v? — v3/3 — v2/2 + 5v/6 while the number
of flops to update the partial previous trailing sub-matrix is
2(n—k+1)(n—k—v+1)v. Let Fp denote the performance
of panel LU and let Fs denote the performance of the par-
tial previous trailing sub-matrix update. Both are measured
in Gflop/s. To balance the two operations we require that

(n—k+1)v2—”3—3—"2—2+%“
Fp
_2—k+Dmn—k—v+ v
= e

leading to

S(n—k+1>v2—“§—§+%
2m—k+1D(n—k—v+ 1)v

Fp=

Figure 5 shows a plot of Fp versus panel height for panel
widths of 64, 96, and 128, and measured values of Fg on
KNF using the SGEMM described in Sect. 3. It shows the
required performance of panel LU in each of these cases to
balance the load with the partial previous trailing sub-matrix
update. For shorter panels higher performance is required to
maintain load balance. For example, when panel width is
64, 17.3 Gflop/s are needed at a panel height of 384 while

Panel LU Performance Needed to Load Balance

——Panel Width 64
——Panel Width 96
60.00 Panel Width 128

30.00 \\\\\\\\
20.00
10.00 &

i

Gflop f Second

< @
&
m ~

1152
1920
2304
2688
3072
3456
3840
4224
4608

Panel Height

Fig.5 Performance of panel LU needed to balance trailing sub-matrix
update for panel widths of 64, 96, and 128

@ Springer

216 M. Deisher et al.
64-wide Panel LU Performance CoreAllocation
20
= —+—1024
18 2008 = SGEMM Cores
4096 ® Panel LU Cores
16 ——8192
14 r

Xeon

Fig. 6 Performance of optimized panel LU on Xeon X5680 and KNF

1.0 Gflop/s are needed at a panel height of 7680. For our
LU implementation we choose a panel width of 64 and use
the performance target given by Fig. 5 with the goal of im-
proving panel LU performance to match that of the previous
partial trailing sub-matrix update in all cases.

4.2 Optimization of panel LU

We devoted considerable attention to the optimization of
panel LU since it is a performance bottleneck of LU fac-
torization. To optimize panel LU, we first combined the
pivot search with the previous iteration of the normaliza-
tion/update loop. The combined inner loop was parallelized
by dividing rows below the diagonal among the available
threads. SIMD vector instructions were used to exploit data
parallelism within the combined loop. Finally, the outer loop
was split into v/w sections where w is the SIMD width.
Since the number of columns processed decreases by one for
each iteration of the outer loop, splitting the outer loop into
v/w sections allowed us to decrease the number of instruc-
tions in the inner loop of each subsequent section. Finally,
software pre-fetching was used to hide memory latency.

Figure 6 shows the panel LU performance achieved on
an Intel KNF coprocessor compared with that obtained us-
ing a similar optimization approach on an Intel Xeon proces-
sor X5680." The KNF coprocessor achieves nearly 8 Gflop/s
while the Xeon processor gets more than 18 Gflop/s. Com-
paring with Fig. 5, neither meets the requirement to perfectly
load balance at smaller panel heights. However, load balance
is easily achieved at larger panel heights. The panel width of
64 was a good choice since narrower panels introduce com-
munication bottleneck in SGEMM while wider panels are
harder to load balance.

'Due to lack of row major panel factorization in MKL, a custom row
major panel factorization routine was used.

@ Springer

Number of Cores

Panel Height

Fig. 7 Cores are allocated between panel LU and trailing sub-matrix
update as a function of panel height

4.3 Dynamic core allocation

Both panel LU and trailing sub-matrix efficiencies and per-
formance are a function of panel height. Therefore, the dis-
tribution of cores between panel LU and the previous par-
tial trailing sub-matrix update that provides maximum LU
performance is also a function of panel height. Since the
first panel LU cannot be overlapped with a partial previ-
ous trailing sub-matrix update, all cores are available to it.
However, maximum performance on KNF is achieved for 7
cores since inter-core communication and synchronization
overhead prevents further improvement as more cores are
added. This issue is addressed in the next section by offload-
ing panel LU. For subsequent panels, the dynamic core allo-
cation schedule shown in Fig. 7 was developed by measur-
ing overall performance on KNF as panel height is stepped
from 64 to 15360 in increments of 64 and number of cores
assigned to panel LU Npanel_cores s stepped from 1 to the
total number of cores, N5, minus one. The allocation re-
sulting in maximum overall LU performance was recorded
for each panel height.

4.4 Overall LU results

Figure 8 shows performance of LU factorization running
entirely on an Intel Xeon processor X5680 and entirely
on a KNF coprocessor prototype. The data is assumed
to be in column-major format in both implementations.
This figure shows KNF performance with and without
matrix transfer. The KNF implementation achieves nearly
575 Gflop/sec (650 Gflop/sec if transfer is not required)
while the Intel Xeon processor implementation achieves
about 275 Gflop/sec. Although matrix transfer overhead will
diminish as the problem size increases, we reach the mem-
ory limit of the hardware before that trend can be seen here.
For smaller matrix sizes the Intel Xeon processor outper-
forms the KNF coprocessor due to lower inter-core commu-
nication overhead. Performance on KNF is limited by panel
LU time, especially for smaller panel heights. Therefore, we
next investigate performance when panel LU is offloaded.

Designing and dynamically load balancing hybrid LU for multi/many-core

217

LU Performance on KNF Hardware

700

= Xeon X5680 12c 3.33 GHz
600 -— ——KNF32c1.2GHz
KNF 32¢ 1.2 GHz w/o transfer

” ———
400 /

300 /

0 S
100 /
']'/ T

s SRR I S St R g
RNy *\?P%GP &I KGN g

Gflop/sec

W
S
<M M)

Matrix Size

Fig. 8 Performance of LU on Xeon X5680 and KNF

5 Hybrid LU implementation

As suggested by Fig. 6 and the findings of others (e.g., [15]),
offloading panel LU to the CPU could improve performance
provided data transfer overhead is small. Moreover, in [12]
further performance improvement was achieved by retain-
ing some number of columns on the right side of the matrix
and utilizing free CPU cores to process them. Here, we in-
troduce a load-splitting hybrid LU algorithm with dynamic
core allocation and matrix partitioning.

Our algorithm is described as follows. Let @ be the num-
ber of rightmost N x 64 block-columns retained on the CPU.
The first panel of the column major input matrix is factored
in place and the block inverse is computed. Then the left
N x (N — 64«) portion of the matrix is transferred to the
card along with the pivot vector and block inverse. There the
matrix is transposed to convert to row-major format. Row
swapping and the SGEMM required to complete the trian-
gular solve operation are carried out for the left and right
portions of the matrix on the host CPU and KNF card, re-
spectively. The next panel is updated on the card and trans-
mitted to the host CPU. At this point, « is updated for best
load balance (see discussion below) and if necessary the re-
quired columns are transferred to the card. Next, panel LU,
block inverse, and partial previous trailing sub-matrix up-
date (right part) are performed in parallel on the host CPU
while the partial previous trailing sub-matrix update (left
part) is performed on the card. Then the factored panel is
transmitted to the card. If the card has received new columns
due to a change in « then they are updated before proceed-
ing. Once the factored panel has been received by the card,
the process is repeated. Once the left side of the matrix is
complete, the right side is processed on the host, the ma-
trix is converted to column-major on the card, and the left
portion transferred back to the host CPU.

There are two load balance issues in our hybrid LU algo-
rithm. First, on the CPU panel LU and block inverse must

Core Allocation

10
m SGEMM Cores
8 ¥ Panel LU Cores

Number of Cores

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

alpha

Fig. 9 Core allocation for hybrid LU

be balanced with the partial previous trailing sub-matrix up-
date of the right side of the matrix. Second, CPU process-
ing must be balanced with processing on the card. The first
is addressed by allocation of CPU cores between panel LU
and SGEMM while the second is addressed by choice of «,
the partition size. The analysis presented in Sect. 4.1 can
be used determine the core allocation that maximizes over-
all LU performance. For a panel height m and width 64,
panel LU and block inverse require 4096m + 168672 float-
ing point operations while SGEMM requires 8192am float-
ing point operations. Since SGEMM width is fixed, load bal-
ance requires only that 2F, ~ F/a for sufficiently large m.
Therefore, if performance of panel LU and SGEMM scale
linearly with m, then for each « one particular allocation
of cores between panel LU and SGEMM is optimal for all
panel heights. But since « is chosen dynamically to balance
processing on the CPU and card, it is necessary to dynam-
ically change core allocation as a function of «. Figure 9
shows the core allocation determined by exhaustive search.
The value of « for each problem size was also determined
by a search over measured performance data.

Figure 10 illustrates selection of starting «. There is up
to 66 Gflop/s performance difference at the 15360 x 15360
problem size depending on the choice of initial partition size
and core allocation. To choose « at each subsequent panel
height, a dynamic programming (Viterbi) search [14] of pre-
viously measured performance data was used. The Viterbi
search was an attractive choice because it avoids an exhaus-
tive search, allows for easy application of constraints, and
produces a smoothed state trajectory. We define the number
of cycles required to complete all LU steps for a particular
panel height as the noisy observed event. The partitioning «
plays the role of hidden state. State transition penalty is de-
fined as the number of cycles required to transfer the needed
block-columns to/from the host. Performance at each panel
height was measured for « = 0, ..., 30. We observed that
the best « tends to decrease with panel height. By constrain-
ing o to decrease monotonically with panel height, imple-
mentation was also simplified since block-columns are only
transferred in one direction. The search yields the sequence

@ Springer

6 Comparison with previous work

218 M. Deisher et al.
Effect of Matrix Partitioning Table 2 Comparison of system configurations
70 Current Ref. [11]
M 4c Panel LU
m 5¢ Panel LU
720 17 L sepanellu Host CPU Xeon X5680 Core2 Q9300
o0 Peak SP Gflop/s 316 40
" Peak BW GB/s 64 13
L]
3 0 | . Coprocessor KNF Tesla C2050
]
(] Peak SP Gflop/s 1228 1075
660 Peak BW GB/s 115 144
640 - |
G20 0 B anER J N :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Partition Size (alpha)

Fig. 10 Performance of 15360 x 15360 LU factorization over initial
o and number of panel LU cores

Hybrid LU Performance

900
u nooffload
800 m panel offload only 772
variable partitioning
700

678
600 574
500 |
400
300
200
100
o | mllBN ‘

1024 2048 5120 10240 15360

Gflop/sec

Matrix Size

Fig. 11 Performance of hybrid LU on KNF

of « that minimizes the total number of cycles required for
LU.

Figure 11 shows measured performance results compar-
ing non-hybrid performance with hybrid performance. The
first bar shows performance of the KNF-only LU factoriza-
tion with dynamic core allocation. The second bar shows
performance when panel LU is offloaded to the CPU. The
third bar shows performance when both panel LU and partial
SGEMM are offloaded. Here, o (and consequently core allo-
cation) is chosen dynamically for each panel height to max-
imize overall LU performance. The hybrid LU with vari-
able matrix partitioning and core allocation achieves up to
772 Gflop/s. This is 14% better than the algorithm that only
offloads panel LU, and 34% better than the KNF-only algo-
rithm.

@ Springer

Optimization of blocked LU factorization has been stud-
ied for many years [5, 6]. Very well-optimized libraries are
available for modern multi-core CPUs. The Intel MKL is
one such library [9]. Open source libraries are also available
demonstrating the latest research techniques [1, 7, 13].

Recently, there have been several papers on hybrid CPU-
GPU implementations where panel LU and possibly a por-
tion of trailing sub-matrix update SGEMM are offloaded
from the accelerator card to the CPU [2, 8, 13, 15]. The
highest reported single-node hybrid LU performance is re-
ported in [11]. In this work, a single socket Quad-Core
Intel® Core™2 processor Q9300@2.50 GHz together with
a single Fermi C2050 card deliver close to 460 Gflop/s for
10 K matrices in single precision (see Table 2). [8] deliv-
ers up to 350 Gflop/s on the single precision problem of the
same size.

None of the previous work attempts to optimize full LU
factorization entirely on the accelerator. This is in contrast
to our work, which delivers 574 Gflop/s of LU performance
running entirely on a KNF coprocessor. This native (all-
KNF), non-hybrid performance is almost 25% faster than
the hybrid performance reported in [11]. Furthermore, our
hybrid implementation for the same problem running on a
comparable platform of 12 cores and a single KNF copro-
cessor delivers up to 772 Gflop/s, which is nearly 1.7 x faster
than the highest performance reported in [11] (or 1.5x faster
for 10 K matrices, the largest size in [11]).

Furthermore, existing hybrid implementations do not at-
tempt to dynamically adjust size of SGEMM partition exe-
cuted on CPU, while our implementation does.

Panel factorization is a key performance limiter to LU
factorization. It has limited amount of parallelism and is
typically constrained by memory bandwidth, especially on
architectures with small last level caches. While it is typi-
cally overlapped with trailing sub-matrix update, it can still
create sequential dependence between stages of LU. While
accelerator-based implementations, including ours, offload
panel factorization to the faster CPU cores, there exist alter-
native implementations which reorganize LU to use smaller
granularity task which breaks the sequential dependencies

Designing and dynamically load balancing hybrid LU for multi/many-core

219

and results in larger amount of parallelism. Current exam-
ples include work on LU and QR factorizations, in particu-
lar in the so called tiled [3] and communication avoiding [4]
algorithms.

7 Conclusion

This paper shows how single precision LU factorization is
accelerated on the Intel MIC parallel architecture in both
native and hybrid processing configurations. Our implemen-
tations of SGEMM and LU factorization take full advantage
of the architectural features of the KNF coprocessor and suc-
cessfully utilize a high fraction of its peak compute capabil-
ities. Our highly tuned SGEMM implementation achieves
close to 1 Tflop/s performance on a single KNF coproces-
sor. Our LU factorization, which employs a dynamic load
balancing mechanism, achieves nearly 575 Gflop/s when ex-
ecuted entirely on a KNF coprocessor and up to 772 Gflop/s
when executed in hybrid mode. This is faster than previously
published results on comparable systems.

Acknowledgements The authors would like to thank Jim Jeffers,
Alexander Kobotov, and Steve Sylvester for helpful feedback and ad-
vice on KNF performance tuning.

Notices and disclaimers Results have been estimated based on in-
ternal Intel analysis and are provided for informational purposes only.
Any difference in system hardware or software design or configuration
may affect actual performance.

Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the perfor-
mance of that product when combined with other products.

References

1. Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J,
Ltaief H, Luszczek P, Tomov S (2009) Numerical linear algebra
on emerging architectures: the PLASMA and MAGMA projects.
J Phys 180(1)

2. Barrachina S, Castillo M, Igual FD, Mayo R, Quintana-Ort ES
(2008) Solving dense linear systems on graphics processors. In:
Proc Euro-par conference on parallel processing, pp 739748

3. Buttari A, Langou J, Kurzak J, Dongarra J (2007) A class of par-
allel tiled linear algebra algorithms for multicore architectures. In:
LAPACK working note 191, pp 1-19

4. Demmel J, Grigori L, Xiang H (2010) CALU: a communication
optimal lu factorization algorithm

5. Dongarra JJ, Duff IS, Sorensen DC, van der Vorst HA (1987) Nu-
merical linear algebra for high-performance computers. Society
for Industrial Mathematics, Philadelphia

6. Golub GH, Loan CFV (1996) Matrix computations. The Johns
Hopkins University Press, Baltimore

7. Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2001)
FLAME: formal linear algebra methods environment. ACM Trans
Math Softw 27(4):422-455

8. Humphrey JR, Price DK, Spagnoli KE, Paolini AL, Kelmelis EJ
(2010) CULA: hybrid GPU accelerated linear algebra routines. In:
Society of photo-optical instrumentation engineers (SPIE) confer-
ence series, vol 7705

9. Intel (2009) Intel(R) Math kernel library reference manual. Intel
Corporation

10. Mclntosh-Smith S, Irwin J (2007) The best of both worlds: deliv-
ering aggregated performance for high-performance math libraries
in accelerated systems. In: Proc 2007 international supercomput-
ing conference

11. Tomov S (2011) MAGMA 1.0—LAPACK for GPUs. ICL Lunch
Talk. http://tinyurl.com/68rz3qk

12. Tomov S, Dongarra J, Baboulin M (2008) Towards dense lin-
ear algebra for hybrid GPU accelerated manycore systems.
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf

13. Tomov S, Nath R, Du P, Dongarra J (2010) MAGMA version
1.0rc2. http://icl.cs.utk.edu/magma

14. Viterbi A (1967) Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Trans Inf The-
ory 13(2):260-269

15. Volkov V, Demmel JW (2008) Benchmarking GPUs to tune dense
linear algebra. In: Proc ACM/IEEE conf supercomputing, pp 1-11

Michael Deisher joined Intel’s Par-
allel Computing Lab as a research
scientist in 2009. His research in-
terests include speech signal pro-
cessing and applied mathematics.
| He holds M.S. and Ph.D. degrees
| in Electrical Engineering from Ari-
zona State University, and a B.S.
in Computer Engineering from Val-
paraiso University. Mike serves on
the scientific review committees for
ICASSP, InterSpeech, and ICSLP.
He has served as chair of the IEEE
Signal Processing Society’s Stand-
ing Committee on Industry DSP,
chair of the ICASSP Industry Technology Track, and guest co-editor
of Signal Processing Magazine. Mike has authored numerous publica-
tions, holds 9 US patents, and has 8 patents pending. Mike is a Senior
Member of the IEEE.

Mikhail Smelyanskiy (Member,
IEEE) received the Ph.D. degree
from the University of Michigan,
Ann Arbor. He is a Senior Research
Scientist with the Corporate Tech-
nology Group, Intel Corporation,
Santa Clara, CA. His research focus
is on building and analyzing parallel
emerging workloads to drive the de-
sign of next-generation parallel ar-
chitectures.

Brian Nickerson is a 23-year Intel veteran. Brian has worked in the
flow analysis, code scheduling, and register allocation phases of Intel
compilers, and during his tenure at Intel has written around a million

@ Springer

http://tinyurl.com/68rz3qk
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf
http://icl.cs.utk.edu/magma

220

M. Deisher et al.

lines of highly-tuned assembly code for Intel architectures spanning
all generations of X86 architecture starting with the 80386, as well as
Intel’s 80960 and Itanium architectures. Focus areas have been video
encoding, decoding, and post-processing, semantic video analysis, and
scientific kernels.

@ Springer

Victor W. Lee is a Senior Staff Re-
searcher at the Parallel Computing
Lab, Intel Corporation. He is a lead

- researcher in developing Intel’s new

Many Integrated Core architecture
and new applications that take ad-
vantages of the many-core architec-
tures. Prior to the current research,
he was involved in other Intel pro-
cessor designs such as Pentium and
Itanium processors.

Michael Chuvelev has graduated
Moscow Institute of Physics and
Technology in 1993 with MS de-
gree. Michael has joined Intel (R)
in 2003 as a member Intel (R) Math
Kernel Library (Intel (R) MKL)
team. Michael has great experi-
ence in Linear Algebra software
optimizations, he has publications
for Intel (R) Technological Jour-
nal (2007), Sobolev’s International
Conference, Novosibirsk (2008).
Currently Michael is a member of
Intel (R) MPI team.

Pradeep Dubey is a Senior Princi-
pal Engineer and Director of Paral-
lel Computing Lab (PCL), part of
Intel Labs. His research focus is
computer architectures to efficiently
handle new application paradigms
for the future computing environ-
ment. Dubey previously worked at
IBM’s T.J. Watson Research Center,
and Broadcom Corporation. He was
one of the principal architects of
the AltiVec* multimedia extension
to Power PC* architecture. He also
worked on the design, architecture,
and performance issues of various
microprocessors, including Intel® i386TM, i486TM, and Pentium®
processors. He holds over 35 patents and has published extensively. Dr.
Dubey received a BS in electronics and communication engineering
from Birla Institute of Technology, India, an MSEE from the Univer-
sity of Massachusetts at Amherst, and a Ph.D. in electrical engineering
from Purdue University. He is a Fellow of IEEE.

	Designing and dynamically load balancing hybrid LU for multi/many-core
	Abstract
	Introduction
	Background
	LU factorization
	Modern many-core architectures

	Matrix-matrix multiply
	Implementation
	Performance comparison and analysis

	LU Factorization: KNF implementation
	Panel LU performance target
	Optimization of panel LU
	Dynamic core allocation
	Overall LU results

	Hybrid LU implementation
	Comparison with previous work
	Conclusion
	Acknowledgements
	Notices and disclaimers
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

