
Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU

Victor W Lee†, Changkyu Kim†, Jatin Chhugani†, Michael Deisher†,
Daehyun Kim†, Anthony D. Nguyen†, Nadathur Satish†, Mikhail Smelyanskiy†,

Srinivas Chennupaty�, Per Hammarlund�, Ronak Singhal� and Pradeep Dubey†

victor.w.lee@intel.com

†Throughput Computing Lab,
Intel Corporation

�Intel Architecture Group,
Intel Corporation

ABSTRACT
Recent advances in computing have led to an explosion in the amount
of data being generated. Processing the ever-growing data in a
timely manner has made throughput computing an important as-
pect for emerging applications. Our analysis of a set of important
throughput computing kernels shows that there is an ample amount
of parallelism in these kernels which makes them suitable for to-
day’s multi-core CPUs and GPUs. In the past few years there have
been many studies claiming GPUs deliver substantial speedups (be-
tween 10X and 1000X) over multi-core CPUs on these kernels. To
understand where such large performance difference comes from,
we perform a rigorous performance analysis and find that after ap-
plying optimizations appropriate for both CPUs and GPUs the per-
formance gap between an Nvidia GTX280 processor and the Intel
Core i7 960 processor narrows to only 2.5x on average. In this pa-
per, we discuss optimization techniques for both CPU and GPU,
analyze what architecture features contributed to performance dif-
ferences between the two architectures, and recommend a set of
architectural features which provide significant improvement in ar-
chitectural efficiency for throughput kernels.

Categories and Subject Descriptors
C.1.4 [Processor Architecture]: Parallel architectures
; C.4 [Performance of Systems]: Design studies
; D.3.4 [Software]: Processors—Optimization

General Terms
Design, Measurement, Performance

Keywords
CPU architecture, GPU architecture, Performance analysis, Perfor-
mance measurement, Software optimization, Throughput Comput-
ing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
The past decade has seen a huge increase in digital content as

more documents are being created in digital form than ever be-
fore. Moreover, the web has become the medium of choice for
storing and delivering information such as stock market data, per-
sonal records, and news. Soon, the amount of digital data will ex-
ceed exabytes (1018) [31]. The massive amount of data makes stor-
ing, cataloging, processing, and retrieving information challenging.
A new class of applications has emerged across different domains
such as database, games, video, and finance that can process this
huge amount of data to distill and deliver appropriate content to
users. A distinguishing feature of these applications is that they
have plenty of data level parallelism and the data can be processed
independently and in any order on different processing elements
for a similar set of operations such as filtering, aggregating, rank-
ing, etc. This feature together with a processing deadline defines
throughput computing applications. Going forward, as digital data
continues to grow rapidly, throughput computing applications are
essential in delivering appropriate content to users in a reasonable
duration of time.

Two major computing platforms are deemed suitable for this new
class of applications. The first one is the general-purpose CPU
(central processing unit) that is capable of running many types of
applications and has recently provided multiple cores to process
data in parallel. The second one is the GPU (graphics process-
ing unit) that is designed for graphics processing with many small
processing elements. The massive processing capability of GPU
allures some programmers to start exploring general purpose com-
puting with GPU. This gives rise to the GPGPU field [3, 33].

Fundamentally, CPUs and GPUs are built based on very different
philosophies. CPUs are designed for a wide variety of applications
and to provide fast response times to a single task. Architectural
advances such as branch prediction, out-of-order execution, and
super-scalar (in addition to frequency scaling) have been responsi-
ble for performance improvement. However, these advances come
at the price of increasing complexity/area and power consumption.
As a result, main stream CPUs today can pack only a small number
of processing cores on the same die to stay within the power and
thermal envelopes. GPUs on the other hand are built specifically
for rendering and other graphics applications that have a large de-
gree of data parallelism (each pixel on the screen can be processed
independently). Graphics applications are also latency tolerant (the
processing of each pixel can be delayed as long as frames are pro-
cessed at interactive rates). As a result, GPUs can trade off single-
thread performance for increased parallel processing. For instance,

451

GPUs can switch from processing one pixel to another when long
latency events such as memory accesses are encountered and can
switch back to the former pixel at a later time. This approach works
well when there is ample data-level parallelism. The speedup of an
application on GPUs is ultimately limited by the percentage of the
scalar section (in accordance with Amdahl’s law).

One interesting question is the relative suitability of CPU or GPU
for throughput computing workloads. CPUs have been the main
workhorse for traditional workloads and would be expected to do
well for throughput computing workloads. There is little doubt that
today’s CPUs would provide the best single thread performance for
throughput computing workloads. However, the limited number of
cores in today’s CPUs limits how many pieces of data can be pro-
cessed simultaneously. On the other hand, GPUs provide many
parallel processing units which are ideal for throughput comput-
ing. However, the design for graphics pipeline lacks some criti-
cal processing capabilities (e.g., large caches) for general purpose
workloads, which may result in lower architecture efficiency on
throughput computing workloads.

This paper attempts to correlate throughput computing charac-
teristics with architectural features on today’s CPUs and GPUs and
provides insights into why certain throughput computing kernels
perform better on CPUs and others work better on GPUs. We use
a set of kernels and applications that have been identified by previ-
ous studies [6, 10, 13, 44] as important components of throughput
computing workloads. We highlight the importance of platform-
specific software optimizations, and recommend an application-
driven design methodology that identifies essential hardware archi-
tecture features based on application characteristics.

This paper makes the following contributions:

• We reexamine a number of claims [9, 19, 21, 32, 42, 45,
47, 53] that GPUs perform 10X to 1000X better than CPUs
on a number of throughput kernels/applications. After tun-
ing the code for BOTH CPU and GPU, we find the GPU
only performs 2.5X better than CPU. This puts CPU and
GPU roughly in the same performance ballpark for through-
put computing.

• We provide a systematic characterization of throughput com-
puting kernels regarding the types of parallelism available,
the compute and bandwidth requirements, the access pattern
and the synchronization needs. We identify the important
software optimization techniques for efficient utilization of
CPU and GPU platforms.

• We analyze the performance difference between CPU and
GPU and identify the key architecture features that benefit
throughput computing workloads.

This paper is organized as follows: Section 2 discusses the through-
put computing workloads used for this study. Section 3 describes
the two main compute platforms – CPUs and GPUs. Section 4 dis-
cusses the performance of our throughput computing workloads on
today’s compute platforms. Section 5 provides a platform-specific
optimization guide and recommends a set of essential architecture
features. Section 6 discusses related work and Section 7 concludes
our findings.

2. THE WORKLOAD: THROUGHPUT COM-
PUTING KERNELS

We analyzed the core computation and memory characteristics
of recently proposed benchmark suites [6, 10, 13, 44] and formu-
lated the set of throughput computing kernels that capture these

characteristics. These kernels have a large amount of data-level
parallelism, which makes them a natural fit for modern multi-core
architectures. Table 1 summarizes the workload characterization.
We classify these kernels based on (1) their compute and memory
requirements, (2) regularity of memory accesses, which determines
the ease of exploiting data-level parallelism (SIMD), and (3) the
granularity of tasks, which determines the impact of synchroniza-
tion. These characteristics provide insights into the architectural
features that are required to achieve good performance.

1. SGEMM (both dense and sparse) is an important kernel that is
an integral part of many linear algebra numerical algorithms, such
as linear solvers. SGEMM is characterized by regular access pat-
terns and therefore maps to SIMD architecture in a straightforward
manner. Threading is also simple, as matrices can be broken into
sub-blocks of equal size which can be operated on independently
by multiple threads. SGEMM performs O(n3) compute, where
n is the matrix dimension and has O(n2) data accesses. The ra-
tio of compute to data accesses is O(n), which makes SGEMM a
compute-bound application, when properly blocked.

2. MC or Monte Carlo randomly samples a complex function,
with an unknown or highly complex analytical representation, and
averages the results. We use an example of Monte Carlo from com-
putational finance for pricing options [34]. It simulates a random
path of an underlying stock over time and calculates a payoff from
the option at the end of the time step. It repeats this step many
times to collect a large number of samples which are then averaged
to obtain the option price. Monte Carlo algorithms are generally
compute-bound with regular access patterns, which makes it a very
good fit for SIMD architectures.

3. Conv or convolution is a common image filtering operation
used for effects such as blur, emboss and sharpen. Its arithmetic
computations are simple multiply-add operations and its memory
accesses are regular in small neighborhood. Each pixel is cal-
culated independently, thus providing ample parallelism at both
SIMD and thread level. Though its compute-to-memory charac-
teristic varies depending on the filter size, in practice, it usually
exhibits high compute-to-memory ratio. Its sliding-window-style
access pattern gives rise to a memory alignment issue in SIMD
computations. Also, multi-dimensional convolutions incur non-
sequential data accesses, which require good cache blocking for
high performance.

4. FFT or Fast Fourier Transform is one of the most impor-
tant building blocks for signal processing applications. It converts
signals from time domain to frequency domain, and vice versa.
FFT is an improved algorithm to implement Discrete Fourier Trans-
form (DFT). DFT requires O(n2) operations and FFT improves it
to O(n logn). FFT algorithms have been studied exhaustively [26].
Though various optimizations have been developed for each us-
age model/hardware platform, their basic behavior is similar. It
is composed of logn stages of the butterfly computation followed
by a bit-reverse permutation. Arithmetic computations are simple
floating-point multiply-adds, but data access patterns are non-trivial
pseudo-all-to-all communication, which makes parallelization and
SIMDification difficult. Therefore, many studies [7] have focused
on the challenges to implement FFT on multi-core wide-SIMD ar-
chitectures well.

5. SAXPY or Scalar Alpha X Plus Y is one of the functions
in the Basic Linear Algebra Subprograms (BLAS) package and is
a combination of scalar multiplication and vector addition. It has
a regular access pattern and maps well to SIMD. The use of TLP
requires only a simple partitioning of the vector. For long vectors
that do not fit into the on-die storage, SAXPY is bandwidth bound.

452

Kernel Application SIMD TLP Characteristics

SGEMM (SGEMM) [48] Linear algebra Regular Across 2D Tiles Compute bound after tiling
Monte Carlo (MC) [34, 9] Computational Finance Regular Across paths Compute bound

Convolution (Conv) [16, 19] Image Analysis Regular Across pixels Compute bound; BW bound for small filters
FFT (FFT) [17, 21] Signal Processing Regular Across smaller FFTs Compute/BW bound depending on size

SAXPY (SAXPY) [46] Dot Product Regular Across vector BW bound for large vectors
LBM (LBM) [32, 45] Time Migration Regular Across cells BW bound

Constraint Solver (Solv) [14] Rigid body physics Gather/Scatter Across constraints Synchronization bound
SpMV (SpMV) [50, 8, 47] Sparse Solver Gather Across non-zero BW bound for typical large matrices

GJK (GJK) [38] Collision Detection Gather/Scatter Across objects Compute Bound
Sort (Sort) [15, 39, 40] Database Gather/Scatter Across elements Compute bound
Ray Casting (RC) [43] Volume Rendering Gather Across rays 4-8MB first level working set,

over 500MB last level working set
Search (Search) [27] Database Gather/Scatter Across queries Compute bound for small tree, BW

bound at bottom of tree for large tree
Histogram (Hist) [53] Image Analysis Requires Across pixels Reduction/synchronization bound

conflict detection
Bilateral (Bilat) [52] Image Analysis Regular Across pixels Compute Bound

Table 1: Throughput computing kernels characteristics. The referred papers contains the best previous reported performance
numbers on CPU/GPU platforms. Our optimized performance numbers are at least on par or better than those numbers.

For very short vectors, SAXPY spends a large portion of time per-
forming horizontal reduction operation.

6. LBM or Lattice Boltzmann method, is a class of computa-
tional fluid dynamics. LBM uses the discrete Boltzmann equation
to simulate the flow of a Newtonian fluid instead of solving the
Navier Stokes equations. In each time step, for a D3Q19 lattice,
LBM traverses the entire 3D fluid lattice and for each cell com-
putes new distribution function values from the cell’s 19 neighbors
(including self). Within each time step, the lattice can be traversed
in any order as values from the neighbors are computed from the
previous time step. This aspect makes LBM suitable for both TLP
and DLP. LBM has O(n) compute and requires O(n) data, where n
is the number of cells. The working set consists of the data of the
cell and its 19 neighbors. The reuse of these values is substantially
less than convolution. Large caches do not improve the perfor-
mance significantly. The lack of reuse also means that the compute
to bandwidth ratio is low; LBM is usually bandwidth bound.

7. Solv or constraint solver is a key part of game physics simu-
lators. During the execution of the physical simulation pipeline, a
collision detection phase computes pairs of colliding bodies, which
are then used as inputs to a constraint solving phase. The con-
straint solver operates on these pairs and computes the separating
contact forces, which keeps the bodies from inter-penetrating into
one another. The constraints are typically divided into batches of
independent constraints [14]. SIMD and TLP are both exploited
among independent constraints. Exploiting SIMD parallelism is
however challenging due to the presence of gather/scatter opera-
tions required to gather/scatter object data (position, velocity) for
different objects. Ideally, the constraint solver should be bandwidth
bound, because it iterates over all constraints in a given iteration
and the number of constraints for realistic large scale destruction
scenes exceeds the capacity of today’s caches. However, practical
implementations suffer from synchronization costs across sets of
independent constraints, which limits performance on current ar-
chitectures.

8. SpMV or sparse matrix vector multiplication is at the heart of
many iterative solvers. There are several storage formats of sparse
matrices, compressed row storage being the most common. Com-
putation in this format is characterized by regular access patterns
over non-zero elements and irregular access patterns over the vec-
tor, based on column index. When the matrix is large and does not
fit into on-die storage, a well optimized kernel is usually bandwidth
bound.

9. GJK is a commonly used algorithm for collision detection and

resolution of convex objects in physically-based animations/simu-
lations in virtual environments. A large fraction of the run-time
is spent in computing support map, i.e., the furthest vertex of the
object along a given direction. Scalar implementation of GJK is
compute bound on current CPUs and GPUs and can exploit DLP
to further speedup the run-time. The underlying SIMD is exploited
by executing multiple instances of the kernel on different pairs of
objects. This requires gathering the object data (vertices/edges) of
multiple objects into a SIMD register to facilitate fast support map
execution. Hence the run-time is dependent on support for an ef-
ficient gather instruction by the underlying hardware. There also
exist techniques [38] that can compute support map by memoizing
the object into a lookup table, and performing lookups into these
tables at run-time. Although still requiring gathers, this lookup can
be performed using texture mapping units available on GPUs to
achieve further speedups.

10. Sort or radix sort is a multi-pass sorting algorithm used in
many areas including databases. Each pass sorts one digit of the in-
put at a time, from least to most significant. Each pass involves data
rearrangement in the form of memory scatters. On CPUs, the best
implementation foregoes the use of SIMD and implements a scatter
oriented rearrangement within cache. On GPUs, where SIMD use
is important, the algorithm is rewritten using a 1-bit sort primitive,
called split [39]. The split based code, however, has more scalar
operations than the buffer code (since it works on a single bit at
a time). The overall efficiency of SIMD use relative to optimized
scalar code is therefore not high even for split code. The number of
bits considered per pass of radix sort depends on the size of the lo-
cal storage. Increasing cache sizes will thus improve performance
(each doubling of the cache size will increase the number of bits
per pass by one). Overall, radix sort has O(n) bandwidth and com-
pute requirements (where n is the number of elements to be sorted),
but is usually compute bound due to the inefficiency of SIMD use.

11. RC or Ray Casting is an important visual application, used
to visualize 3D datasets, such as CT data used in medical imaging.
High quality algorithms, known as ray casting, cast rays through
the volume, performing compositing of each voxel into a corre-
sponding pixel, based on voxel opacity and color. Tracing multi-
ple rays using SIMD is challenging, because rays can access non-
contiguous memory locations, resulting in incoherent and irregular
memory accesses. Some ray casting implementations perform a
decent amount of computation, for example, gradient shading. The
first level working set due to adjacent rays accessing the same vol-
ume data is reasonably small. However, the last level working set

453

can be as large as the volume itself, which is several gigabytes of
data.

12. Search or in-memory tree structured index search is a com-
monly used operation in various fields of computer science, espe-
cially databases. For CPUs, the performance depends on whether
the trees can fit in cache or not. For small trees (tree sizes smaller
than the last-level cache (LLC)), the search operation is compute
bound, and can exploit the underlying SIMD to achieve speedups.
However, for large trees (tree sizes larger than the LLC), the last
few levels of the tree do not fit in the LLC, and hence the run-time
for search is bound by the available memory bandwidth. As far as
the GPUs are concerned, the available high-bandwidth exceeds the
required bandwidth even for large trees, and the run-time is com-
pute bound. The run-time of search is proportional to the tree depth
on the GTX280.

13. Hist or histogram computation is an important image pro-
cessing algorithm which hashes and aggregates pixels from the
continuous stream of data into a smaller number of bins. While
address computation is SIMD friendly, SIMDification of the aggre-
gation, however, requires hardware support for conflict detection,
currently not available on modern architectures. The access pattern
is irregular and hence SIMD is hard to exploit. Generally, multi-
threading of histogram requires atomic operation support. How-
ever, there are several parallel implementations of histogram which
use privatization. Typically, private histograms can be made to fit
into available on-die storage. However, the overhead of reducing
the private histograms is high, which becomes a major bottleneck
for highly parallel architectures.

14. Bilat or bilateral filter is a common non-linear filter used in
image processing for edge-preserving smoothing operations. The
core computation has a combination of a spatial and an intensity
filter. The neighboring pixel values and positions are used to com-
pute new pixel values. It has high computational requirements and
the performance should scale linearly with increased flops. Typical
image sizes are large; TLP/DLP can be exploited by dividing the
pixels among threads and SIMD units. Furthermore, the bilateral
filter involves transcendental operations like computing exponents,
which can significantly benefit from fast math units.

3. TODAY’S HIGH PERFORMANCE COM-
PUTE PLATFORMS

In this section, we describe two popular high-performance com-
pute platforms of today: (1) A CPU based platform with an In-
tel Core i7-960 processor; and (2) A GPU based platform with an
Nvidia GTX280 graphics processor.

3.1 Architectural Details
First, we discuss the architectural details of the two architectures,

and analyze the total compute, bandwidth and other architectural
features available to facilitate throughput computing applications.

3.1.1 Intel Core i7 CPU
The Intel Core i7-960 CPU is the latest multi-threaded multi-

core Intel-Architecture processor. It offers four cores on the same
die running at a frequency of 3.2GHz. The Core i7 processor cores
feature an out-of-order super-scalar microarchitecture, with newly
added 2-way hyper-threading. In addition to scalar units, it also
has 4-wide SIMD units that support a wide range of SIMD instruc-
tions [24]. Each core has a separate 32KB L1 for both instructions
and data, and a 256KB unified L2 data cache. All four cores share
an 8MB L3 data cache. The Core i7 processor also features an
on-die memory controller that connects to three channels of DDR

memory. Table 2 provides the peak single-precision and double-
precision FLOPS for both scalar and SSE units, and also the peak
bandwidth available per die.

3.1.2 Nvidia GTX280 GPU
The Nvidia GTX280 is composed of an array of multiproces-

sors (a.k.a. SM). Each SM has 8 scalar processing units running
in lockstep1, each at 1.3 GHz. The hardware SIMD structure is
exposed to programmers through thread warps. To hide memory
latency, GTX280 provides hardware multi-threading support that
allows hundreds of thread contexts to be active simultaneously.
To alleviate memory bandwidth, the card includes various on-chip
memories – such as multi-ported software-controlled 16KB mem-
ory (referred to as local shared buffer) and small non-coherent read-
only caches. The GTX280 also has special functional units like the
texture sampling unit, and math units for fast transcendental oper-
ations. Table 2 depicts the peak FLOPS and the peak bandwidth of
the GTX2802.

3.2 Implications for Throughput Computing
Applications

We now describe how the salient hardware features on the two ar-
chitectures differ from each other, and their implications for through-
put computing applications.
Processing Element Difference: The CPU core is designed to
work well for a wide range of applications, including single-threaded
applications. To improve single-thread performance, the CPU core
employs out-of-order super-scalar architecture to exploit instruc-
tion level parallelism. Each CPU core supports scalar and SIMD
operations, with multiple issue ports allowing for more than one
operation to be issued per cycle. It also has a sophisticated branch
predictor to reduce the impact of branch misprediction on perfor-
mance. Therefore, the size and complexity of the CPU core limits
the number of cores that can be integrated on the same die.
In comparison, the processing element for GPU or SM trades off
fast single thread performance and clock speed for high through-
put. Each SM is relatively simple. It consists of a single fetch unit
and eight scalar units. Each instruction is fetched and executed in
parallel on all eight scalar units over four cycles for 32 data ele-
ments (a.k.a. a warp). This keeps the area of each SM relatively
small, and therefore more SMs can be packed per die, as compared
to the number of CPU cores.
Cache size/Multi-threading: CPU provides caches and hardware
prefetchers to help programmers manage data implicitly. The caches
are transparent to the programmer, and capture the most frequently
used data. If the working set of the application can fit into the on-
die caches, the compute units are used more effectively. As a re-
sult, there has been a trend of increasing cache sizes in recent years.
Hardware prefetchers provide additional help to reduce memory la-
tency for streaming applications. Software prefetch instructions are
also supported to potentially reduce the latency incurred with irreg-
ular memory accesses. In contrast, GPU provides for a large num-
ber of light-weight threads to hide memory latency. Each SM can
support up to 32 concurrent warps per multi-processor. Since all the
threads within a warp execute the same instruction, the warps are
switched out upon issuing memory requests. To capture repeated
access patterns to the same data, GTX280 provides for a few local
storages (shared buffer, constant cache and texture cache). The size

1We view 8 scalar units as SIMD lanes, hence 8-element wide
SIMD for GTX280.
2The peak single-precision SIMD Flops for GTX280 is 311.1 and
increases to 933.1 by including fused multiply-add and a multiply
operation which can be executed in SFU pipeline.

454

Num. Frequency Num. BW SP SIMD DP SIMD Peak SP Scalar Peak SP SIMD Peak DP SIMD
PE (GHz) Transistors (GB/sec) width width FLOPS (GFLOPS) Flops (GFLOPS) Flops (GFLOPS)

Core i7-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 1 116.6 311.1/933.1 77.8

Table 2: Core i7 and GTX280 specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point, DP: Double-Precision
Floating Point.

of the local shared buffer is just 16KB, and much smaller than the
cache sizes on CPUs.
Bandwidth Difference: Core i7 provides a peak external mem-
ory bandwidth of 32 GB/sec, while GTX280 provides a bandwidth
of around 141 GB/sec. Although the ratio of peak bandwidth is
pretty large (∼4.7X), the ratio of bytes per flop is comparatively
smaller (∼1.6X) for applications not utilizing fused multiply add
in the SFU.
Other Differences: CPUs provide for fast synchronization op-
erations, something that is not efficiently implemented on GPUs.
CPUs also provide for efficient in-register cross-lane SIMD oper-
ations, like general shuffle and swizzle instructions. On the other
hand, such operations are emulated on GPUs by storing the data
into the shared buffer, and loading it with the appropriate shuffle
pattern. This incurs large overheads for some throughput comput-
ing applications. In contrast, GPUs provide support for gather/s-
catter instructions from memory, something that is not efficiently
implemented on CPUs. Gather/Scatter operations are important
to increase SIMD utilization for applications requiring access to
non-contiguous regions of memory to be operated upon in a SIMD
fashion. Furthermore, the availability of special function units like
texture sampling unit and math units for fast transcendental helps
speedup throughput computing applications that spend a substan-
tial amount of time in these operations.

4. PERFORMANCE EVALUATIONS ON
CORE I7 AND GTX280

This section evaluates the performance of the throughput com-
puting kernels on the Core i7-960 and GTX280 processors and an-
alyzes the measured results.

4.1 Methodology
We measured the performance of our kernels on (1) a 3.2GHz

Core i7-960 processor running the SUSE Enterprise Server 11 op-
erating system with 6GB of PC1333 DDR3 memory on an Intel
DX58SO motherboard, and (2) a 1.3GHz GTX280 processor (an
eVGA GeForce GTX280 card with 1GB GDDR3 memory) in the
same Core i7 system with Nvidia driver version 19.180 and the
CUDA 2.3 toolkit.

Since we are interested in comparing the CPU and the GPU ar-
chitectures at the chip level to see if any specific architecture fea-
tures are responsible for the performance difference, we did not in-
clude the data transfer time for GPU measurements. We assume the
throughput computing kernels are executed in the middle of other
computations that create data in GPU memory before the kernel ex-
ecution and use data generated by the kernel in GPU memory. For
applications that do not meet our assumption, transfer time can sig-
nificantly degrade performance as reported by Datta in [16]. The
GPU results as presented here are an upper bound of what will be
seen in actual applications for these algorithms.

For both CPU and GPU performance measurements, we have
optimized most of the kernels individually for each platform. For
some of the kernels, we have used the best available implemen-
tation that already existed. Specifically, evaluations of SGEMM,
SpMV, FFT and MC on GTX280 have been done using code from

Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.

[1, 8, 2, 34], respectively. For the evaluations of SGEMM, SpMV
and FFT on Core i7, we used Intel MKL 10.0. Table 3 shows
the performance of throughput computing kernels on Core i7 and
GTX280 processor with the appropriate performance metric shown
in the caption. To the best of our knowledge, our performance num-
bers are at least on par and often better than the best published
data. We typically find that the highest performance is achieved
when multiple threads are used per core. For Core i7, the best per-
formance comes from running 8 threads on 4 cores. For GTX280,
while the maximum number of warps that can be executed on one
GPU SM is 32, a judicious choice is required to balance the ben-
efit of multithreading with the increased pressure on registers and
on-chip memory resources. Kernels are often run with 4 to 8 warps
per core for best GPU performance.

4.2 Performance Comparison
Figure 1 shows the relative performance between GTX280 and

Core i7 processors when data transfer time for GTX280 is not con-
sidered. Our data shows that GTX280 only has an average of 2.5X
performance advantage over Core i7 in the 14 kernels tested. Only
GJK achieves a greater than 10X performance gap due to the use of
the texture sampler. Sort and Solv actually perform better on Core
i7 . Our results are far less than previous claims like the 50X dif-
ference in pricing European options using Monte Carlo method [9],
the 114X difference in LBM [45], the 40X difference in FFT [21],
the 50X difference in sparse matrix vector multiplication [47] and
the 40X difference in histogram computation [53], etc.

There are many factors that contributed to the big difference be-
tween previous reported results and ours. One factor is what CPU
and GPU are used in the comparison. Comparing a high perfor-
mance GPU to a mobile CPU is not an optimal comparison as their
considerations for operating power, thermal envelop and reliability
are totally different. Another factor is how much optimization is
performed on the CPU and GPU. Many studies compare optimized
GPU code to unoptimized CPU code and resulted in large differ-
ence. Other studies which perform careful optimizations to CPU
and GPU such as [27, 39, 40, 43, 49] report much lower speedup
similar to ours. Section 5.1 discusses the necessary software opti-
mizations for improving performance for both CPU and GPU plat-
forms.

455

Apps. SGEMM MC Conv FFT SAXPY LBM Solv SpMV GJK Sort RC Search Hist Bilat
Core i7-960 94 0.8 1250 71.4 16.8 85 103 4.9 67 250 5 50 1517 83

GTX280 364 1.4 3500 213 88.8 426 52 9.1 1020 198 8.1 90 2583 475

Table 3: Raw performance measured on the two platforms. From the left, metrics are Gflops/s, billion paths/s, million pixels/s,
Gflops/s, GB/s, million lookups/s, FPS, Gflops/s, FPS, million elements/s, FPS, million queries/s, million pixels/s, million pixels/s.

4.3 Performance Analysis
In this section, we analyze the performance results and identify

the architectural features that contribute to the performance of each
of our kernels. We begin by first identifying kernels that are purely
bounded by one of the two fundamental processor resources - band-
width and compute. We then identify the role of other architectural
features such as hardware support for irregular memory accesses,
fast synchronization and hardware for performing fixed function
computations (such as texture and transcendental math operations)
in speeding up the remaining kernels.

4.3.1 Bandwidth
Every kernel requires some amount of external memory band-

width to bring data into the processor. The impact of external
memory bandwidth on kernel performance depends on two factors:
(1) whether the kernel has enough computation to fully utilize the
memory accesses; and (2) whether the kernel has a working set
that fits in the on-die storages (either cache or buffers). Two of our
kernels, SAXPY and LBM have large working sets that require
global memory accesses without much compute on the loaded data
- they are purely bandwidth bound. These kernels will benefit from
increased bandwidth resources. The performance ratios for these
two kernels between GTX280 and Core i7 are 5.3X and 5X re-
spectively. These results are inline with the ratio between the two
processors’ peak memory bandwidth (which is 4.7X).

SpMV also has a large working set and very little compute.
However, the performance ratio for this kernel between GTX280
and Core i7 is 1.9X, which is about 2.3X lower than the ratio of
peak bandwidth between the two processors. This is due to the fact
that the GTX280 implementation of SpMV keeps both vector and
column index data structures in GDDR since they do not fit in the
small on-chip shared buffer. However, in the Core i7 implemen-
tation, the vectors always fit in cache and the column index fits in
cache for about half the matrixes. On average, the GPU bandwidth
requirement for SpMV is about 2.5X the CPU requirement. As the
result, although the GTX280 has 4.7X more bandwidth than Core
i7 , the performance ratio is only 1.9X.

Our other kernels either have a high compute-to-bandwidth ratio
or working sets that fit completely or partially in the on-die storage,
thereby reducing the impact of memory bandwidth on performance.
These categories of kernels will be described in later sections.

4.3.2 Compute Flops
The computational flops available on a processor depend on single-

thread performance, as well as TLP due to the presence of multiple
cores, or DLP due to wide vector (SIMD) units. While most appli-
cations (except the bandwidth-bound kernels) can benefit from im-
proved single-thread performance and thread-level parallelism by
exploiting additional cores, not all of them can exploit SIMD well.
We identify SGEMM, MC, Conv, FFT and Bilat as being able to
exploit all available flops on both CPU and GPU architectures. Fig-
ure 1 shows that SGEMM, Conv and FFT have GTX280-to-Core
i7 performance ratios in the 2.8-4X range. This is close to the 3-6X
single-precision (SP) flop ratio of the GTX280 to Core i7 architec-
tures (see Table 2), depending on whether kernels can utilize fused
multiply-adds or not.

The reason for not achieving the peak compute ratio is because
GPUs do not achieve peak efficiency in the presence of shared
buffer accesses. Volkov et al. [48] show that GPUs obtain only
about 66% of the peak flops even for SGEMM (known to be com-
pute bound). Our results match their achieved performance ratios.
MC uses double precision arithmetic, and hence has a performance
ratio of 1.8X, close to the 1.5X double-precision (DP) flop ratio.
Bilat utilizes fast transcendental operations on GPUs (described
later), and has a GTX280 to Core i7 performance ratio better than
5X. The algorithm used for Sort critically depends on the SIMD
width of the processor. A typical radix sort implementation in-
volves reordering data involving many scalar operations for buffer
management and data scatters. However, scalar code is inefficient
on GPUs, and hence the best GPU sort code uses a SIMD friendly
split primitive. This has many more operations than the scalar code
- and is consequently 1.25X slower on the GTX280 than on Core
i7.

Seven of our fourteen kernels have been identified as bounded
by compute or bandwidth resources. We now describe the other
architectural features that have a performance impact on the other
seven kernels.

4.3.3 Cache
As mentioned in the section 4.3.1, on-die storage can alleviate

external memory bandwidth pressure if all or part of the kernel’s
working set can fit in such storage. When the working set fits in
cache, most kernels are compute bound and the performance will
scale with increasing compute. The five kernels that we identify
as compute bound have working sets that can be tuned to fit in
any reasonably sized cache without significant loss of performance.
Consequently, they only rely on the presence on some kind of on-
chip storage and are compute bound on both CPUs and GPUs.

There are kernels whose working set cannot be easily tuned to
any given cache size without loss of performance. One example
is radix sort, which requires a working set that increases with the
number of bits considered per pass of the sort. The number of
passes over the data, and hence the overall runtime, decreases as
we increase cache size. On GPUs with a small local buffer of
16 KB shared among many threads, we can only sort 4 bits in
one pass - requiring 8 passes to sort 32-bit data. On Core i7, we
can fit the working set of 8 bits in L2 cache; this only requires 4
passes - a 2X speedup. This contributes to Sort on Core i7 being
1.25X faster than GTX280. Another interesting example is index
tree search (Search). Here, the size of the input search tree de-
termines the working set. For small trees that fit in cache, search
on CPUs is compute bound, and in fact is 2X faster than GPU
search. For larger trees, search on CPUs is bandwidth bound, and
becomes 1.8X slower than GPUs. GPU search, in contrast, is al-
ways compute bound due to ISA inefficiencies (i.e., the unavail-
ability of cross-lane SIMD operations).

Another important working set characteristic that determines ker-
nel performance is whether the working set scales with the number
of threads or is shared by all threads. Kernels like SGEMM, MC,
Conv, FFT, Sort, RC, and Hist have working sets that scale with
the number of threads. These kernels require larger working sets
for GPUs (with more threads) than CPUs. This may not have any
performance impact if the kernel can be tiled to fit into a cache of an

456

arbitrary size (e.g. SGEMM and FFT). However, tiling can only
be done to an extent for RC. Consequently, RC becomes band-
width bound on GPUs, which have very small amount of on-die
storages, but is not bandwidth bound on CPUs (instead being af-
fected by gathers/scatters, described later), and the performance ra-
tio on GTX280 to Core i7 is only 1.6X, far less than bandwidth and
compute ratios.

4.3.4 Gather/Scatter
Kernels that are not bandwidth bound can benefit with increasing

DLP. However, the use of SIMD execution units places restrictions
on kernel implementations, particularly in the layout of the data.
Operands and results of SIMD operations are typically required to
be grouped together sequentially in memory. To achieve the best
performance, they should be placed into an address-aligned struc-
ture (for example for 4-wide single-precision SIMD, the best per-
formance will be when the data is 16-byte aligned). If the data does
not meet these layout restrictions, programmers must convert the
data layout of kernels. This generally involves gather/scatter op-
erations, where operands are gathered from multiple locations and
packed together into a tight grouping, and results are scattered from
a tight grouping to multiple locations. Performing gather/scatter in
software can be expensive.3 Thus, efficient hardware support for
gather/scatter operations is very important.

A number of our kernels rely on the availability of gather/scatter
operations. For example, GJK spends a large fraction of its run-
time in computing the support map. This requires gathering the
object data (vertices/edges) of multiple objects into a SIMD reg-
ister to facilitate fast support map execution. Another example is
RC, which requires gathering volume data across the rays. Fre-
quent irregular memory accesses result in large number of gather
operations. Up to 10% of the dynamic instructions are gather re-
quests.

On Core i7, there is no hardware gather/scatter support. Conse-
quently, GJK and RC do not utilize SIMD efficiently. For exam-
ple, RC sees very incremental benefit from SSE between 0.8X and
1.2X, due to large overhead of software gather. GJK also sees min-
imal benefits from SSE. On GTX280, support for gather/scatter is
offered for accesses to the local buffer and GDDR memory. Local
shared buffer supports simultaneous gather/scatter accesses to mul-
tiple banks. The GDDR memory controller coalesces requests to
the same line to reduce the number of gather/scatter accesses. This
improved gather/scatter support leads to an improvement of GJK
performance on the GTX280 over the Core i7 . However, gath-
er/scatter support only has a small impact (of 1.2X) on RC per-
formance because the accesses are widely spread out to memory,
requiring multiple GDDR accesses even with coalescing support –
it therefore becomes limited by GPU memory bandwidth. Conse-
quently, the ratio of GTX280 to Core i7 performance for RC is only
1.6X, slightly better than the scalar flop ratio of 1.5X.

4.3.5 Reduction and Synchronization
Throughput computing kernels achieve high performance through

thread-level (multiple cores and threads) and/or data-level (wide
vector) parallelism. Reduction and synchronization are two opera-
tions that do not scale with increasing thread count and data-level
parallelism. Various optimization techniques have been proposed
to reduce the need of reduction and to avoid synchronization. How-
ever, the synchronization overhead is still dominant in some kernels
such as Hist and Solv, and will become an even bigger performance

3For 4-wide SIMD on Core i7, a compiler generated gather se-
quence will take 20 instructions and even a hand optimized assem-
bly sequence will still take 13 instructions.

bottleneck as the number of cores/threads and the SIMD width in-
crease.

The performance of Hist is mainly limited by atomic updates.
Although Core i7 supports a hardware lock increment instruction,
28% of the total run-time is still spent on atomic updates. Atomic
update support on the GTX280 is also very limited. Consequently,
a privatization approach where each thread generates a local his-
togram was implemented for both CPU and GPU. However, this
implement does not scale with increase core count because the re-
duction overhead increases with the number of cores. Also, the
lack of cross-SIMD lane operations like reduction on GPUs leads
to large instruction overhead on GTX280. Thus, Hist is only 1.8X
faster on GTX280 than on Core i7, much lower than the compute
and bandwidth ratios (∼5X). As was mentioned in Section 2, map-
ping Hist to SIMD requires support for conflict detection which
is not currently available on modern architectures. Our analysis
of ideal conflict detection hardware, capable of detecting an arbi-
trary number of conflicting indices within the same SIMD vector,
improves histogram computation by up to 3X [29].

In Solv, a batch of independent constraints is executed simul-
taneously by multiple cores/threads, followed by a barrier before
executing the next batch. Since resolving a constraint requires only
small amount of computation (on the order of several hundred in-
structions), the task granularity is small. As a result, the execution
time is dominated by the barrier overhead. On Core i7, barriers
are implemented using atomic instructions. While it is possible
to implement barrier operations entirely on GPU [48], this imple-
mentation does not guarantee that previous accesses to all levels of
memory hierarchy have completed. CPUs provide a memory con-
sistency model with the help of a cache coherence protocol. Due
to the fact that cache coherence is not available on today’s GPUs,
assuring memory consistency between two batches of constraints
requires launching the second batch from the CPU host, which in-
curs additional overhead. As a result, the barrier execution time of
GTX280 is order of magnitude slower than on Core i7, resulting
in an overall 1.9X slow down in performance for GTX280 when
compared to Core i7 for the constraint solver.

4.3.6 Fixed Function
Bilat consists of transcendental operations like computing ex-

ponential and power functions. However, for image processing
purpose, high accuracy version of these functions are not neces-
sary. Current CPUs use algebraic expressions to evaluate such ex-
pressions up to the required accuracy, while modern GPUs provide
hardware to speedup the computation. On Core i7 , a large portion
of run-time (around 66%) is spent in transcendental computation.
On GTX280, due to the presence of fast transcendental hardware, it
achieves a 5.7X performance ratio compare to Core i7 (much more
than the peak compute ratio of around 3X). Speeding up transcen-
dental on Core i7 (for example, as on GTX280) would improve
Bilat performance by around 2X, and the resultant GPU-to-CPU
performance ratio would be around 3X, which is closer to the peak
compute ratio. MC is another kernel that would benefit from fast
transcendental on CPUs.

Modern GPUs also provide for other fixed function units like the
texture sampling unit, which is a major component of rendering al-
gorithms. However, by reducing the linear-time support-map com-
putation to constant-time texture lookups, GJK collision detection
algorithm can exploit the fast texture lookup capability of GPUs,
resulting in an overall 14.9X speedup on GTX280 over Core i7.

5. DISCUSSION
The platform-specific software optimization is critical to fully

457

utilize compute/bandwidth resources for both CPUs and GPUs. We
first discuss these software optimization techniques and derive a
number of key hardware architecture features which play a ma-
jor role in improving performance of throughput computing work-
loads.

5.1 Platform Optimization Guide
Traditionally, CPU programmers have heavily relied on increas-

ing clock frequencies to improve performance and have not opti-
mized their applications to fully extract TLP and DLP. However,
CPUs are evolving to incorporate more cores with wider SIMD
units, and it is critical for applications to be parallelized to exploit
TLP and DLP. In the absence of such optimizations, CPU imple-
mentations are sub-optimal in performance and can be orders of
magnitude off their attainable performance. For example, the pre-
viously reported LBM number on GPUs claims 114X speedup over
CPUs [45]. However, we found that with careful multithreading,
reorganization of memory access patterns, and SIMD optimiza-
tions, the performance on both CPUs and GPUs is limited by mem-
ory bandwidth and the gap is reduced to only 5X. Now we highlight
the key platform-specific optimization techniques we learned from
optimizing the throughput computing kernels.

CPU optimization: First, most of our kernels can linearly scale
with the number of cores. Thus multithreading provides 3-4X per-
formance improvement on Core i7. Second, CPUs heavily rely on
caches to hide memory latency. Moreover, memory bandwidth on
CPUs is low as compared to GPUs. Blocking is one technique
which reduces LLC misses on CPUs. Programmers must be aware
of the underlying cache hierarchy or use auto-tuning techniques to
obtain the best performing kernels [18, 35]. Many of our kernels,
SGEMM, FFT, SpMV, Sort, Search, and RC use cache blocking.
Sort, for best performance, requires the number of bits per pass to
be tuned so that its working set fits in cache. RC blocks the volume
to increase 3D locality between rays in a bundle. We observe that
cache blocking improves the performance of Sort and Search by 3-
5X. Third, we found that reordering data to prevent irregular mem-
ory accesses is critical for SIMD utilization on CPUs. The main
reason is that CPUs do not have gather/scatter support. Search per-
forms explicit SIMD blocking to make memory accesses regular.
Solv performs a reordering of the constraints to improve memory
access patterns. Other kernels, such as LBM and RC convert some
of the data structures from array-of-structure to structure-of-array
format to completely eliminate gather operations. For example, the
performance of LBM improves by 1.5X from this optimization.

GPU optimization: For GPUs, we found that global inter-thread
synchronization is very costly, because it involves a kernel termi-
nation and new kernel call overhead from the host. Hist minimizes
global synchronization by privatizing histograms. Solv also per-
forms constraint reordering to minimize conflicts among neighbor-
ing constraints, which are global synchronization points. Another
important optimization for GPUs was the use of the local shared
buffer. Most of our kernels use the shared buffer to reduce band-
width consumption. Additionally, our GPU sort uses the fact that
buffer memory is multi-banked to enable efficient gathers/scatters
of data.

5.2 Hardware Recommendations
In this section we capitalize on the learning from Section 4.3 to

derive a number of key processor features which play major role in
improving performance of throughput computing applications.

High compute flops and memory bandwidth: High compute
flops can be achieved in two ways - by increasing core count or in-
creasing SIMD width. While increasing core count provides higher

performance benefits, it also incurs high area overhead. Increasing
SIMD width also provides higher performance, and is more area-
efficient. Our observation is confirmed by the trend of increasing
SIMD width in computing platforms such as Intel architecture pro-
cessor with AVX extension [23], Larrabee [41] and next generation
Nvidia GT GPUs [30]. Increasing SIMD width will reach a point of
diminishing return. As discussed in Section 4.3.4, irregular mem-
ory accesses can significantly decrease SIMD efficiency. The cost
to fix this would offset any area benefit offered by increase SIMD
width. Consequently, the future throughput computing processor
should strike the right balance between SIMD and MIMD execu-
tion.

With the growth of compute flops, high memory bandwidth is
critical to achieve scalable performance. The current GPUs lever-
age high-end memory technology (e.g., graphics DDR or GDDR)
to support high compute throughput. This solution limits the mem-
ory capacity available in a GPU platform to an amount much smaller
than the capacities deployed in CPU-based servers today. Further-
more, increasing memory bandwidth to match the compute has pin-
count and power limitations. Instead, one should explore emerging
memory technologies such as 3D-stacking [12] or cache compres-
sion [5].

Large cache: As shown in Section 4.3.3, caches provide signif-
icant benefit for throughput computing applications. An example
proof of our viewpoint is that GTX280 has limited on-die memo-
ries and around 40% of our benchmarks will lose the opportunity to
benefit from increasing compute flops. The size of the on-die stor-
age should match the working set of target workloads for maximum
efficiency. Some workloads have a working set that only depends
on the dataset and does not change with increasing core count or
thread count. For today’s datasets, 8MB on-die storage is suffi-
cient to eliminate 90% of all accesses to external memory. As the
data footprint is likely to increase tomorrow, larger on-die storage
is necessary for these workloads to work well. Other workloads
have working set scales with the number of processing threads. For
these workloads, one should consider their per thread on-die stor-
age size requirement. For today’s dataset, we found most per thread
working sets can be as small as a few KB to as large as 256KB. The
per thread working sets are unlikely to change in the future as they
are already set to scale with increased thread count.

Gather/Scatter: 42% percent of our benchmarks can exploit
SIMD better with an efficient gather/scatter support. Our simulation-
based analysis projects a 3X performance benefit for SpMV and
RC with idealized gather operations. Idealized gather operation
can simultaneously gather all elements into SIMD register in the
same amount of time to load one cache line. This may require sig-
nificant hardware and be impractical to build as it may require a
large number of cache ports. Therefore, this represents the upper
bound of the gather/scatter hardware potential. Cheaper alterna-
tives exist. One alternative is to use multi-banking - an approach
taken by GTX280. On GTX280, its local shared memory allows
16 simultaneous accesses to 16 banks in a single cycle, as long as
there are no bank conflicts. However, this data structure is explic-
itly managed by the programmer. Another alternative is to take
advantage of cache line locality by gathering - i.e. to extract all el-
ements required the same gather from a single load of the required
cache line. This approach requires shuffle logic to reorder the data
within a cache line before writing into the target register. Shuf-
fle logic is already available in general-purpose CPUs for permu-
tation operations within SIMD registers. Our analysis shows that
many throughput computing kernels have large amounts of cache
line locality. For example, Solv accesses on average 3.6 cache
lines within each 8-wide gather request. RC accesses on average

458

5 cache lines within each 16-wide gather request. Lastly, future
throughput computing processors should provide improved easy-
of-programming support for gather/scatter operations.

Efficient synchronization and cache coherence: Core i7 al-
lows instructions like increment and compare&exchange to have
an atomic lock prefix. GTX280 also has support for atomic opera-
tions, but only through device memory. In both CPUs and GPUs,
the current solutions are slow, and more importantly do not scale
well with respect to core count and SIMD width. Therefore, it is
critical to provide efficient synchronization solutions in the future.

Two types of synchronizations are common in throughput com-
puting kernels: reductions and barriers. First, reductions should
provide atomicity between multiple threads and multiple SIMD
lanes. For example, Hist loses up to 60% of SIMD efficiency be-
cause it cannot handle inter-SIMD-lane atomicity well. We recom-
mend hardware support for atomic vector read-modify-write oper-
ations [29], which enables conflict detection between SIMD lanes
as well as atomic memory accesses across multiple threads, thus
achieving 54% performance improvement on four cores with 4-
wide SIMD. Second, faster barrier and coherent caches become
more important as core count increases and task size gets smaller.
For example, in Solv, the average task size is only about 1000 cy-
cles, while a barrier takes several hundred cycles on CPUs and
several micro-seconds on GPUs. We recommend hardware sup-
port for fast barriers to amortize small task size and cache co-
herence to guarantee memory consistency between barrier invoca-
tions. In addition, we also believe that hardware accelerated task
queues will improve synchronization performance even more (68%
to 109% [28]).

Fixed function units: As shown in Section 4.3.6, Bilat can be
sped up by 2X using fast transcendental operations. Texture sam-
pling units significantly improve the performance of GJK. In fact,
a large class of image processing kernels (i.e., video encoding/de-
coding) can also exploit such fixed function units to accelerate spe-
cialized operations at very low area/power cost. Likewise, Core
i7 introduced a special purpose CRC instruction to accelerate the
processing of CRC computations and the upcoming 32nm version
will add encryption/decryption instructions that accelerate key ker-
nels by 10X [36]. Future CPUs and GPUs will continue this trend
of adding key primitives for developers to use in accelerating the
algorithms of interest.

6. RELATED WORK
Throughput computing applications have been identified as one

of the most important classes of future applications [6, 10, 13,
44]. Chen et al. [13] describe a diverse set of emerging appli-
cations, called RMS (Recognition, Mining, and Synthesis) work-
loads, and demonstrate that its core kernel functions exist in ap-
plications across many different domains. The PARSEC bench-
mark discusses emerging workloads and their characteristics for
CMPs [10]. The Berkeley View report illustrates 13 kernels to de-
sign and evaluate throughput computing models [6]. The UIUC’s
Parboil benchmark tailors to capture the strengths GPUs [44]. In
this paper, we share the vision that throughput computing will sig-
nificantly impact future computing paradigms, and analyze the per-
formance of a representative subset of kernels from these workload
suites on common high-performance architectures.

Multi-core processors are a major architectural trend in today’s
general-purpose CPUs. Various aspects of multi-core architectures
such as cache/memory hierarchy [11], on-chip interconnect [4] and
power management [37] have been studied. Many parallel kernels
have also been ported and optimized for multi-core systems, some
of which are similar to the kernels discussed in this paper [15, 17,

50]. However, these efforts concentrate on (1) overcoming paral-
lel scalability bottlenecks, and (2) demonstrating multi-core perfor-
mance over a single-core of the same type.

General-purpose computation on graphics hardware (GPGPU)
has been an active topic in the graphics community. Extensive work
has recently been published on GPGPU computation; this is sum-
marized well in [3, 33]. A number of studies [8, 9, 19, 20, 21, 25,
27, 34, 40, 43, 53] discuss similar throughput computing kernels as
in this paper. However, their focus is to map non-graphic applica-
tions to GPUs in terms of algorithms and programming models

Analytical models of CPUs [51] and GPUs [22] have also been
proposed. They provide a structural understanding of throughput
computing performance on CPUs and GPUs. However, (1) each
discusses either CPUs or GPUs only, and (2) their models are very
simplified. Further, they try to verify their models against real sil-
icons, rather than to provide in-depth performance comparison be-
tween CPUs and GPUs.

This paper provides an architectural analysis of CPUs and GPUs.
Instead of simply showing the performance comparison, we study
how architectural features such as core complexity, cache/buffer
design, and fixed function units impact throughput computing work-
loads. Further, we provide our recommendation on what architec-
ture features to improve future throughput computing architectures.
To the best of our knowledge, this is the first paper that evaluates
CPUs and GPUs from the perspective of architecture design. In
addition, this paper also presents a fair comparison between per-
formance on CPUs and GPUs and dispels the myth that GPUs are
100x-1000x faster than CPUs for throughput computing kernels.

7. CONCLUSION
In this paper, we analyzed the performance of an important set

of throughput computing kernels on Intel Core i7-960 and Nvidia
GTX280. We show that CPUs and GPUs are much closer in perfor-
mance (2.5X) than the previously reported orders of magnitude dif-
ference. We believe many factors contributed to the reported large
gap in performance, such as which CPU and GPU are used and
what optimizations are applied to the code. Optimizations for CPU
that contributed to performance improvements are: multithreading,
cache blocking, and reorganization of memory accesses for SIMD-
ification. Optimizations for GPU that contributed to performance
improvements are: minimizing global synchronization and using
local shared buffers are the two key techniques to improve perfor-
mance. Our analysis of the optimized code on the current CPU
and GPU platforms led us to identify the key hardware architecture
features for future throughput computing machines – high compute
and bandwidth, large caches, gather/scatter support, efficient syn-
chronization, and fixed functional units. We plan to perform power
efficiency study on CPUs and GPUs in the future.

8. REFERENCES
[1] CUDA BLAS Library. http://developer.download.nvidia.com/

compute/cuda/2_1/toolkit/docs/ CUBLAS_Library_2.1.pdf, 2008.
[2] CUDA CUFFT Library. http://developer.download.nvidia.com/

compute/cuda/2_1/toolkit/docs/ CUFFT_Library_2.1.pdf, 2008.
[3] General-purpose computation on graphics hardware. http://gpgpu.org/, 2009.
[4] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti. Achieving

predictable performance through better memory controller placement in
many-core cmps. In ISCA ’09: Proceedings of the 36th annual international
symposium on Computer architecture, 2009.

[5] A. R. Alameldeen. Using compression to improve chip multiprocessor
performance. PhD thesis, Madison, WI, USA, 2006. Adviser-Wood, David A.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The
landscape of parallel computing research: A view from berkeley. Technical
Report UCB/EECS-183, 2006.

459

[7] D. H. Bailey. A high-performance fft algorithm for vector
supercomputers-abstract. In Proceedings of the Third SIAM Conference on
Parallel Processing for Scientific Computing, page 114, Philadelphia, PA, USA,
1989. Society for Industrial and Applied Mathematics.

[8] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: Proceedings of the 2009 ACM/IEEE
conference on Supercomputing, 2009.

[9] C. Bennemann, M. Beinker, D. Egloff, and M. Gauckler. Teraflops for games
and derivatives pricing. http://quantcatalyst.com/download.php?
file=DerivativesPricing.pdf.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
characterization and architectural implications. In PACT ’08: Proceedings of
the 17th international conference on Parallel architectures and compilation
techniques, pages 72–81, New York, NY, USA, 2008. ACM.

[11] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood, and F. T. Chong.
Multi-execution: multicore caching for data-similar executions. SIGARCH
Comput. Archit. News, 37(3):164–173, 2009.

[12] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb. Die stacking (3d) microarchitecture. In
MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 469–479, Washington, DC, USA,
2006. IEEE Computer Society.

[13] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar, V. W. Lee,
A. D. Nguyen, M. Smelyanskiy, and M. Smelyanskiy. Convergence of
recognition, mining, and synthesis workloads and its implications. Proceedings
of the IEEE, 96(5):790–807, 2008.

[14] Y.-K. Chen, J. Chhugani, C. J. Hughes, D. Kim, S. Kumar, V. W. Lee, A. Lin,
A. D. Nguyen, E. Sifakis, and M. Smelyanskiy. High-performance physical
simulations on next-generation architecture with many cores. Intel Technology
Journal, 11, 2007.

[15] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen,
A. Baransi, S. Kumar, and P. Dubey. Efficient implementation of sorting on
multi-core simd cpu architecture. PVLDB, 1(2):1313–1324, 2008.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA,
2008. IEEE Press.

[17] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura.
Discrete Fourier transform on multicore. IEEE Signal Processing Magazine,
special issue on “Signal Processing on Platforms with Multiple Cores”,
26(6):90–102, 2009.

[18] M. Frigo, Steven, and G. Johnson. The design and implementation of fftw3. In
Proceedings of the IEEE, volume 93, pages 216–231, 2005.

[19] L. Genovese. Graphic processing units: A possible answer to HPC. In 4th
ABINIT Developer Workshop, 2009.

[20] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort: high
performance graphics co-processor sorting for large database management. In
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 325–336, NY, USA, 2006. ACM.

[21] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High
performance discrete fourier transforms on graphics processors. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages
1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[22] S. Hong and H. Kim. An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. SIGARCH Comput.
Archit. News, 37(3):152–163, 2009.

[23] Intel Advanced Vector Extensions Programming Reference.
[24] Intel. SSE4 Programming Reference. 2007.
[25] C. Jiang and M. Snir. Automatic tuning matrix multiplication performance on

graphics hardware. In PACT ’05: Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, pages
185–196, Washington, DC, USA, 2005. IEEE Computer Society.

[26] J. R. Johnson, R. W. Johnson, D. Rodriquez, and R. Tolimieri. A methodology
for designing, modifying, and implementing fourier transform algorithms on
various architectures. Circuits Syst. Signal Process., 9(4):449–500, 1990.

[27] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, T. Kaldewey, V. Lee,
S. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In ACM SIGMOD, 2010.

[28] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural support for
fine-grained parallelism on chip multiprocessors. In ISCA ’07: Proceedings of
the 34th annual international symposium on Computer architecture, pages
162–173, New York, NY, USA, 2007. ACM.

[29] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C. J. Hughes,
C. Kim, V. W. Lee, and A. D. Nguyen. Atomic vector operations on chip
multiprocessors. In ISCA ’08: Proceedings of the 35th International
Symposium on Computer Architecture, pages 441–452, Washington, DC, USA,
2008. IEEE Computer Society.

[30] N. Leischner, V. Osipov, and P. Sanders. Fermi Architecture White Paper, 2009.
[31] P. Lyman and H. R. Varian. How much information.

http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/, 2003.
[32] NVIDIA. NVIDIA CUDA Zone. http://www.nvidia.com/object/

cuda_home.html, 2009.
[33] Owens, D. John, Luebke, David, Govindaraju, Naga, Harris, Mark, Kruger,

Jens, Lefohn, E. Aaron, Purcell, and J. Timothy. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum, 26(1):80–113,
March 2007.

[34] V. Podlozhnyuk and M. Harris. Monte Carlo Option Pricing.
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/MonteCarlo
/doc/MonteCarlo.pdf.

[35] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE, special issue on “Program Generation, Optimization, and Adaptation”,
93(2):232– 275, 2005.

[36] R. Ramanathan. Extending the world.s most popular processor architecture.
Intel Whitepaper.

[37] K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: fine-grained power
management for multi-core systems. SIGARCH Comput. Archit. News,
37(3):302–313, 2009.

[38] R. Sathe and A. Lake. Rigid body collision detection on the gpu. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Research posters, page 49, New York, NY, USA,
2006. ACM.

[39] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for
manycore GPUs. In IPDPS, pages 1–10, 2009.

[40] N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee, D. Kim, and P. Dubey. Fast
Sort on CPUs and GPUs: A Case For Bandwidth Oblivious SIMD Sort. In ACM
SIGMOD, 2010.

[41] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan,
and P. Hanrahan. Larrabee: a many-core x86 architecture for visual computing.
ACM Trans. Graph., 27(3):1–15, August 2008.

[42] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens. Efficient
computation of sum-products on gpus through software-managed cache. In
Proceedings of the 22nd ACM International Conference on Supercomputing,
pages 309–318, June 2008.

[43] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. Carmean, D. Hanson,
P. Dubey, K. Augustine, D. Kim, A. Kyker, V. W. Lee, A. D. Nguyen, L. Seiler,
and R. A. Robb. Mapping high-fidelity volume rendering for medical imaging
to cpu, gpu and many-core architectures. IEEE Trans. Vis. Comput. Graph.,
15(6):1563–1570, 2009.

[44] The IMPACT Research Group, UIUC. Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php.

[45] J. Tolke and M. Krafczyk. TeraFLOP computing on a desktop pc with GPUs for
3D CFD. In International Journal of Computational Fluid Dynamics,
volume 22, pages 443–456, 2008.

[46] N. Univ. of Illinois. Technical reference: Base operating system and extensions
, volume 2, 2009.

[47] F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.Fernandez. The sparse matrix
vector product on GPUs. Technical report, University of Almeria, June 2009.

[48] V. Volkov and J. Demmel. LU, QR and Cholesky Factorizations using Vector
Capabilities of GPUs. Technical Report UCB/EECS-2008-49, EECS
Department, University of California, Berkeley, May 2008.

[49] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra.
In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[50] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging multicore
platforms. In SC ’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM.

[51] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76,
2009.

[52] W. Xu and K. Mueller. A performance-driven study of regularization methods
for gpu-accelerated iterative ct. In Workshop on High Performance Image
Reconstruction (HPIR), 2009.

[53] Z. Yang, Y. Zhu, and Y. Pu. Parallel Image Processing Based on CUDA. In
International Conference on Computer Science and Software Engineering,
volume 3, pages 198–201, 2008.

460

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

