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ABSTRACT

Current processor trends of integrating more cores with wider SIMD
units, along with a deeper and complex memory hierarchy, have
made it increasingly more challenging to extract performance from
applications. It is believed by some that traditional approaches to
programming do not apply to these modern processors and hence
radical new languages must be discovered. In this paper, we ques-
tion this thinking and offer evidence in support of traditional pro-
gramming methods and the performance-vs-programming effort ef-
fectiveness of common multi-core processors and upcoming many-
core architectures in delivering significant speedup, and close-to-
optimal performance for commonly used parallel computing work-
loads.

We first quantify the extent of the “Ninja gap”, which is the
performance gap between naively written C/C++ code that is par-
allelism unaware (often serial) and best-optimized code on modern
multi-/many-core processors. Using a set of representative through-
put computing benchmarks, we show that there is an average Ninja
gap of 24X (up to 53X) for a recent 6-core Intel® Core™ i7 X980
Westmere CPU, and that this gap if left unaddressed will inevitably
increase. We show how a set of well-known algorithmic changes
coupled with advancements in modern compiler technology can
bring down the Ninja gap to an average of just 1.3X. These changes
typically require low programming effort, as compared to the very
high effort in producing Ninja code. We also discuss hardware
support for programmability that can reduce the impact of these
changes and even further increase programmer productivity. We
show equally encouraging results for the upcoming Intel® Many In-
tegrated Core architecture (Intel® MIC) which has more cores and
wider SIMD. We thus demonstrate that we can contain the other-
wise uncontrolled growth of the Ninja gap and offer a more stable
and predictable performance growth over future architectures,
offering strong evidence that radical language changes are not re-
quired.

1. INTRODUCTION

Performance scaling across processor generations has previously
relied on increasing clock frequency. Programmers could ride this
trend and did not have to make significant code changes for im-
proved code performance. However, clock frequency scaling has
hit the power wall [32], and the free lunch for programmers is over.

Recent techniques for increasing processor performance have a
focus on integrating more cores with wider SIMD units, while si-
multaneously making the memory hierarchy deeper and more com-
plex. While the peak compute and memory bandwidth on recent
processors has been increasing, it has become more challenging to
extract performance out of these platforms. This has led to the sit-
uation where only a small number of expert programmers (“Ninja
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programmers”) are capable of harnessing the full power of modern
multi-/many-core processors, while the average programmer only
obtains a small fraction of this performance. We define the term
“Ninja gap” as the performance gap between naively written par-
allelism unaware (often serial) code and best-optimized code on
modern multi-/many-core processors.

There have been many recent publications [45, 43, 14, 2, 28, 33]
that show 10-100X performance improvements for real-world ap-
plications through adopting highly optimized platform-specific par-
allel implementations, proving that a large Ninja gap exists. This
typically requires high programming effort and may have to be re-
optimized for each processor generation. However, these papers do
not comment on the effort involved in these optimizations. In this
paper, we aim at quantifying the extent of the Ninja gap, analyzing
the causes of the gap and investigating how much of the gap can
be bridged with low effort using traditional C/C++ programming
languages.'

We first quantify the extent of the Ninja gap. We use a set of
real-world applications that require high throughput (and inherently
have a large amount of parallelism to exploit). We choose through-
put applications because they form an increasingly important class
of applications [13] and because they offer the most opportunity for
exploiting architectural resources - leading to large Ninja gaps if
naive code does not take advantage of these resources. We measure
performance of our benchmarks on a variety of platforms across
different generations: 2-core Conroe, 4-core Nehalem, 6-core West-
mere, Intel® Many Integrated Core (Intel® MIC), and the NVIDIA
C2050 GPU. Figure 1 shows the Ninja gap for our benchmarks
on three CPU platforms: a 2.4 GHz 2-core E6600 Conroe, a 3.33
GHz 4-core Core i7 975 Nehalem and a 3.33 GHz 6-core Core
17 X980 Westmere. The figure shows that there is up to a 53X
gap between naive C/C++ code and best-optimized code for a re-
cent 6-core Westmere CPU. The figure also shows that this gap has
been increasing across processor generations - the gap is 5-20X on
a 2-core Conroe system (average of 7X) to 20-53X on Westmere
(average of 25X). This gap has been increasing in spite of micro-
architectural improvements that have reduced the need and impact
of performing various optimizations.

We next analyze the sources of the large performance gap. There
are a number of reasons why naive code performs badly. First, the
code may not be parallelized, and compilers do not automatically
identify parallel regions. This means that the increasing core count
is not utilized in the naive code, while the optimized code takes full
advantage of it. Second, the code may not be vectorized, leading
to under-utilization of the increasing SIMD widths. While auto-

!Since measures of ease of programming such as programming
time or lines of code are largely subjective, we show code snippets
with the code changes required to achieve performance.
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Figure 1: Growing performance gap between Naive serial C/C++ code and best-optimized code on a 2-core Conroe (CNR), 4-core

Nehalem (NHM) and 6-core Westmere (WSM) systems.

vectorization has been studied for a long time, there are many diffi-
cult issues such as dependency analysis, memory alias analysis and
control flow analysis which prevent the compiler from vectorizing
outer loops, loops with gathers (irregular memory accesses) and
even innermost loops where dependency and alias analysis fails.
A third reason for large performance gaps may be that the code
is bound by memory bandwidth - this may occur, for instance, if
the code is not blocked for cache hierarchies - resulting in cache
misses.

Recent compiler technologies have made significant progress in
enabling parallelization and vectorization with relatively low pro-
grammer effort. Parallelization can be achieved using OpenMP
pragmas that only involve annotation of the loop that is to be par-
allelized. For vectorization, recent compilers such as the Intel®
Composer XE 2011 version have introduced the use of a pragma
for the programmer to force loop vectorization by circumventing
the need to do dependency and alias analysis. This version of the
compiler also has the ability to vectorize outer level loops, and the
Intel® Cilk™ Plus feature [22] helps the programmer to use this new
functionality when it is not triggered automatically.”. Using these
features, we show that the Ninja gap reduces to an average of
2.95X for Westmere. The remaining gap is either a result of band-
width bottlenecks in the code or the fact that the code gets only par-
tially vectorized due to irregular memory accesses. While the im-
provement in the gap is significant, the gap will however inevitably
increase on future architectures with growing SIMD widths and de-
creasing bandwidth-to-compute ratios. To overcome this gap, pro-
grammer intervention in the form of algorithmic changes is then
required.

We identify and suggest three critical algorithmic changes: block-
ing for caches, bandwidth/SIMD friendly data layouts and in some
cases, choosing an alternative SIMD-friendly algorithm. An im-
portant class of algorithmic changes involves blocking the data struc-
tures to fit in the cache, thus reducing the memory bandwidth pres-
sure. Another class of changes involves eliminating the use of
memory gather/scatter operations. Such irregular memory opera-
tions can both increase latency and bandwidth usage, as well as
limit the scope of compiler vectorization. A common data layout
change is to convert data structures written in an Array of Struc-
tures (AOS) representation to a Structure of Arrays (SOA) repre-
sentation. This helps prevent gathers when accessing one field of
the structure across the array elements, and helps the compiler vec-
torize loops that iterate over the array. Finally, in some cases, the
code cannot be vectorized due to back-to-back dependencies be-
tween loop iterations, and in those cases a different SIMD-friendly
algorithm may need to be chosen. We also discuss hardware sup-

For more complete information about compiler optimizations, see
the optimization notice at [24]

port for programmability, that can further improve productivity
by reducing the impact of these algorithmic changes.

We show that after performing algorithmic changes, we have
an average performance gap of only 1.3X between best-optimized
and compiler-generated code. Although this requires some pro-
grammer effort, this effort is amortized across different processor
generations and also across different computing platforms such as
GPUs. Since the underlying hardware trends towards increasing
cores, SIMD width and slowly increasing bandwidth have been op-
timized for, a small and predictable performance gap will remain
across future architectures. We demonstrate this by repeating our
experiments for the new Intel® MIC architecture [41], the first
x86 based manycore platform. We show that the Ninja gap is al-
most the same (1.2X). In fact, the addition of hardware gather sup-
port makes programmability easier for at least one benchmark. We
believe this is the first paper to show programmability results for
MIC. Thus the combination of algorithmic changes coupled with
modern compiler technology is an important step towards enabling
programmers to ride the trend of parallel processing using tradi-
tional programming.

2. BENCHMARK DESCRIPTION

For our study, we analyze compute and memory characteristics
of recently proposed benchmark suites [3, 11, 4], and choose a rep-
resentative set of benchmarks from the suite of throughput com-
puting applications. Throughput workloads deal with processing
large amounts of data in a given amount of time, and require a fast
response time for all the data processed as opposed to the response
time for a single data element. These include workloads from the
areas of High Performance Computing, Financial Services, EDA,
Image Processing, Computational Medicine, Databases, etc [11].
Throughput computing applications have plenty of data- and thread-
level parallelism, and have been identified as one of the most im-
portant classes of future applications [3, 4, 11], with compute and
memory characteristics influencing the design of current and up-
coming multi-/many-core processors [16]. Furthermore, they offer
the most opportunity for exploiting architectural resources — lead-
ing to large Ninja gaps if naive code does not take advantage of the
increasing computational resources. We formulated a representa-
tive set of benchmarks described below that cover this wide range
of application domains of throughput computing.

1. NBody: NBody computations are used in many scientific
applications, including the fields of astrophysics [1] and statistical
learning algorithms [20]. For given N bodies, the basic compu-
tation is an O(N 2) algorithm that has two loops over the bodies,
and computes pair-wise interactions between them. The resulting



forces for each body are added up and stored into an output array.

2. BackProjection: Backprojection is a commonly used ker-
nel in performing cone-beam image reconstruction of CT projec-
tion values [26]. The input consists of a set of 2D images that are
"back-projected" onto a 3D volume in order to construct the 3D grid
of density values. As far as the computation is concerned, for each
input image (and the corresponding projection direction), each 3D
grid point is projected onto the 2D image, and the density from the
neighboring 2X2 pixels is bilinearly interpolated and accumulated
to the voxel’s density.

3. 7-Point Stencil: Stencil computation is used for a wide
range of scientific disciplines [14]. The computation involves mul-
tiple sweeps over a spatial input 3D grid of points, where each
sweep computes the weighted sum of each grid point and its +/-
X, +/-Y and +/-Z neighbors (total of 7 grid points), and stores the
computed value to the corresponding grid point in the output grid.

4. Lattice Boltzmann Method (LBM): LBM is a class of
computational fluid dynamics capable of modeling complex flow
problems [44]. It simulates the evolution of particle distribution
functions over a 3D lattice over many time-steps. For each time-
step, at each grid point, the computation performed involves direc-
tional density values for the grid point and its face (6) and edge (12)
neighbors (also referred to as D3Q19).

5. LIBOR Monte Carlo: The LIBOR market model is used to
price a portfolio of swaptions [8]. It models a set of forward rates as
a log-normal distribution. A typical Monte Carlo approach would
generate many random samples for this distribution and compute
the derivative price using a large number of paths, where computa-
tion of paths are independent from each other.

6. Complex 1D Convolution: This is widely used in applica-
tion areas like image processing, radar tracking, etc. This applica-
tion performs a 1D convolution on complex 1D images with a large
complex filter.

7. BlackScholes: The Black-Scholes model provides a par-
tial differential equation (PDE) for the evolution of an option price.
For European options, where the option can only be exercised on
maturity, there is a closed form expression for the solution of the
PDE [5]. This involves a number of math operations such as the
computation of a Cumulative Normal Distribution Function (CNDF)
exponentiation, logarithm, square-root and division operations.

8. TreeSearch: In-memory tree structured index search is
a commonly used operation in commercial databases, like Oracle
TimesTen [37]. This application involves multiple parallel searches
over a tree with different queries, with each query tracing a path
through the tree depending on the results of comparison of the
query to the node value at each tree level.

9. MergeSort: MergeSort is commonly used in the area of
databases [12], HPC, etc. MergeSort sorts an array of A/ elements
using log/\V merge passes over the complete array, where each pass
merges sorted lists of size twice as large as the previous pass (start-
ing with sorted lists of size one for the first pass). MergeSort [40] is
shown to be the sorting algorithm of choice for future architectures.

10. 2D 5X5 Convolution: Convolution is acommon image fil-
tering operation used for effects such as blur, emboss and sharpen,
and is also used with high-resolution images in EDA applications.
For a given 2D image and a 5X5 spatial filter, each pixel com-
putes and stores the weighted sum of a 5X5 neighborhood of pixels,
where the weights are the corresponding values in the filter.

11. Volume Rendering: Volume Rendering is a commonly
used benchmark in the field of medical imaging [15], graphics vi-
sualization, etc. Given a 3D grid, and a 2D image location, the

Benchmark Dataset Best Optimized

Performance

NBody [2] 10° bodies 7.5 X 107 Pairs/sec
BackProjection [26] 500 images on 1K> 1.9 X 107 Proj./sec
7 Point 3D Stencil [33] 5127 grid 4.9 X 10” Up./sec
LBM [33] 256 grid 2.3 X 10% Up./sec
LIBOR [19] 10M paths on 15 options 8.2 X 10° Paths/sec

Complex 1D Conv. [25] 8K on 1.28M pixels 1.9 X 10° Pixels/sec

BlackScholes [38] IM call+put options 8.1 X 10% Options/sec

TreeSearch [28] 100M queries on 64M tree 7.1X 107 Queries/sec
MergeSort [12] 256 M elements 2.1 X 10® Data/sec
2D 5X5 Convolution [30] 2K X 2K Image 2.2 X 10? Pixels/sec

Volume Rendering [43] 5123 volume 2.0 X 10° Rays/sec

Table 1: Various benchmarks and the respective datasets used,
along with the best optimized (Ninja) performance on Core i7
X980.

benchmark spawns rays (perpendicular to the image plane (ortho-
graphic projection)) through the 3D grid, which accumulates the
density, color and opacity to compute the final color of each pixel
of the image. For our benchmark, we spawn rays perpendicular to
the X direction of the grid.

2.1 Ninja Performance

Table 1 provides details of the representative dataset sizes for
each of the benchmarks used in this paper. For each benchmark,
there exists a corresponding best performing code for which the
performance numbers have been previously cited® on different plat-
forms than those used in our study. Hence, in order to perform a fair
comparison, we implemented and aggressively optimized (in-
cluding the use of intrinsics/assembly code) each of the bench-
marks by hand, and obtained comparable performance to the best
reported numbers on the corresponding platform. This code was
then executed on our platforms to obtain the corresponding Best
Optimized Performance for platforms we use in this paper. Table 1
(column 3) show the Best Optimized (Ninja) performance for all
the benchmarks on Intel® Core"™ 17 X980. For the rest of the paper,
Ninja Performance refers to the performance numbers obtained
by executing this code on our platforms.

3. BRIDGING THE NINJA GAP

In this section, we take each of the benchmarks described in Sec-
tion 2, and attempt to bridge the Ninja gap starting with naively
written code with low programming effort.

Platform: We measured the performance on a 3.3GHz 6-core
Intel® Core™ 17 X980 (architecture code-named Westmere). The
peak compute power is 158 GFlops and the peak bandwidth is
30 GBps. The Core i7 processor cores feature an out-of-order
super-scalar micro-architecture, with 2-way Simultaneous Multi-
Threading (SMT). In addition to scalar units, it also has 4-wide
SIMD units that support a wide range of SIMD instructions. Each
core has an individual 32KB L1 cache and a 256KB L2 cache. All
six cores share a 12MB last-level cache (LLC). Our system has 12
GB RAM and runs SuSE Enterprise Linux version 11. We use the
Intel® Composer XE 2011 compiler for Linux.

Methodology: For each benchmark, we attempt to first get good
single thread performance through exploiting instruction and data

3The best reported numbers are cited from the most recent top-
tier publications in the area of Databases, HPC, Image process-
ing, etc. and include conference/journals like Super Computing,
VLDB, SIGMOD, MICCALI, IEEE Vis. To the best of our knowl-
edge, there does not exist any faster performing code for any of the
benchmarks.



level parallelism. In an attempt to fully exploit the available data
level parallelism, we measure the SIMD scaling we obtain for each
benchmark by running the code with auto-vectorization enabled
and disabled (using the -no-vec flag) in the compiler. If SIMD
scaling is not close to peak (we expect close 4X scaling with single
precision data on SSE), we analyze the generated code to identify
architectural bottlenecks. We then obtain thread level parallelism
by adding OpenMP pragmas to parallelize the benchmark and eval-
uate thread scaling - again evaluating bottlenecks to scaling. After
evaluating bottlenecks to core and SIMD scaling, we make any nec-
essary algorithmic changes to overcome these bottlenecks.

Compiler pragmas used: We use OpenMP for thread-level par-
allelism, and use the auto-vectorizer or recent technologies such as
array notations introduced as part of the Intel® Cilk"Plus (here-
after referred to array notations) for data parallelism. The compiler
directives we add to the code and command line are the following:

e ILP optimizations: We use the #pragma unroll directive just
before an innermost loop that needs to be unrolled, and an
#pragma unroll_and_jam primitive outside an outer loop
that needs to be unroll-jammed. Both accept an optional pa-
rameter which is the number of times the loop is to be un-
rolled.

e Vectorizing at innermost loop level: If auto-vectorization fails
due to assumed memory alias or dependence analysis, the
programmer can force vectorization using #pragma simd.
This is a recent feature introduced in the Intel® Cilk™Plus.
The use of the pragma is an indication that the programmer
asserts that the loop is safe to vectorize. The pragma has
clauses to describe the data environment: private, firstprivate,
lastprivate, and reduction clauses adopted from OpenMP, and
a new linear clause. For details, please refer to [22].

e Vectorizing at outer loop levels: This can be done in two dif-
ferent ways: 1) directly vectorize at outer loop levels using
auto-vectorization or using the simd pragma, and 2) Strip-
mine outer loop iterations and change each statement in the
loop body to operate on the strip. Intel® CilkPlus array nota-
tion extension helps the programmers to express the second
approach in a natural fashion as illustrated in Figure 7(b). In
this study, we used the second approach with array notations.

e Parallelization: We use the OpenMP #pragma omp to par-
allelize loops. We typically use this over an outer for loop
using a #pragma omp parallel for construct.

e Fast math: We use the -fimf-precision flag selectively to our
benchmarks depending on precision needs.

3.1 NBODY

We implement a NBody algorithm [1], performing computation
over 1 million bodies. The computation consists of about 20 float-
ing point operations (flops) per body-body interaction, spent in
computing the distance between each pair of bodies, and in comput-
ing the corresponding local potentials using a reverse square-root
of the distance. The dataset itself requires 16 bytes for each body,
for a total of 16 MB - this is larger than the available cache size.

Figure 2 shows the breakdown of the various optimizations. Note
that the figure uses a log scale on the y-axis since the impact of
various optimizations is multiplicative. The code consists of two
loops that iterate over all bodies and computes potentials for each
pair. We first performed unrolling optimizations to improve ILP,
both over the inner and outer loops using the relevant pragmas.
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Figure 2: Breakdown of Ninja Performance Gap in terms of In-
struction (ILP), Task (TLP) and Data Level Parallelism (DLP)
before and after algorithm changes for NBody, BackProjection,
7-point Stencil and LBM. The algorithm change involves block-
ing.

Unrolling gives us a benefit of about 1.4X. The compiler auto-
vectorizes the code well with no programmer intervention and pro-
vides a good scaling of 3.7X with vector width of 4. We only ob-
tained a parallel scaling of 3.1X, far lower than the peak of 6X
on our processor. The reason for this is that the benchmark is
bandwidth-bound. The code loads 16 bytes of data to perform
20 flops of computation, and thus requires 0.8 bytes/flop of mem-
ory bandwidth — while our system only delivers 0.2 bytes/flop. This
means that the benchmark cannot utilize all computation resources.

This motivates the need for our algorithmic optimization of block-
ing the data structures to fit in the last level (L3) cache (referred to
as 1-D blocking in Figure 2). The inner body loop is split into two
- one iterating over blocks of bodies (fitting in cache), and the other
on bodies within each block. This allows the inner loop to reuse
data in cache. A code snippet for NBody blocking code is shown
in Section 4.1.

Once blocking is done, the computation is now bound by com-
pute resources. We obtain an additional 1.9X thread scaling for a
total of 5.9X - close to our peak. We find only a 1.1X performance
gap between compiled and best-optimized code.

3.2 BackProjection

We back-project 500 images of dimension 2048x2048 pixels onto
a1024x1024x1024 uniform 3D grid. Backprojection requires about
80 ops to project each 3D grid point to an image point and perform
bilinear interpolation around it. This requires about 128 bytes of
data to load and store the image and volume. Both the image (of
size 16 MB) and volume (4 GB) are too large to reside in cache.

Figure 2 shows that we get poor SIMD scaling of 1.2X from
auto-vectorization. Moreover, parallel scaling is also only around
1.8X. This is because the code is bandwidth-bound, requiring 1.6
bytes/flop of bandwidth. Most of this bandwidth comes because of
gathers from external memory in the code - the code projects mul-
tiple contiguous 3D points in SIMD lanes, but the projected points
in the 2D image are not contiguous. Reading the 2x2 surrounding
pixels thus requires gather operations.

We perform blocking over the 3D volume to reduce bandwidth
(called 3D blocking in Figure 2). Due to spatial locality, the image
working set also reduces accordingly. This results in the code be-
coming compute bound. However, due to the gathers which can-
not be vectorized on the CPU, SIMD scaling only improved by an
additional 1.6X (total 1.8X). We obtained additional 4.4X thread
scaling (total 7.9X), showing the benefits of SMT. The resulting
performance is only 1.1X off the best-optimized code.



3.3 7-Point 3D Stencil

7-Point Stencil iterates over a 3D grid of points, and for each
point (4 bytes), performs around 8 flops of computation. For grid
sizes larger than the size of the cache, the resultant b/w requirement
is around 0.5 bytes/flop, which is much larger than that available
on the current architectures. The following performance analysis is
done for a 3D dataset of dimension 512x512x512 grid points.

Figure 2 shows that we get a poor SIMD scaling of around 1.8X
from auto-vectorization. This is due to the fact that the implemen-
tation is bandwidth bound, and is not able to exploit the avail-
able vector processing flops. The bandwidth bound nature of the
application is further exemplified by the low thread-level scaling
of around 2.1X on 6-cores. In order to improve the scaling and
exploit the increasing computational resources, we perform both
spatial and temporal blocking to improve the performance.

In order to perform spatial blocking, we block in the XY dimen-
sion, and iterate over the complete range of Z values (referred to
as 2.5D blocking [33]). We compute the blocking dimensions in X
and Y directions such that three of the blocked XY planes are ex-
pected to fit in the LLC. Since the original 3D stencil performs the
stencil computation for multiple time-steps, we can further perform
temporal blocking to perform multiple time-steps (3.5D blocking
[33]), and further increase the computational efficiency.

The resultant code performs four time-steps simultaneously, and
improves the DLP by a further 1.7X to achieve a net SIMD scaling
of around 3.1X. It is important to note that although the code vec-
torizes well, the SIMD scaling is lower than 4X due to the overhead
of repeated computation at the boundary elements of each blocked
XY sub-plane, which increases the net computation as compared
to an unblocked stencil computation. This results in a slightly re-
duced SIMD scaling. Note that this reduction is expected to be
stable with increasing SIMD widths, and is thus a one-time reduc-
tion in performance. The thread-level scaling is further boosted by
around 2.5X, to achieve a net core-scaling of around 5.3X. Our net
performance is within 10.3% of the best-optimized code.

3.4 Lattice Boltzmann Method (LBM)

The computational pattern of LBM is similar to the stencil kernel
described in the previous section. In case of LBM [45], the com-
putation for each grid cell is performed using a combination of its
face and edge neighbors (19 in total including the cell), and each
grid cell stores around 80 bytes of data (for the 19 cells and some
auxiliary data). The data is usually stored in an AOS format, with
each cell storing the 80 bytes contiguously. For grid sizes larger
than the size of the cache, the resultant bandwidth requirement is
around 0.7 bytes/flop, which is much larger than that available on
the current architectures. The following performance analysis is
done for a 3D dataset of dimension 256x256x256 grid points.

Figure 2 shows that our initial code (taken from SPEC CPU2006)
does not achieve any SIMD scaling, and around 2.9X core-scaling.
The reason for no SIMD scaling is that the AOS data layout results
in gather operations during the grid computations for 4 simultane-
ous cells. In order to improve the performance, we perform the
following two algorithmic changes. Firstly, we perform an AOS
to SOA conversion of the data. The resultant auto-vectorized code
improves SIMD scaling to 1.65X. Secondly, we perform a 3.5D
blocking (similar to Section 3.3). The resultant auto-vectorized
code further boosts SIMD scaling by 1.3X, achieving a net scal-
ing of around 2.2X. The resultant thread-level scaling was further
increased by 1.95X (total 5.7X). The overall SIMD scaling is lower
than the scaling for 7 point stencil, and we found that the compiler
generated extra spill and fill instructions that were reduced by the
best-performing code to leave a final performance gap of 1.4X.
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Figure 3: Breakdown of Ninja Performance Gap Libor, Com-
plex 1D convolution and BlackScholes. All three benchmarks
require AOS to SOA conversion to obtain good SIMD scaling.

3.5 LIBOR

LIBOR code [8] has an outer loop over all the paths of the Monte
Carlo simulation, and an inner loop over the forward rates on a sin-
gle path. A typical simulation runs over several tens to hundreds of
thousands of independent paths. LIBOR has very low bandwidth-
to-compute requirements (0.02 bytes/flop) and is compute bound.

Figure 3 shows only a 1.5X performance benefit from compiler
auto-vectorization for LIBOR. The cause of this low SIMD scaling
is that the current compiler by default only attempts to vector-
ize the inner loop - this loop has back-to-back dependencies and
can only be partially vectorized. In contrast, the outer loop has
completely independent iterations (contingent on parallel random
generation) and is a good candidate for vectorization. However,
outer loop vectorization is inhibited by data structures stored in a
AOS format (in particular, the results of path computations). This
requires gathers and scatters resulting in poor SIMD scaling. The
code achieves a good parallel scaling of 7.1X; this number being
greater than 6 indicates that the use of SMT threads provided addi-
tional benefits over just core scaling.

To solve the vectorization issue, we performed an algorithmic
change to convert the memory layout from AOS to SOA. We
use the array notations technology available in the compiler to ex-
press outer loop vectorization. The LIBOR array notations example
is straightforward to code and is shown in Figure 7(b). Performing
the algorithmic change and using array notations allowed the outer
loop to vectorize and provides additional 2.5X SIMD scaling, a to-
tal of about 3.8X scaling. We found that this performance is similar
to the best-optimized code.

3.6 Complex 1D Convolution

We perform a 1D complex convolution on an image with 12.8
million points, and a kernel size of 8K complex floating point num-
bers. The code consists of two loops: one outer loop iterating over
the pixels, and one inner loop iterating over the kernel values. The
data is stored in an AOS format, with each pixel storing the real and
imaginary values together.

Figure 3 shows the performance achieved (the first bar) by the
unrolling enabled by the compiler, which results in around 1.4X
scaling. The auto-vectorizer only achieves a scaling of around 1.1X
since the the compiler vectorizes by computing the convolution for
four consecutive pixels, and this involves gather operations owing
to the AOS storage of the input data. The TLP achieved is around
5.8X. In order to improve the performance, we perform a rear-
rangement of data from AOS to SOA format, and store the real
values for all pixels together, followed by the imaginary values for
all the pixels. A similar scheme is adopted for the kernel. As a
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changes.

result, the compiler produces efficient SSE code, and the resultant
code scales up by a further 2.9X. Our overall performance is about
1.6X slower than the best-optimized numbers. This is because the
best-optimized code is able to block some of the kernel weights in
SSE registers and avoids reloading them, while the compiler does
not perform this optimization.

3.7 BlackScholes

BlackScholes computes the call and put options together. Each
option is priced using a sequence of operations involving comput-
ing the inverse CNDF, followed by math operations involving exp,
log, sqrt and division operations. The total computation performed
is around 200 ops (including the math ops), while the bandwidth is
around 36 bytes. The data for each option is stored contiguously.

Figure 3 shows a SIMD speedup of around 1.1X using auto-
vectorization. The low scaling is primarily due to the AOS layout,
which results in gather operations (performed using scalar ops on
CPUs). The TLP scaling is around 7.2X, which includes around
1.2X SMT scaling, and near linear core-scaling. In order to exploit
the vector compute flops, we performed an algorithmic change,
and changed the data layout from AOS to SOA. After this change,
the auto-vectorizer generated SVML (short vector math library)
code, resulting in an increase of SIMD scaling of 2.7X (total 3.0X).
The resultant code is within 1.1X of the best performing code.

3.8 TreeSearch

The input binary tree is usually laid out in a breadth-first fashion,
and the input queries are compared against the a tree node at each
level, and traverse down the left or right child depending on the
result of the comparison.

Figure 4(a) shows that the auto-vectorizer achieves a SIMD speed-
up of around 1.4X. This is because the vectorizer operates on 4
queries simultaneously, and since they all traverse down different
paths, gather instructions are required, devolving to scalar load op-
erations. The thread-level scaling of around 7.8X (including SMT)
is achieved.

In order to improve the SIMD performance, we perform an algo-
rithmic change, and traversed 2 levels at a time (similar to SIMD
width blocking proposed in [28]). However, the compiler did not
generate the code sequence described in [28], resulting in a 1.55X
gap from Ninja code. We note that this algorithmic change is only
required because gather operations in SSE devolve to scalar loads.
For future architectures such as the Intel MIC architecture that have
hardware support for SIMD gathers, this change can become un-

necessary. This is an example where hardware support makes pro-
gramming easier. We show more details in Section 4.2.4.

3.9 MergeSort

MergeSort sorts an input array of A" elements using log\ merge
phases over the complete array, where each phase merges sorted
lists of size twice as large as the previous pass (starting with sorted
lists of size one for the first pass). Merging two lists involves com-
paring the heads of the two lists, and appending the smaller ele-
ment to the output list. The performance for small lists is largely
dictated by the branch misprediction handling of the underlying ar-
chitecture. Furthermore, since each merge phase completely reads
in the two lists to produce the output list, it becomes bandwidth
bound once the list sizes grow larger than the cache size, with the
bandwidth requirement per element being around 12 bytes. Our
analysis is done for sorting an input array with 256M elements.

Figure 4(a) shows that we only get a 1.2X scaling from auto-
vectorization. This is largely due to gather operations for merging
Sfour pairs of lists. Parallel scaling is also only around 4.1X because
the last few merge phases being bandwidth bound, and not scaling
linearly with number of cores. In order to improve performance,
we perform the following two algorithmic changes.

Firstly, in order to improve the DLP scaling, we implement merg-
ing of lists using a merging network [12], that merges two sorted
sub-lists of size S (SIMD width) into a sorted sub-list of size 28
using a series of min/max and interleave operations (code snippet
is shown in Section 4.1). Each merging phase is decomposed into
a series of such sub-list merge operations. This code sequence is
vectorized by the compiler to produce an efficient SSE code. Fur-
thermore, the number of comparisons is also reduced by around 4X,
and the resultant vector code speeds up by around 2.3X. Secondly,
in order to reduce the bandwidth requirements, we perform multi-
ple merge phases together. Essentially, instead of merging two lists,
we combine three merge phases, and merge eight lists into a single
sorted list. This reduces the bandwidth requirement, and makes the
merge phases compute bound. The parallel scaling of the resul-
tant code further speeds up by 1.9X. The resultant performance is
within 1.3X of the best-optimized code.

3.10 2D Convolution

We perform convolution of a 2K X 2K image with a 5 X 5 kernel.
Both the image and kernel consists of 4-byte floating point values.
The convolution code consists of four loops. The two outer loops
iterate over the input pixels (X and Y directions), while the two
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Figure 5: Benefit of three different algorithmic changes to our benchmarks normalized to code before any algorithmic change. The

effect of algorithmic changes is cumulative.

inner loops iterate over the kernel (X and Y directions).

Figure 4(b) shows that we obtained a benefit of 1.2X through
loop unrolling. The most efficient way to exploit SIMD is to per-
form stencil computations on 4 consecutive pixels, with each per-
forming a load operation and a multiply-add with the appropriate
kernel value. This implies performing a vectorization for the outer
X loop, something that the current compiler does not perform. We
instead implemented the two inner loops using the array notations
technology available in the compiler. That enabled vectorization of
the outer X loop, and produced SIMD code that scaled 3.8X with
SIMD width. The thread-level parallelism was around 6.2X. Our
net performance was within 1.3X of the best-optimized code.

3.11 Volume Rendering

The VR rendering code iterates over various rays, and traverses
a volume for each ray. During this traversal, the density and color
are accumulated for each ray till a pre-defined threshold value of
the opacity is reached, or the ray intersects all the voxels in its path.
These early exit conditions make the code control intensive.

As shown in Figure 4(b), we achieve a TLP scaling of around
8.7X, which includes a SMT scaling of 1.5X, and a near-linear
core-scaling of 5.8X. As for SIMD scaling, earlier compiler ver-
sions did not vectorize the code due to various control-intensive
statements. However, recent compilers do, in fact, vectorize the
code using mask values for each branch instruction, and using proper
masks to execute both execution paths for each branch. Since CPUs
do not have masks, this is emulated using 128-bit SSE registers.
The Ninja code also performs similar optimizations. There is only
a small difference of 1.3X between Ninja code and compiled code.

3.12 Summary

In this section, we looked at each benchmark, and were able to
narrow the Ninja gap to within 1.1 - 1.6X by applying necessary
algorithmic changes coupled with the latest compiler technology.

4. ANALYSIS AND SUMMARY

In this section, we generalize our findings in the previous section
and identify the steps to be taken to bridge the Ninja performance
gap with low programmer effort. The key steps to be taken are to
first perform a set of well-known and simple algorithmic optimiza-
tions to overcome scaling bottlenecks either in the architecture or
in the compiler, and secondly to use the latest compiler technology
with regards to vectorization and parallelization. We will now sum-
marize our findings with respect to the gains we achieve in each of
these steps. We also show using representative code snippets that
the changes required in exploiting latest compiler features are small
and that they can be done with low programming effort.

4.1 Algorithmic Changes

We first describe a set of well-known algorithmic techniques
that are necessary to avoid vectorization issues and memory band-
width bottlenecks in compiler generated code. Incorrect algorith-
mic choices and data layouts in naive code can lead to Ninja gaps
that will only grow larger with recent hardware trends of increas-
ing SIMD width and decreasing bandwidth-to-compute ratios. It is
thus critical to perform optimizations like blocking data structures
to fit in cache hierarchies, layout data structures to avoid gathers
and scatters, or rethink the algorithm to allow data parallel com-
putation. While such changes do require some programmer effort,
they can be used across multiple platforms (including GPUs) and
multiple generations of each platform, and are a critical component
of keeping the Ninja gap small and stable over future architectures.
Figure 5 shows the performance improvements due to various al-
gorithmic optimizations. We describe these optimizations below.

AOS to SOA conversion: A common optimization that helps pre-
vent gathers and scatters in vectorized code is to convert data struc-
tures from Array-Of-Structures (AOS) to Structure-Of-Array (SOA)
representation. Keeping separate arrays for each structure keeps
memory accesses contiguous when vectorization is performed over
structure instances. AOS structures require gathers and scatters,
which can impact both SIMD efficiency as well as introduce ex-
tra bandwidth and latency for memory accesses. The presence of a
hardware gather/scatter mechanism does not eliminate the need for
this transformation - gather/scatter accesses commonly need signif-
icantly higher bandwidth and latency than contiguous loads. Such
transformations are also advocated for a variety of architectures in-
cluding GPUs [36]. Figure 5 shows that for our benchmarks, AOS
to SOA conversion helped by an average of 1.4X.

Blocking: Blocking is a well-known optimization that can help
avoid memory bandwidth bottlenecks in a number of applications.
The key idea behind blocking is to exploit the inherent data reuse
available in the application by ensuring that data remains in caches
across multiple uses. Blocking can be performed on 1-D, 2-D or 3-
D spatial data structures, and some iterative applications can further
benefit from blocking over multiple iterations (commonly called
temporal blocking) to further mitigate bandwidth bottlenecks.

In terms of code change, blocking typically involves a combi-
nation of loop splitting and interchange. For instance, the code
snippet in Figure 6(a) shows an example of blocking NBody code.
There are two loops (bodyl and body2) iterating over all bodies.
The original code on the top streams through the entire set of bod-
ies in the inner loop, and must load the body2 value from memory
in each iteration. The blocked code at the bottom is obtained by
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- (body 1 =.0; bodyl < NBODIES; bodydi#+) { ... fData (Body2) is

for (body2=0; body2 < NBODIES; body2 ++) { !} streamed from memory
OUT[body1] += compute(body1, body2); (no reuse in cache) =>

Memory BW Bound

=3

1-D Blocking
for (body2 = 0; body2 < NBODIES; body2 += BLOCK) {
for (body1=0; body1 < NBODIES; body1 ++) {
for (body22=0; body22 < BLOCK; body22 ++) { ]
i OUT[body1] += compute(body1, body2 + body22);
) ;

Data (Body22) is kept
i and reused in cache =>
Compute Bound

(a) Example of the use of Blocking

Original Code SIMD Friendly Algorithm

while ( (cnt_x < Nx) && (cnt_y < Ny)) { while ( (cnt_x < Nx) && (ent_y < Ny) ) {

}

Highlighted line becomes SIMD
operations with compiler vectorization

if(x[centx]<y[enty]){

if (x[ent_x] < y[ent_y]) { for (i=0; i<S;i++) B[S-1-i]=x[ecnt x*+i];

z[ent_z] = x[ent_x]; cnt_x +=S; /*S: SIMD width */
cnt_x++; }else {
}else { for (i=0; i<S;i++) B[S-1-i]=y[ent y+il];
z[cent_z] = y[ent_y]; cnt y += S;
cnt_y ++; } - '
cnt_z++;

for (loop = 0; loop < (1+log(S)); loop ++ ) {
for (i=0; i<S; i++) C[i] = MIN( B[i], B[i+S] );
for (i=0; i<S; i++) C[i+S] = MAX( B[i], B[i+S]);
for ( i=0; i<S; i++) B[24] = C[i};
for (i=0; i<S; i++) B[2'i+1] = C[i+S];
}
for (i=0; i<S; i++)
cnt_z+=S;

}

Merging
Network
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(b) Example of the use of SIMD Friendly Algorithm

Figure 6: Code snippets showing algorithmic changes for (a) blocking in NBody and (b) SIMD-friendly MergeSort algorithm.

splitting the body2 loop into an outer loop iterating over bodies
in multiple of BLOCK, and an inner body22 loop iterating over
elements within the block, and interleaving the body1 and body2
loops. This code reuses a set of BLOCK body2 values across
multiple iterations of the body!1 loop. If BLOCK is chosen such
that this set of values fits in cache, memory traffic is brought down
by a factor of BLOCK. Such changes extend to further dimen-
sional data structures (3D in BackProjection, plus temporal block-
ing in 7-Point stencil, LBM and MergeSort) as well - more loops
may need to be split and reordered. In tree search, there is hierar-
chical rearrangement of the tree in order to maximize data reuse at
the granularity of both memory pages as well as cache lines.

In terms of performance improvement, Figure 5 shows that block-
ing results in an average of 1.6X (up to 4.3X for LBM and 7-
point stencil) performance improvement. This benefit will grow
as bandwidth-to-compute ratios continually decrease.
SIMD-friendly algorithms: In some cases, the naive algorithm
cannot easily be vectorized either due to back-to-back dependen-
cies between loop iterations or due to the heavy use of gathers
and scatters in the code. A different algorithm that is more SIMD
friendly may then need to be chosen. In some cases, dependencies
between loop iterations can be resolved using cross-lane SIMD op-
erations such as shuffle, maskmov or related operations. For in-
stance, MergeSort involves a sequence of min, max and shuffle in-
structions. Using this code sequence results in a 2.5X speedup over
scalar code. The inner loop of the code is shown in Figure 6(b).
The code on the left shows the traditional MergeSort algorithm,
where only two elements are merged at a time and the minimum
written out. There are back-to-back dependencies due to the array
increment operations, and hence the code cannot vectorize. More-
over, the code also heavily suffers from branch misprediction. The
figure on the right shows code for a SIMD-friendly merging net-
work [12], which merges two sequences of SIMD-width S sized
elements using a sequence of min, max and interleave operations.
This code auto-vectorizes with each highlighted line corresponding
to one SIMD instruction. Moreover, branch mispredictions now
occur every S number of elements. However, this code does have
to do more computation (by a constant factor of log(.S)), but still
yields a gain of 2.3X for 4-wide SIMD.

Since these algorithmic changes involve tradeoff between total
computation and SIMD-friendliness, the decision to use them must
be consciously taken by the programmer. Such changes do require
effort on the part of the programmer - however, they will pay off
over multiple platforms and generations of them.

Summary: Using well-known algorithmic techniques, we get
an average of 2.4X performance gain on 6-core Westmere. More-
over, as the number of cores and SIMD widths increase, and with
reducing bandwidth-to-compute ratios, gains due to algorithmic
changes will further increase.

4.2 Compiler Technology

Once algorithmic changes have been taken care of, we show the
impact of utilizing the parallelization and vectorization technology
present in recent compilers in bridging the Ninja gap.

4.2.1 Parallelization

We parallelize our benchmarks using OpenMP pragmas typi-
cally over the outermost loop. OpenMP offers a portable solution
that allows for specifying the number of threads to be launched,
thread affinities to cores, specification of thread private and shared
variables, as well as scheduling policies. Since throughput bench-
marks offer significant thread-level parallelism that are typically
present as an outer for loop, we generally use a omp parallel for
pragma. One example is shown in Figure 7(a) for complex 1D
convolution. In most cases, we obtain linear scaling with the num-
ber of cores after performing algorithmic optimizations to eliminate
memory bandwidth bottlenecks. The use of SMT threads can help
hide latency in the code - hence we sometimes obtain more than 6X
scaling on our 6-core system.

4.2.2  Vectorization

SSE versus AVX: Figure 8(a) shows the benefit from inner and
outer loop auto-vectorization for our benchmarks on our Westmere
system, once proper algorithmic changes are made. We also com-
pare it to the SIMD scaling for the manual best-optimized code.
In terms of future scalability, we also show SIMD scaling on AVX
(8-wide SIMD) in Figure 8(b) using a 4-core 3.4 GHz Intel® Core
17-2600K Sandybridge system. We use the same compiler for this
study, and only change compilation flags to -xAVX from -xSSE4.2.

In terms of overall performance, we obtain on average about
2.75X SIMD scaling using compiled code, which is within 10% of
the 2.9X scaling using best-optimized code on 4-wide SSE. With
8-wide AVX, we obtain 4.9X and 5.5X scaling (again very close to
each other) using compiled and best-optimized code. TreeSearch
accounts for most of the difference between compiled and best-
optimized code. In TreeSearch, after we perform our algorithmic
changes, we can perform SIMD comparisons over tree nodes at
multiple tree levels, transfer the obtained bitvector register into a
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vectorized over
#pragma omp parallel for inner-loop
for (int p=0; p<IMAGE_SIZE; p++) {
float reg_out_r = 0.0, reg_out_i = 0.0;
#pragma simd
for (int f=0; f<FILTER_SIZE; f++) {
reg_out_r +=in_r[p+f] * coeflf] - in_i[p+f] * coef[f];

.

(a) Code from Complex 1D Conv.
Example of inner-loop vectorization

for (path=0; path < npath; path++) {
float L[n], lam, con, vscal;
for (j=0; j<nmat; j++) {

for (i=j+1; i<n; i++) {
lam = lambda[i-j-1];
con = delta * lam;
vscal += con * L[i] / (1+delta* L[i]);

vectorized
over outer-

loop
Array Notations Code

for (path=0; path < npath; path+=8) {
float L[n][S], lam[S], con[S], vscal[S];
for (j=0; j<nmat; j++) {

for (i=j+1; i<n; i++) {
lam[:] = lambdali-j-1];
con[:] = delta * lam[:];
vscall[:] += con[:] * L[i][:] / (1+delta* L[i][:]);

}
}
}

(b) Code from Libor. Example of outer-loop vectorization

Figure 7: Code snippets showing compiler techniques for (a) Parallelization and inner loop vectorization in complex 1D convolution
and (b) Outer loop vectorization in LIBOR. Note that the code changes required are small and can be achieved with low programmer

effort.
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Figure 8: Breakdown of benefits from inner and outer loop vectorization on (a) SSE and (b) AVX. We also compare to the best-

optimized performance.

general purpose register, and use it to compute the next child in-
dex. This sequence of operations is currently not generated by the
compiler. The compiler currently only vectorizes over the query
loop, involving gather/scatter operations. For current CPUs with
no gather/scatter support, these are inefficient.

Our overall SIMD scaling for best-optimized code is good for
most of our benchmarks, with the exceptions being MergeSort,
TreeSearch and BackProjection. As explained in this section and
in Section 4.1, we performed algorithmic changes in MergeSort
and TreeSearch to enable SIMD scaling at the expense of perform-
ing more overall operations per element. Our SIMD scaling num-
bers take this into account, resulting in lower than linear speedups.
Backprojection does not scale linearly due to the presence of un-
avoidable gathers and scatters in the code. Such operations cannot
be vectorized and must be emulated using a series of sequential
loads/stores. This limits SIMD scaling to 1.8X on SSE and 2.7X
on AVX for backprojection.

Inner loop vectorization: Most of our benchmarks vectorize
over the inner loop of the code, either by using compiler auto-
vectorization or requiring the use of #pragma simd when depen-
dence or memory alias analysis fails. The addition of this pragma,
where required, is straightforward - this is a directive to the com-
piler that the loop must be (and is safe to be) vectorized. Figure 7(a)
shows an example where this pragma is used in complex 1D con-
volution. Our average speedup for inner loop vectorization is 2.2X
for SSE and 3.6X on AVX.

Outer loop vectorization: Vectorizing an outer-level loop has
a unique set of challenges over vectorizing at the innermost loop
level: Induction variables need to be analyzed for multiple loop

levels; and loop control flows such as zero-trip test, number of iter-
ations, and exit condition checks have to be converted into condi-
tional (or predicated) execution on multiple vector elements. Reg-
ister allocator is also impacted since vector variable live ranges are
now larger and cross multiple basic blocks and multiple loop levels.
The array notations technology helps the programmer avoid some
of those complications without elaborate changes to the program
structure. There are three benchmarks where we gain benefits from
outer-loop vectorization. The first is LIBOR, where the inner loop
contains a back-to-back dependence and is only partially vectoriz-
able. In order to vectorize the outer (completely independent) loop,
we currently use array notations. A part of the LIBOR code written
in array notations is shown in Figure 7(b). Here vectorization oc-
curs over the outer path loop. The scalar code is modified to change
the loop index of the path loop to reflect the vectorization, as well
as to compute results for multiple (equal to the simd width) loop
iterations in parallel using arrays. Note that the programmer de-
clares arrays of size S, the simd width for intermediate values, and
the X[a:b] index notation stands for accessing b elements of array
X starting with index a (X[:] is a shortcut that accesses the entire
array X). It is usually straightforward to change scalar code to ar-
ray notations code. This change results in high SIMD speedups
of 3.6X on 4-wide SSE and 7.5X on AVX. Outer loop vectoriza-
tion also benefits 2D convolution, where the inner loop does not
have sufficient iterations (two nested loops of 5 iterations each) to
have SIMD benefits. Vectorizing over the outer loop results in near-
linear overall SIMD scaling. The third example is Volume Render-
ing, where the outer ray loop is vectorized using masks to handle
control flow. These masks are emulated using registers for CPUs.
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Figure 10: Gap between best-optimized and compiler-generated code after algorithmic changes for MIC and CPU architectures.

4.2.3 Fast Math

Applications such as NBody, and financial benchmarks (e.g, LI-
BOR and BlackScholes) are math-intensive, and use a variety of
operations such as sqrt, rsqrt, divide, cos, sin, exp, etc. In many
cases, the programmer has information about the final precision of
the results of such computations, and may be willing to trade-off
performance for accuracy. The compiler does not have knowledge
of the precision requirements, and hence this needs to be achieved
using compiler flags. The compiler however allows for user-defined
flags such as -fimf-precision to control precision. The use of such
flags enables the generation of lower precision code in NBody.

4.2.4 Hardware Gather Support

Our TreeSearch application requires gather operations for vec-
torization of the independent loop over queries. The auto-vectorizer
emulates these gathers using scalar loads on SSE and AVX due to
the absence of gather hardware support. While it is possible to per-
form algorithmic changes using SIMD blocking to vectorize the
traversal of a single query, the SIMD benefit is inherently limited
to a logarithmic factor of SIMD width (see [28] for details).

However, future architectures such as the Intel® MIC architec-
ture [42] as well as the future Intel® Haswell architecture [23] have
announced support in hardware for gathers. As such, the SIMD
blocking algorithmic change is not required for MIC, and there is
negligible difference between SIMD blocking code and code with
gathers. In fact, the gap between compiled code and best-optimized
code for TreeSearch on MIC is small. The addition of such hard-
ware, along with compiler support to use the new instructions, thus
has the benefit of reducing the Ninja gap.

5. SUMMARY

Figure 9 shows the relative performance of best-optimized code
versus compiler generated code before and after algorithm changes
(numbers are relative to compiled code after algorithmic change).
We assume that the programmer has put in the effort to introduce
the pragmas and compiler directives we described in previous sec-
tions. The figure shows that there is a 3.5X average gap between

10

compiled code and best-optimized code before we perform algo-
rithmic changes. This gap is primarily because of the compiled
code being bound by memory bandwidth or due to low SIMD ef-
ficiency due to sub-optimal memory layout. After we perform al-
gorithmic changes described in Section 4.1, this gap shrinks to an
average of 1.4X. The only benchmark with a significant (more than
1.5X gap) are Tree Search where the compiler vectorizes the outer
loop with gathers. The rest of the benchmarks show 1.1-1.4X Ninja
gaps, primarily due to extra instructions being generated due to
additional spill/fill instructions, extra loads and stores instead to
reusing certain values in registers - these are hard problems where
the compiler relies on heuristics.

Impact of Future Architectures:

In order to see whether the Ninja gap will be low even on future
platforms, we performed the same experiments on the Intel® MIC
architecture, an Aubrey Isle [41] based silicon platform. We use
the Intel® Knights Ferry software development platform with 32-
cores running at 1.2 GHz. Each core features an in-order micro-
architecture with 4-way SMT and a 512-bit SIMD unit.

Figure 10 shows the Ninja performance gap for MIC as well as
for Westmere (SSE). Using an internal compiler for MIC, the av-
erage Ninja gap for MIC is only 1.2X, which is almost the same
(slightly smaller) than the Ninja gap for CPUs. The main differ-
ence between the two performance gaps comes from Tree Search.
As described in Section 4, TreeSearch benefits from the hardware
gather support on MIC, and the compiled code that uses gathers is
close in performance (1.1X) to the best-optimized code — as op-
posed to about 1.6X for CPU code. The rest of the benchmarks
show similar performance gaps on MIC and CPU.

The remaining Ninja gap between best-optimized and compiled
code after algorithmic changes remains small and stable across
MIC and CPUs, inspite of the much larger number of cores and
SIMD width on MIC. This is because our algorithmic optimiza-
tions focused on resolving vectorization and memory bandwidth
bottlenecks in the code. Once these issues have been taken care of,
future architectures will be able to exploit higher cores and SIMD
width without being bottlenecked by the decreasing bandwidth-to-
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Figure 11: Benefit of the algorithmic changes described in Figure 6 on the NVIDIA Tesla C2050 GPU.

compute ratios. This will result in stable and predictable perfor-
mance growth over future architectures.

Hardware Support For Programmability:

While we believe that the algorithmic changes we proposed - block-
ing, AOS to SOA conversion and SIMD-friendly algorithms are
well-known, future hardware changes can reduce their impact, and
further improve programmer productivity. We have already dis-
cussed how gather support on MIC makes SIMD-friendly algo-
rithms for TreeSearch unnecessary; we now discuss potential hard-
ware support for the other algorithmic changes. For blocking, the
development of memory technologies such as 3-D stacked memory
such as Hybrid Memory Cube [9, 46] can help reduce the impact
of cache blocking. For AOS to SOA conversion, small Level-0 like
AOS caches could be used. The cache lines involved in the data
structure conversion could be loaded into the cache and the con-
version performed there. This approach would have high latency
for the first conversion, but subsequent conversions only access the
cache and can have high throughput and low latency.

Another area where hardware support can help programmability
is fast math operations. Currently, for applications where accuracy
can be reduced, the compiler and/or programmer emulate these op-
erations. Fast math hardware can either help programmers or sim-
plify the compiler’s job in trading off precision for performance.

6. DISCUSSION

The algorithmic optimizations that we described in Section 4.1
are applicable to a variety of architectures including GPUs. A num-
ber of previous publications [18, 39, 36] have discussed the op-
timizations needed to obtain best performance on GPUs. In this
section, we show the impact of the same algorithmic optimizations
described in Section 4.1 on GPU performance as applied to our
benchmarks. We use the recent NVIDIA C2050 Tesla GPU for this
study.

Although GPUs have hardware to handle gathers/scatters, GPU
best coding practices (e.g. the CUDA C programming guide [36])
state the need to avoid uncoalesced global memory accesses — in-
cluding converting data structures from AOS to SOA, for reducing
memory latency and bandwidth usage. GPUs also require blocking
optimizations, which here refers to the transfer and management of
data into the shared memory (or caches) of the GPU. Finally, the
use of SIMD-friendly algorithms greatly benefits the GPU that has
a wider SIMD width than current CPUs.

Figure 11 shows the overall gains from performing algorithmic
changes on the GPU. The average performance gain from algo-
rithmic optimizations is 3.8X - higher than the 2.5X we gain on
CPUs. This is because GPUs have more SMs and larger SIMD
width, and hence sub-optimal algorithmic choices have a large im-
pact on performance.

7. RELATED WORK

There have a number of papers published in a variety of fields
that show 10-100X performance gains over previous work using
carefully tuned code [45, 43, 14, 2, 28, 33]. Lee et al. [30] sum-
marized relevant hardware architecture features and a platform-
specific software optimization guide for a class of throughput appli-
cations on CPU and GPUs. While these works make it evident that
a large performance gap exists between best-optimized and naively
written code, they do not describe the programming effort involved
or how to bridge the Ninja performance gap.

In this work, we analyze the sources of the Ninja gap and use
traditional programming models to bridge the gap using low pro-
grammer effort. A previous version of this paper is available as a
technical report [29]. Our work shows that by combining modern
compiler technology with a set of simple and well-known algo-
rithmic techniques to overcome architectural bottlenecks, we can
bridge the gap to just 1.4X. Production compilers have recently
started to support parallelization and vectorization technology that
have been published in compiler research. Examples of such tech-
nology include OpenMP [10] for parallelization available in recent
GCC and ICC compilers, as well as auto-vectorization technol-
ogy [34], dealing with alignment constraints [17] and outer loop
vectorization [35]. These technologies have been made available
using straightforward pragmas and technology like array notations,
a part of Intel® Cilk™ Plus [22].

However, naively written code may not scale with number of
cores or SIMD width even with compiler support since they are
bottlenecked by architectural features such as memory bandwidth,
presence of gathers/scatters or because the fundamental algorithm
cannot be vectorized due to tight dependencies. In such cases, al-
gorithmic changes such as blocking, SOA conversion and SIMD-
friendly algorithms are required. There have been various tech-
niques proposed to address these algorithmic changes, either using
compiler assisted optimization [27], using cache-oblivious algo-
rithms [6] or specialized languages like Sequoia [21]. Such changes
usually require programmer intervention and programmer effort,
but they can be used across a number of architectures and gener-
ations. For instance, a number of papers have shown the impact
of similar algorithmic optimizations on GPUs in CUDA [18, 39].
Further, a number of papers have made similar changes to CPUs
and GPUs and shown benefit to both [33, 40].

While our work focuses on traditional programming models, there
have been radical programming model changes proposed to bridge
the gap. Recent suggestions include Bamboo [48] for an object
oriented many-core programming approach, GPGPU approaches
for parallelism management [47], the Berkeley View project [3]
and OpenCL for programming heterogeneous systems. Our work
makes a case that for a set of important real-world throughput ap-
plications, it is not necessary to adopt such models. There have also
been library oriented approaches proposed such as Intel® Thread-



ing Building Blocks, Intel® Math Kernel Library, Microsoft Par-
allel Patterns Library (PPL), Intel® Integrated Performance Primi-
tives etc. We believe these are orthogonal and used in conjunction
with traditional models.

There is also a body of literature in adopting auto-tuning as an
approach to bridging the Ninja gap for selected applications [44,
14]. Autotuning results can be significantly worse than the best-
optimized code. For example, 7-point stencil computation is a spe-
cific application from our benchmark list for which auto-tuning
results have been shown [14]. Our best-optimized code is about
1.5X better in performance than the auto-tuned code [33]. Since
our Ninja gap for stencil is only 1.1X, our compiled code performs
around 1.3X better than auto-tuned code. We expect our compiled
results to be in general competitive with auto-tuned results, while
offering the advantages of using standard tool-chains that can ease
portability across processor generations.

Finally, there has been recent work that attempts to analyze the
Ninja gap both for GPUs [7] and CPUs [31]. These works either
focus narrowly on a single benchmark or do not use highly opti-
mized code as a target to bridge the Ninja gap. For example, the
benchmarks analyzed by Luk et al. [31] are 2-10X slower than our
optimized performance numbers.

8. CONCLUSIONS

In this work, we showed that there is a large Ninja performance
gap of 24X for a set of real-world throughput computing bench-
marks for a recent multi-processor. This gap, if left unaddressed
will inevitably increase. We showed how a set of simple and well-
known algorithmic techniques coupled with advancements in mod-
ern compiler technology can bring down the Ninja gap to an av-
erage of just 1.3X. These changes only require low programming
effort as compared to the very high effort in Ninja code.
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