An Algorithm for the Fast Solution of Symmetric Linear
Complementarity Problems

José Luis Morales* Jorge Nocedal Mikhail Smelyanskiy*
August 23, 2008

Abstract

This paper studies algorithms for the solution of mixed symmetric linear comple-
mentarity problems. The goal is to compute fast and approximate solutions of medium
to large sized problems, such as those arising in computer game simulations and Amer-
ican options pricing. The paper proposes an improvement of a method described by
Kocvara and Zowe [19] that combines projected Gauss-Seidel iterations with subspace
minimization steps. The proposed algorithm employs a recursive subspace minimiza-
tion designed to handle severely ill-conditioned problems. Numerical tests indicate that
the approach is more efficient than interior-point and gradient projection methods on
some physical simulation problems that arise in computer game scenarios.

1 Introduction

Linear complementarity problems (LCPs) arise in a variety of applications [12, 13, 16] and
several methods have been proposed for their solution [19, 17]. In this paper we are inter-
ested in applications where linear complementarity problems must be solved with strict time
limitations and where approximate solutions are often acceptable. Applications of this kind
arise in physical simulations for computer games [3] and in the pricing of American options

[30].
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The form of the linear complementarity problem considered here is

Au+Cv+a=0 (1.1a)
CTu+Bv+b>0 (1.1b)

v (CTu+ Bv+1b) =0 (1.1c)
v >0, (1.1d)

where the variables of the problem are v and v; the matrices A, B, C' and the vectors a, b are
given. We assume that the matrix

A ] , (1.2)

©= [ cT B
is a square symmetric matrix of dimension n, that the diagonal elements of B are positive
and that the diagonal elements of A are nonzero. A problem of the form (1.1) is called a
mixed linear complementarity problem.

The goal of this paper is to study algorithms that can quickly approximate the solution
of medium-to-large LCPs. Although the need for real time solutions arises in various ap-
plications, our testing is driven by rigid body simulations in computer games, which must
run at a rate of 30 frames per second. For each frame, several operations must be executed,
including the physics simulation that invokes the solution of an LCP. Hence there are strict
time limitations in the solution of the LCP (say 0.005 seconds) but the accuracy of the solu-
tion need not be high provided a significant proportion of the optimal active set components
are identified.

The earliest methods for solving linear complementarity problems were pivotal methods,
such as Lemke’s algorithm [12]. Although these methods are efficient for small problems,
they do not exploit sparsity effectively and are unsuitable for large-scale applications [22].
Projected iterative methods, including the projected Gauss-Seidel (PGS) and projected SOR
methods, have become popular for physics simulations in computer games [9, 3]. They have
a low computational cost per iteration and have been shown to be convergent under certain
conditions [13]. Interior-point methods [31] constitute an important alternative as they are
effective for solving large and ill-conditioned LCPs; their main drawbacks are the high cost
of each iteration and the fact that they may not yield a good estimate of the solution when
terminated early. The last class of methods for solving large LCPs studied in this paper are
gradient projection methods [11, 8, 4] for bound constrained optimization—a problem that
is closely related to the linear complementarity problem (1.1) when @ is positive definite.

There are some useful reformulations of problem (1.1). Introducing a slack variable w we
obtain the system

Au+Cv+a=0 (1.3a)
CTu+Bv+b=w (1.3b)
vTw =0 (1.3c)
v, w > 0. (1.3d)



Note also that (1.3) are the first-order optimality conditions of the bound constrained
quadratic program
- L p T
min ¢(z)= -z (z+q 2
in ¢(z) = 52 Qz+q (1.4)
st. v>0,

where @ is defined by (1.2) and
| _|a
z=1, | =1, |

If @ is positive definite, (1.4) is a strictly convex quadratic program and its (unique) primal-
dual solution (u*,v*) can be computed by solving the LCP (1.3), and vice versa. This
establishes the equivalence between the two problems in the symmetric positive definite
case. The quadratic programming formulation (1.4) has the advantage that many efficient
algorithms have been developed to compute its solution, such as gradient projection methods.

Ferris, Wathen and Armand [17] have recently studied the performance of various LCP
algorithms in the context of computer game simulations. They recommend an interior-
point method with a primal/dual switching mechanism designed to reduce the memory
requirements during the solution of linear systems. Ferris et al. did not, however, study
projected Gauss-Seidel methods, which are perhaps the most popular techniques for solving
LCPs arising in computer game simulations.

In this paper, we study a method for LCP that alternates PGS iterations and subspace
minimization steps. It can be viewed as a compromise between the inexpensive PGS method,
which can be very slow, and interior-point methods, which require the solution of expensive
linear systems. The PGS iteration is able to quickly produce a good estimate of the optimal
active set, while the subspace minimization steps refine this estimate and permit a fast rate
of convergence. The proposed method is an improvement of the algorithm by Kocvara and
Zowe [19] in that we perform a more thorough subspace minimization phase. By repeatedly
minimizing in a subspace of decreasing dimension (until the active set estimate no longer
changes), our algorithm is able to make a quick identification of the optimal active set, even
on very ill-conditioned problems.

The paper is organized as follows. Section 2 discusses the projected Gauss-Seidel method
and presents some numerical results that illustrate its strengths and weaknesses. The pro-
posed method is described in §3. Numerical experiments are reported in §4 and some con-
cluding remarks are made in §5.

Notation. The elements of a matrix B are denoted by B;; and the components of a vector
b are denoted by b;. We use b > 0 to indicate that all components of b satisfy b; > 0.
Superindices denote iteration numbers. The matrix A in (1.1) is of dimension n, X n,, the
matrix B is of dimension n; X ny, and we define n = n, + n,. Throughout the paper, || - ||
denotes the infinity norm.



2 The Projected Gauss-Seidel Method

Iterative projection methods for linear complementarity were proposed in the 1970s and their
interest has increased recently with their application in physics simulations for computer
games and in finance. A comprehensive treatment of projected iterative methods is given in
Cottle, Pang and Stone [13], but for the sake of clarity we derive them here in the context
of the mixed linear complementarity problem (1.1).

We first define matrix splittings of the matrices A and B in (1.1). Let

A:AL+AD—|—AU and B:BL+BD+BU,

where Ay is a strictly lower triangular matrix whose nonzero elements are given by the lower
triangular part of A; Ap is a diagonal matrix whose nonzero entries are given by the diagonal
of A, and Ay is a strictly upper triangular matrix containing the remaining elements of A
(and similarly for By, Bp and By ).

Given u* and v* > 0, an approximate solution to (1.1), consider the auxiliary linear
complementarity problem

(AL+AD)u+AUuk+Cvk+a:O (2.1a)
CTu+ (By + Bp)v + Byv* +b>0 (2.1b)

v (CTu + (B + Bp)v + Byv® 4+ b) = 0 (2.1c)
v > 0. (2.1d)

We define the new iterate (u**1,v**1) as a solution of (2.1). We have from (2.1a)
Apurtt = —a — Apuftt — Apu® — CoF,
or in scalar form, for i = 1,2, ..., n,,

k1 _ ok
u; = — Aug,

1 m (2.2)
= (o St St 3.
0 j<i j>t Jj=1

Formula (2.2) is well defined since by assumption A; # 0,7 = 1,...,n. Having thus deter-
mined u*1, we now find a solution v**! of (2.1). Let us define

b=0b+ CTur + Byt

Then we can write (2.1b)-(2.1d) as

B‘f‘ (BL + BD)U >0 (23&)
vilb+ (BL+Bp)v); =0, i=1,2,....m (2.3Db)
v>0. (2.3c)



k+1

Assuming that v;"" has been computed for j < i, we can satisfy (2.3a)-(2.3b) by defining

the tth component of the solution v so that
(BL + Bp)o™'; = —bi;

or k+1 k
it = — A

(b n ZBw oFH 4 ZBw o + Zojzuk+1> ' (2.4)

1<t j>i

Av;

k+1 k+1

We cannot guarantee that v;7 > 0, but if it is not, we can simply set v;7 = 0. By doing
so, we still satisfy the ith equation in (2.3a) by positive definiteness of the diagonal matrix
Bp and the fact that we increased v**! from a level at which the ith eqution in (2.3a) was
zero. Clearly, we will also satisfy the ith equation in (2.3b). In summary, we define

vt = max (O,Uf — Avi) , 1 =1,2,...,ny. (2.5)

Combining (2.2), (2.4) and (2.5) we obtain the Projected Gauss-Seidel (PGS) method for
solving the mixed LCP (1.1).

Algorithm 2.1 Projected Gauss-Seidel (PGS) Method

Initialize u®,v° > 0; set k « 0.
repeat until a stop test for (1.1) is satisfied:

forv=1,...,n,
k
Au; = AL (ai + Zg<z’ Aij“j+1 + sz Aw“ + Z Cijv J)
bt = uf — A, ;
end
fori=1,...,n

Av; = Bi”_ (bi + i BZ]U;H_l + D i Bjvl + > Cjiu;”l) ;
v = max{0,vF — Av;};
end
k—k+1
end repeat

One way to define the error in the solution of (1.1) is through the residuals

pf = ||Au* + CvF + q| (2.6a)
pr = min{vf, (CTu" + Bv" 4 b);} (2.6b)
p¥ = max{0, —(CTu" + Bv* +b);}. (2.6¢)

It has been shown (see e.g., [13]) that the projected Gauss-Seidel method is globally
convergent if () is symmetric positive definite.
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In order to assess the effectiveness of the PGS method, we conducted experiments using
several problems generated with the Open Dynamics Engine [29], an open source package for
game physics simulations. We extracted mixed LCPs that correspond to a well known prob-
lem of destruction. The PGS method was implemented in Fortran 77, in double precision;
we terminate it when

pE ph pE
r1(k) = max ( e ) - ,> < tol, (2.7)
L+ [lal[” L+ [[o]]" 1 + [[b]]?

for some positive constant tol.

The results of the experiments are given in Table 1. For each problem we report: a) n,
the number of variables; b) nz(Q), the number of nonzeros in @Q; c¢) cond(Q), the condition
number of @); d) the number of iterations of the projected Gauss-Seidel method for two
values of the convergence tolerance: tol = 107!, 1072, The name of each problem indicates
the number of bodies and constraints in the physics simulation; for example, the first problem
has 7 bodies and 18 constraints. In all the problems, @) is positive definite. It is clear from
Table 1 that the projected Gauss-Seidel method requires an excessive number of iterations
for tol = 1072 on some of the large problems (we report CPU times in §4).

name n | nz(Q) || cond(Q) [ 1071 1072
nb7_ncl8 18 162 || 5.83e+01 4 6
nb8_nc4d 45 779 || 2.92e+03 17 120
nb8_nc48 48 868 || 2.38e+03 17 111
nb235.ncl044 || 1044 14211 || 4.58e+04 61 312
nb449_ncl821 || 1821 28010 || 4.22e+04 132 414

nb907_ncd832 || 5832 | 176735 || 5.11e+07 21 16785
nb948_nc7344 || 7344 | 269765 || 9.02e+07 | 3123 | >50000
nb966_nc8220 || 8220 | 368604 || 9.19e+07 | 1601 39103
nb976_nc8745 || 8745 | 373848 || 6.45e+07 | 7184 | >50000
nb977 nc9534 || 9534 | 494118 || 1.03e+08 | 1246 | >50000

Table 1: Number of iterations (last two columns) of the Projected Gauss-Seidel Method for
two values of the stopping tolerance: tol = 101,102,

Given this poor performance, it may seem surprising that the projected Gauss-Seidel
method is popular in computer game software. A possible explanation is given in Table 2,
which shows that this method often provides a good estimate of the active set after only a
few iterations. In Table 2, we report the ratio of active-set components correctly identified
after k iterations of the projected Gauss-Seidel iteration over the total number of components
in the optimal active set, for 5 values of k. Note that the first few iterations identify a large
percentage of the components, but for the ill-conditioned problems the improvement is very
slow (and sometimes erratic).



name k=2 k=20 k =100 k=1000 | k=10000

nb7.ncl8 3/4 4/4

nb8_nc45 7/8 7/8 8/8

b8 _ncds 8/10 8/10 10/10
nb235ncl044 | 12/58 40/58 52/58 58/58

nb449_nc1821 156/254 233/254 248 /254 254/254
nb907_nc5832 | 1253/1512 | 1301/1512 | 1333/1512 | 1399/1512 | 1471/1512
nb948 nc7344 | 1504/1828 | 1523/1828 | 1542/1828 | 1614/1828 | 1707/1828
nb966_nc8220 | 2112/2321 | 2106/2321 | 2109/2321 | 2178/2321 | 2253/2321
nb976_nc8745 | 1728/2158 | 1743/2158 | 1758/2158 | 1870/2158 | 1976/2 158
nb977nc9534 | 2513/2728 | 2495/2728 | 2505/2728 | 2578/2728 | 2670/2728

Table 2: Fraction of correct active constraints identified by the PGS method after £ itera-
tions.

We therefore ask whether it is possible to design an algorithm that exploits the active-set
identification qualities of the projected Gauss-Seidel iteration, but is able to return a highly
accurate estimate solution (if needed) in a reasonable amount of time. The method described
in the next section aims to achieve these goals.

3 The Proposed Method

The algorithm we discuss in this section performs two types of iterations. First, the projected
Gauss-Seidel (PGS) method generates an estimate of the optimal active set. Starting with
this estimate, a sequence of subspace minimization steps is performed; these steps aim at
optimality and also produce a new estimate of the active set. The cycle of PGS and subspace
minimization iterations is repeated until an acceptable solution of the linear complementarity
problem (1.1) is found.

To describe this approach more precisely, suppose that after a few iterations of the
projected Gauss-Seidel method, we find that the first m components of v are zero. Following
an active-set approach, we fix these variables at zero (i.e., we temporarily remove them from
the problem) and retain the remaining components, which we denote as v. We then ask
what, if any, equations or inequalities can be eliminated from (1.1). An answer is that to
preserve symmetry, we should eliminate the first m inequalities from (1.1b). This yields the
reduced problem

Au+Ci+a=0 (3.1a)
CTu+ Bo+b>0 (3.1b)
T (CTu+ Bio+b) =0 (3.1¢)
v >0, (3.1d)
where R X )
C=CP', B=PBP" b= P, b = Pv, (3.2)



and P = [0]I,,_]. Since the active set approach has ¢ > 0, we set the term CTu+ Bo + b
in (3.1c) to zero. Thus (3.1) reduces to the square system

Au+Ci+a=0 (3.3a)
CTu+ Bi+b=0, (3.3b)

together with the condition v > 0. We compute an approximate solution of this problem by
solving (3.3) and then projecting the solution ¢ onto the nonnegative orthant through the
assignment

0 «— max(0, ). (3.4)

The components of 0 that are set to zero by the projection operation (3.4) are then removed
to obtain a new subspace minimization problem of smaller dimension. The corresponding
reduced system (3.3) is formed and solved. We repeat this subspace minimization procedure
until the solution of (3.3) contains no negative components in v or until a prescribed max-
imum number of subspace iterations is performed. In either case the procedure terminates
with a point that we denote as 2® = (u®,v*). (Here and in what follows, z denotes a vector
in R™ where the componenent v is obtained from the reduced vector v by appending an
appropriate number of zeros to it.)

One extra ingredient is added in the algorithm to guarantee global convergence (in the
positive definite case). We compute a safeguarding point z° by backtracking (instead of
projecting) from the first subspace solution to the feasible region v > 0. More precisely, we

compute
=20+ a(! -2, (3.5)

where 2 is the initial point in the subspace minimization phase, 2! is the point obtained
by solving the system (3.3) for the first time (and before applying the projection (3.4)),
and 0 < o < 1 is the largest steplength such that v* > 0. We store z° and perform the
repeated subspace minimization phase described above to obtain the point 2°. We then
choose between 2z’ and z*, depending on which one is preferable by some metric, such as the
optimality measure (2.6).

However, in the case when () is positive definite, it is natural to use the quadratic function
¢ given in (1.4) as the metric. Recall from §1, that the linear complementarity problem (1.1)
and the bound constrained quadratic program (1.4) are equivalent when @) is positive definite.
It is easy to explain the utility of the point z° by interpreting the solution of (3.3)-(3.4) in
the context of this quadratic program. Suppose, once more, that we have removed the first
m components of v and that v are the remaining components. We then define the reduced
quadratic program

(3.6)

where Z = (u,v) and Q,Q are defined accordingly by means of the matrix P. The uncon-
strained minimizer of the objective in (3.6) coincides with the solution of (3.3), which justifies



the use of the term “subspace minimization” in our earlier discussion. Note, however, that
by projecting the solution of (3.3) through (3.4) the value of the quadratic function ¢ may
be higher than at the initial point 2% of the subspace minimization, which can cause the
algorithm to fail. This difficulty is easily avoided by falling back on the point 2z, which is
guaranteed to give ¢(z°) < ¢(z°). In this way, we ensure that the subspace minimization
does not undo the progress made in the PGS phase. In this case we replace z°* by z° if
$(2") < ¢(2°).

The proposed algorithm is summarized as follows for the case when () is positive definite.

Algorithm 3.1 Projected Gauss-Seidel with Subspace Minimization

Initialize u,v > 0. Choose a constant tol > 0.
repeat until a convergence test for problem (1.1) is satisfied
Perform kg iterations of the projected Gauss-Seidel iteration (see Algorithm 2.1)
to obtain an iterate 2° = (u,v);
Set isub « 1;
repeat at most kg, times (subspace minimization)
Define v to be the subvector of v whose components satisfy v; > tol;
Form and solve the reduced system (3.3) to obtain z';
if isub = 1 compute 2° by (3.5);
Project the solution of (3.3) by means of (5.4);
Denote the new iterate of the subspace minimization by z* = (u®,v®);
If the solution component ¥ satisfies v > tol, break;
Set isub « 0;
end repeat
If ¢(2°) > ¢(2°) then set z° «— 2°;
Define the new iterate of the algorithm as z = (u,v) < 2°
end repeat

Practical ranges for the parameters are ky, € [2,5] and ks, € [3,5]. We could replace
the projected Gauss-Seidel iteration by the projected SOR iteration [13], but even when the
SOR parameter is tuned to the application, we can expect only a marginal improvement of
performance, for the reasons discussed below.

The algorithm of Kocvara and Zowe [19] is a special case of Algorithm 3.1 where only
one subspace minimization step is performed, i.e., ks, = 1. Another important difference
is that Kocvara and Zowe always use the backtracking procedure (3.5), instead of first
trying the projection point (3.4), which is often much more effective in the identification of
the optimal active set. The refinements introduced in our algorithm are crucial; without
them the method can be very inefficient on ill-conditioned problems (as we report in §4).
Kocvara and Zowe observed these inefficiencies and attempt to overcome them by devising
a procedure for computing a good initial point and employing certain heuristics in the line
search procedure.



The subspace minimization could be performed using a procedure that guarantees a
steady decrease in ¢. For example, Lin and Moré [21] perform an approximate minimization
of ¢ along the path generated by projecting the subspace minimization point z! onto the
nonnegative orthant v > 0. Their procedure can produce a better iterate than the subspace
minimization of Algorithm 3.1, but our nonmonotone approach has the advantage that the
projection (3.4) can improve the active set estimate very quickly and that the computational
cost of the iteration can easily be controlled through the parameter k,. In our tests, it
was never necessary for Algorithm 3.1 to revert to the safeguarding point z° defined in
(3.5), despite the fact that, on occasion, ¢ increased after the first step of the subspace
minimization. Thus, our approach is indeed nonmonotone.

Algorithm 3.1 is well defined even if () is not positive definite; all we need to assume is
that the diagonal elements of B are positive and the diagonal elements of A are nonzero. The
function ¢ would then be defined as the optimality measure of the problem, as mentioned
above. However, when () is not positive definite the global convergence of the algorithm
cannot be guaranteed.

4 Numerical experiments

We first compare three methods that work directly on the mixed linear complementarity
problem: the projected Gauss-Seidel method (Algorithm 2.1), the method proposed in this
paper (Algorithm 3.1) and an interior-point method.

The interior-point method is a primal-dual algorithm for LCPs applied to the system
(1.3). We use separate steplengths for the variables v and w. The centering parameter is set
to 0 = 0.25 throughout the iteration and the fraction to the boundary parameter is defined
as 7 = 0.9995; see Wright [31] for a description of the algorithm and the meaning of these
parameters. The stopping condition for the interior-point method is defined in terms of the
residuals

¥ = Auf 4+ CvF + q, r¥ = CTu* 4+ BoP — w* + b, rk = VEuw*, (4.1)
where V' is a diagonal matrix whose nonzero entries are given by the components of v.

In order to make the numerical comparisons as accurate as possible, we have implemented
these three methods in a Fortran 77 package (using double precision), and employ the same
linear algebra solver, namely PARDISO [26, 27], to solve the linear systems arising in Algo-
rithms 3.1 and the interior-point method. The latter performs the symbolic factorization
only once, whereas Algorithm 3.1 does so at every subspace iteration. The package was com-
piled using GNU {77 and all computations were performed on a Pentium 4 DELL PRECISION
340.

In our implementation of Algorithm 3.1, we performed k,; = 5 PGS iterations before
invoking the subspace minimization phase, which was repeated at most ks, = 3 times. The
initial point in Algorithm 3.1 and the PGS method was chosen as u® = 0, v° = 0, and for the
interior-point method it was set to u® = 0, v = 0.1, w® = 1. To terminate the interior-point
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method, we define the error

I
ro(k) = max ( T , c , (4.2)
L+ [lal[" 1+ [[o][ " 1 + [[b][?

where r,, 1, r. are given in (4.1). For the PGS method and Algorithm 3.1 we use the error
measure (2.7). In the first set of experiments, the algorithms were terminated when (k)
and 75(k) were less than 1075,

Table 3 compares the performance of the interior-point method and Algorithm 3.1. Col-
umn 2 shows CPU time in seconds; column 3 reports the maximum number of nonzeros in
the Cholesky factors throughout the run; and column 4 reports the number of times that a
Cholesky factorization was computed. The first number in columns 2-4 corresponds to the
interior-point method and the second to Algorithm 3.1. We report results only for the five
largest problems in Table 1. Algorithm 3.1 is clearly faster and requires less storage than
the interior-point algorithm in these tests.

name cpu time nz(L) # Chol. fact.
nb907 nc5832 | 0.50/0.22 | 216080/114 864 17/7
nb948_nc7344 | 1.02/0.46 406 152/218 522 18/9
nb966.nc8220 | 2.40/0.63 | 797989/398821 16/7
nb976_nc8745 | 1.79/0.66 646 929/341911 19/9
nb977nc9534 | 4.67/0.87 | 1222209/604 892 17/6

Table 3: Performance of the interior-point method (first number) and the proposed method
(second number)

To illustrate the importance of performing a thorough subspace minimization, we solved
problem nb_907_5832 using only one subspace minimization cycle in Algorithm 3.1, i.e.,
setting kg, = 1. The algorithm required 387 iterations (compared with 7 iterations for
Algorithm 3.1); the first 385 iterations fall back on the safeguarding point (3.5). Even
greater inefficiencies were observed for the other problems in Table 3.

Next, we compare the performance of the PGS method, the interior-point method (IPM)
and Algorithm 3.1 for various levels of accuracy in the stopping test. Figures 1-3 plot the
errors (2.7), (4.2) as a function of CPU time for the last 3 problems in Table 3. Note that
Algorithm 3.1 is quite effective when terminated early; it seems to strike the right balance
between identifying the active set and moving toward optimality.

11



~log, , [1(K)]

-12

~log, , [r(K)]

o —+—IPM 12 —+— IPM
—6&— ALG-3.1] —6— ALG-3.1]
PGS PGS
_14 ; ; ; ; ; ; ; ‘ : j 14 ; ; ; ; ; ; ; ‘ ‘
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45
CPU time in seconds

Figure 1: Problem nb976_nc8220

20

-4

' CPU time in seconds

Figure 2: Problem nb976 nc8745

=
4
=
=
g -6
o
o
[
-8
-10
-12r o —+— IPM
—&— ALG-3.1
PGS
14 i i i i ‘ I
0 1 2 3 4 5 6

CPU time in seconds

Figure 3: Problem nb977 nc9534. Error as a function of CPU time.
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In a second set of experiments, we compare Algorithm 3.1 and the PGS method to a
gradient projection method. Since @) is positive definite for all the problems in Table 1, we
can solve the LCP by applying the gradient projection method to the quadratic program
(1.4). A great variety of gradient projection methods have been developed in the last 20
years; some variants [6, 7, 5, 14, 18] perform only gradient projection steps, while others
24, 10, 23, 32, 21] alternate gradient projection and subspace minimization steps.

For our tests we have chosen TRON, a well established code by Lin and Moré [21] that
has been tested against other gradient projection methods [18, 5]. The algorithm in TRON
alternates one gradient projection step and a (repeated) subspace minimization phase, which
is performed using a conjugate gradient iteration preconditioned by a (modified) incomplete
Cholesky factorization.

Numerical results comparing TRON, Algorithm 3.1 and the PGS method are displayed in
Table 4. For TRON, we report 3 numbers: the number of factorizations, CPU time, and an
adjusted CPU time that excludes Hessian evaluation times after the first iteration. TRON
is designed for nonlinear objective functions and evaluates the Hessian at every iteration,
However, for quadratic programs this evaluation needs to be done only once and therefore
we must account for this extra cost. For Algorithm 3.1 we used three parameter settings:
(kgs = 2, ksm = 3), (kgs = 5, ksm = 3), and (kys = 5, ks, = 2). We report only CPU time for
the PGS method.

name TRON PGS(2)-SM(3) | PGS(5)-SM(3) | PGS(5)-SM(2) | PGS
nfact/cpul /cpu2 nfact/cpu nfact/cpu nfact/cpu cpu

nb235 ncl044 9/0.50/.03 6/.03 6/.03 5/.02 1.41
nb449_nc1821 8/0.11/.06 6/.04 5/.03 5/.03 0.72
nb907_nc5832 100/35.0/22.3 9/.30 7/.22 7/.24 >300
nb948 nc7344 | 182/133./91.0 9/.48 9/.46 7/.39 >300
nb966.nc8220 | 191/143./67.8 7/.64 7/.63 6/.59 >300
nb976_nc8745 491/440./260. 10/.73 9/.66 7/.55 >300
nb977_nc9534 229/326./186. 6/.88 6/.87 6/.89 >300
DPJB_1_.10000 19/1.36/1.12 7/.33 6/.30 6/.30 6.49

Table 4: Performance of TRON, three variants of Algorithm 3.1, and the PGS method.

We include one additional problem in Table 4, namely DPJB_1 from the coPS collection
[15], with n = 10* variables. Although DPJB_1 is the most difficult version (e = .1) of the
journal bearing problem in the CcOPS collection, we observe from Table 4 that it is easily
solved by all methods.

We note from Table 4 that the performance of Algorithm 3.1 is not very sensitive to the
choice of the parameters ks and ks,. In our experience, kys € [2, 5] yields good results, and
we have observed that the subspace iteration limit kg, = 3 was reached only occasionally,
on the most ill-conditioned problems. Nevertheless, the parameters kg, k5, should be tuned
for the application, particularly on those requiring real-time solutions.
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These results also indicate that little would be gained by replacing the projected Gauss-
Seidel iteration by the projected SOR iteration, given that we have found it best to perform
at most 5 iterations of the projected iterative method. Since the Gauss-Seidel method does
not require the selection of parameters, we find it preferable to the SOR method.

Note that TRON requires a very large number of iterations for the ill-conditioned problems
(i.e. the last 5 problems in Table 1) and requires significantly more time than Algorithm 3.1.
This is due to the fact that the subspace minimization in TRON is not able to produce an
accurate estimate of the active set and, in addition, that it requires between 4 and 10 times
more CPU time than the subspace minimization in Algorithm 3.1.

We have not made comparisons with the algorithm of Kocvara and Zowe because their
numerical results report only moderate improvements in performance over the gradient pro-
jection method Gpca [23]) that does not employ preconditioning. Our results, on the other
hand, show dramatic improvements over the more powerful gradient projection code TRON
which uses an incomplete Cholesky preconditioner.

5 Final Remarks

In this paper we have proposed an algorithm for solving symmetric mixed linear comple-
mentarity problems (and as a special case, convex bound constrained quadratic programs)
that places emphasis on the speed and accuracy of the subspace minimization phase. The
algorithm is designed for medium to large real-time applications and our tests suggest that
it has far better performance on ill-conditioned problems than competing methods. The
proposed algorithm has much flexibility since the number of projected Gauss-Seidel and
subspace minimization iterations can be adapted to the requirements of the application at
hand.

Another advantage of the proposed method is that it can exploit parallelism well. The
projected Gauss-Seidel method, which is popular in computer game software and American
options pricing, scales poorly with the number of processors due to dependencies between
the equations. For example, Kumar et al. simulated the performance of a PGS step on a
64-core INTEL chip multiprocessor simulator and observed less than 15% utilization [20]. On
the other hand, Algorithm 3.1 typically spends only 10% of the time in the PGS phase and
90% in the subspace minimization. Hence it effectively offloads the parallelization task to
a direct linear solver that is known to parallelize well [28]. Specifically, our adaptation of
PARDISO, the Cholesky solver used for the experiments in this paper, yields more than 65%
utilization on a 64-core chip multiprocessor simulator (see also Schenk [25] for a scalability
study for a moderate number of processors on a coarsely coupled shared memory system).

There has been a recent emergence of accelerated physics solutions in the computer
industry. Ageia has developed a stand-alone physics processing unit [1], while graphics
processing unit makers ATI and Nvidia have introduced new physics engines that run on
their chips [2]. These approaches use massively parallel architectures that can benefit from
the features of Algorithm 3.1. In future work, we intend to perform further quantitative
studies of Algorithm 3.1 on various emerging chip multiprocessors.
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