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ABSTRACT

HARDWARE/SOFTWARE MECHANISMS FOR INCREASING RESOURCE

UTILIZATION ON VLIW/EPIC PROCESSORS

by

Mikhail Smelyanskiy

Cochairs: Edward S. Davidson and Scott A. Mahlke

VLIW/EPIC (Very Large Instruction Word / Explicitly Parallel Instruction Com-
puting) processors are increasingly used in signal processing, embedded and general-
purpose applications. To achieve efficient instruction schedules in order to meet the
high performance demands of these applications, these processors rely on an opti-
mizing compiler that uses aggressive optimizations, such as predication and software
pipelining, to expose and exploit instruction level parallelism. To capitalize fully on
the parallelism offered by these optimizations requires increasing critical processor re-
sources, such as function units, register and memory ports, and architected registers,
which is costly in terms of cycle time, power and area. To this end, this disser-
tation proposes three novel schemes for achieving higher processor performance by
means of more efficient utilization of the existing processor resources in the context
of predication and software pipelining.

We developed deterministic predicate-aware scheduling (DPAS), which can com-
bine operations with mutually-exclusive predicates to share the same resource in the

same cycle. To support DPAS, the processor pipeline is adapted to read predicates
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early and discard the operations guarded under False predicates. Mutual exclusiv-
ity guarantees that runtime conflicts will never occur. The overall effect of DPAS is
to use the limited existing resources more efficiently, thereby increasing the perfor-
mance of the applications studied by an average 10% when resource constraints are
a bottleneck.

To increase resource utilization further, we developed a powerful generalization of
DPAS, called probabilistic predicate-aware scheduling (PPAS), which can assign ar-
bitrary predicated operations to share the same resource in the same cycle. Contrary
to DPAS, PPAS can result in runtime conflicts, as it allows more than one predicate
of a set of combined operations to be True in the same runtime cycle. Assignment
is performed in a probabilistic manner using a combination of predicate profile infor-
mation and predicate analysis aimed at maximizing the benefits of sharing in view of
the expected degree of conflict. The processor pipeline is further modified to detect
and recover from such conflicts. By allowing more flexibility in resource sharing than
DPAS, PPAS achieved an average 19% performance gain for the resource-constrained
instruction schedules.

Finally, to effectively deal with the architected register pressure and code size
problems in software-pipelined loops, we have developed a hardware/software mech-
anism called Register Queues. By decoupling an existing register space into a small
set of architected registers and a large set of physical registers, register queues en-
able efficient software-pipeline schedules for high operation latencies with almost no

increase in either architected registers or code size.
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CHAPTER 1

INTRODUCTION

VLIW/EPIC (Very Large Instruction Word / Explicitly Parallel Instruction Com-
puting) processors are increasingly used for signal processing, embedded and general-
purpose applications. In order to meet the high performance requirements of these de-
manding applications, VLIW /EPIC processors rely on an optimizing compiler which
tries to expose the inherent instruction level parallelism in an application and then
capitalize on the resulting parallelism to achieve an efficient instruction schedule.

It is well known that there is generally insufficient instruction level parallelism
within individual basic blocks, but higher levels of parallelism can be obtained by ex-
ploiting the increased instruction level parallelism provided among several successive
basic blocks. In straight line code, for example, trace scheduling is used to merge sev-
eral basic blocks along a frequent execution path into a single enlarged block [17,24].
These blocks can be further enlarged by using predicated execution to merge several
control paths [35]. Similarly, in loop code, software pipelining [22] extends the scope
of compilation beyond one basic block by overlapping the execution of consecutive
loop iterations [7,8,22, 32,42 43]. Predication can also be applied to loop code prior

to software pipelining in order to merge blocks across conditional statements found



within a loop iteration [10,41].

To take full advantage of the parallelism offered by these optimizations requires
increased processor resources. For example, when predication merges several control
paths together, the resource requirements (function units, register file ports, etc.)
are summed over all merged paths. Increases in the number of function units in a
VLIW/EPIC processor, in conjunction with growing wire delays (relative to logic
delays) [2,38,39], makes the already critical single centralized structures, such as
register files and bypass interconnect, an even more critical factor in determining the
cycle time, area and power dissipation of the processor. For example, for N identical
function units, the delay of the register file grows as N3/2, the area as N3, and the
power dissipation as N® [47].

The register bypass, which is used to forward data from one function unit to
another for a subsequent use, also becomes a more critical resource as the number
of function units grows. Palacharla [39] showed that the delay of the bypass logic
grows quadratically with increased function units. Bypass complexity also grows
quadratically with the number of function units: if instructions are simultaneously
issued to N identical 2-input function units with s pipe stages after execution to
bypass from, then a fully-bypassed design would require 2 x N? x s separate bypass
connections. In other words, in spite of the growing numbers of transistors available
to architects, it is becoming increasingly difficult to design large centralized structures
that help to exploit instruction level parallelism without compromising clock speed
and increasing design complexity, and thus limiting the scalability of processors into
the future.

Clustering is often proposed by research and industry projects [4,5,14,18,56]

as a way to achieve higher processor performance by overcoming the bottlenecks



posed by centralized processor resources. In clustered microarchitecture key processor
resources are distributed across multiple clusters, each of which contains a subset of
the register files and function units, together with intra-cluster bypassing. As a result
of decreasing the size and bandwidth requirements of the register files, the access
times of these cycle-time critical structures are greatly reduced. The simplification of
these structures also reduces their design complexity. The primary disadvantage of
clustered microarchitectures is their reduced number of instructions per cycle (IPC)
compared to a centralized design with the same total resources; their IPC is lowered
due to the relatively slow intercluster communication between dependent instructions
that are executed on different clusters. Although originally designed to overcome the
scalability problems of centralized resources, clustered microarchitectures introduce
scalability problems of their own: as more processors are added to the cluster or as
more clusters are added, the longer it takes to communicate between more distant
clusters.

This dissertation addresses the issue of how to improve processor performance
in the context of predicated execution without increasing the processor’s critical
resources. Two predicate-aware scheduling schemes are proposed along with some
changes to pipeline organization that achieve higher performance on predicated code
by means of more efficiently utilizing existing processor resources.

First, a deterministic predicate-aware scheduling (DPAS) scheme is developed that
assigns multiple mutually-exclusive predicated operations to share the same resource
in the same cycle, thereby appearing to “oversubscribe” that resource in that cycle.
To support DPAS, the processor pipeline is extended to read the predicates of these
operations early, and discard (i.e. nullify) those operations that are guarded under

False predicates. The mutual-exclusiveness property of a set of “combined” opera-



tions, which share the same resource in the same cycle, guarantees that at most one of
their predicates will be True in a given cycle at runtime. Hence, at most one of these
operations will actually require the resource during that cycle and runtime conflicts
will never occur. The overall effect of DPAS is to use limited existing resources more
efficiently, thereby increasing performance when resource constraints are a bottleneck.

Second, to further increase resource utilization, a powerful generalization of DPAS,
called probabilistic predicate-aware scheduling (PPAS) is developed, which can as-
sign arbitrary predicated operations to share the same resource in the same cycle.
Contrary to DPAS, with PPAS more than one of these predicates may be True in a
given runtime cycle, thus resulting in runtime conflicts. The processor pipeline must
be modified to detect and recover from such conflicts. Operation scheduling is per-
formed in a probabilistic manner using a combination of predicate profile information
and predicate analysis aimed at maximizing the benefits of resource sharing in view
of the expected degree of conflict. By allowing more flexibility in resource sharing
than DPAS, PPAS gains additional performance on resource-constrained instruction
schedules.

After predication has exposed sufficient instruction level parallelism, the compiler
can then successfully hide operation latencies by efficiently scheduling the code while
enforcing the resource constraints of the machine and the dependence constraints
among the operations. However, schedules exhibiting high concurrency generally re-
sult in higher register requirements. Register pressure is further aggravated by the
fact that as clock rates increase, pipelines become deeper and deeper, leading to in-
creases in instruction latencies. Hiding longer latencies requires higher concurrency
and leads to longer register lifetimes which is compounded with the higher concur-

rency and leads to more overlap between lifetimes, which results in increased register



pressure.
Such register pressure and its related problems are readily apparent when using
software pipelining, which increases architected register pressure by overlapping a
number of simultaneously live instances of loop variables from different iterations of
the original loop body. To accommodate these loop variables, each of the simul-
taneously live instances needs its own register. Furthermore, each instance must
be uniquely identified (or named) to differentiate among live instances from differ-
ent overlapped iterations, and to match the definitions from the current iteration
with their uses in future iterations. Two common schemes that support this form of
register allocation and naming are modulo variable expansion (MVE) [32], and the
rotating register file (RR) [44,46]. As operation latencies increase and machines get
wider, both schemes require large increases in the number of architected registers.
In addition, MVE causes increases in the code size. Besides increasing the size and
complexity of the register file, adding more architected registers to the instruction set
architecture (ISA) increases the number of bits per instruction that are required for
register encoding, which can also increase the code size. This increase leads to larger
instruction footprints and more cache misses, and therefore decreases performance.
Several techniques have been proposed to deal with the architected register pres-
sure problem in software pipelined loops. Register spilling is one such technique
that has proved to be very effective [62]. Other algorithms try to achieve software
pipelined schedules with the highest possible performance for a given number of regis-
ters [12,23]. But the main problem still remains: for highly concurrent VLIW /EPIC
processors, performance degradation due to register pressure is still significant and
could be avoided if additional registers could be provided, preferably without signifi-

cantly increasing the cycle time which would degrade the performance improvement



gained by these additional registers.

To effectively deal with the architected register pressure problem in software-
pipelined loops, this dissertation proposes a hardware/software mechanism called
Register Queues (RQs), which effectively separates the available physical register
space into a small set of architected registers and a larger physical register space that
is organized as a set of circular queues and accessed indirectly, where each entire queue
is represented by just one architected register. Using RQs, the compiler can allocate
distinct physical registers to store all the live values in a software pipelined loop while
minimizing the pressure placed on architected registers. As operation latencies and
processor concurrency increase, RQs can enable efficient schedules with almost no

increase in either architected registers or code size.

1.1 Research Contributions

Deterministic Predicate-aware Scheduling (DPAS)

To extract instruction level parallelism more effectively in the presence of branches
and reduce branch overhead, predicated (conditional) execution is often employed.
With predicated execution, operations are augmented with an additional Boolean
operand known as the guarding predicate. When the guarding predicate is True, the
operation executes normally. Conversely, when it is False, the operation is nullified.

Though generally effective at dealing with branches, predicated execution in-
creases the overall resource requirements. For branches that are if-converted in a
code segment, the resources of the then and else clauses are conservatively added to
determine the overall resource requirements for the resultant sequence of predicated

operations, regardless of whether the corresponding predicate is True or False. As a



result, to avoid oversaturation of the processor resources [36], a compiler must apply
if-conversion carefully, which precludes achieving the full potential of predication.

To overcome the problem of superfluous resource utilization by nullified opera-
tions, a technique referred to as deterministic predicate-aware scheduling (DPAS) [51]
is proposed. The main inspiration behind DPAS is that an operation with a False
predicate only requires those resources that it uses between fetching the operation
and determining that its predicate is False (called must-use resources). All resources
that occur later in the processor pipeline (called may-use resources) are superfluous
when assigned to a nullified operation and need not be committed to that opera-
tion. The central idea of DPAS is to allow the assignment of several operations to a
may-use resource in the same cycle. The processor pipeline extension for supporting
DPAS reads predicates in an early stage (before may-use resources are committed)
and immediately discards those scheduled operations that are guarded under a False
predicate.

However, as the word “deterministic” implies, dynamic over-subscription of re-
sources must not take place. Thus, the compiler must guarantee that no two oper-
ations that are assigned to the same resource at the same time will ever have their
predicates both evaluate to True in the same runtime cycle. To this end, the compiler
uses predicate analysis [27] to identify disjoint operations, i.e. pairs of operations
whose predicates can never evaluate to True at the same time. A set of operations
with disjoint predicates is allowed to reserve the same may-use resource at the same
time, as the compiler guarantees that at most one of these operations will be simul-
taneously active at runtime.

The overall effect of DPAS is to use the processor resources more efficiently,

thereby increasing performance when resource constraints are a bottleneck. This



dissertation develops and applies DPAS to both acyclic and cyclic code regions. To
allow more resources to be shared by predicated operations, the predicate should
be read as early as possible in the pipeline. However, early reading increases the
latency of the predicate-defining operation (the operation that sets a predicate for
future use by predicated operations). Our studies show that the cyclic regions are
generally more resource-constrained than the acyclic regions of the MediaBench [33]
applications studied in this dissertation. Therefore, increasing the latency of the
predicate-defining operation causes minimal degradation degradation in the perfor-
mance improvement derived from resource sharing in software pipelined loops. How-
ever, the acyclic regions are more latency bound than the cyclic regions. Hence,
predicate-aware scheduling is less effective for acyclic regions than for cyclic regions.
Increasing the latency of a predicate-defining operation increases the critical path
length which, at some point as latencies become higher, becomes more constraining
than resource limitations and then begins to reduce the benefits of resource shar-
ing due to predicate-aware scheduling. This point generally occurs earlier for acyclic
regions than for cyclic regions.

Our experimental studies show that DPAS achieves an average of 10% perfor-
mance improvement over all predicated cyclic regions, and a more modest 4% over
all predicated acyclic regions, with an overall average performance gain of 7%. This
speedup assumes that whenever a predicated region (a region with at least one pred-
icated operation) achieves the same or worse performance with DPAS than with the
original baseline scheduler, the region is scheduled with the baseline scheduler and

DPAS is said to achieve no (or 0%) speedup over that region.



Probabilistic Predicate-aware Scheduling (PPAS)

To further reduce the problem of superfluous resource utilization by nullified oper-
ations, this disseration proposes probabilistic predicate-aware scheduling (PPAS) [50].
The central idea of PPAS, as in DPAS, is to allow over-subscription of may-use re-
sources wherein multiple operations are allowed to reserve the same resource at the
same time. However, PPAS is a generalization of DPAS in that operations are al-
lowed to share a may-use resource even when they are not disjoint, i.e. dynamic
over-subscription of resources is allowed to take place even if two or more resource-
sharing operations may have their predicates evaluate to True at runtime, which
would result in a resource conflict. The processor pipeline is modified to detect and
recover from such conflicts when they occur.

By allowing conflicts to occur, PPAS finds many more combinable operations
than DPAS. PPAS tries to estimate and account for conflicts so that it can maxi-
mize the benefits of oversubscription. Predicates are probabilistically analyzed using
a combination of predicate profile information and predicate analysis [27]. Profile
information provides statistics on the expected number of times that a predicate will
evaluate to True. Predicate analysis computes implication and disjointness relations
among predicates to identify when two or more predicates are guaranteed to conflict,
or guaranteed not to conflict. Probabilistic analysis, based on profile information, is
used to identify profitable opportunities for resource oversubscription. The scheduler
takes advantage of these opportunities when they lead to a tighter schedule without
an undue expected conflict penalty. By allowing more flexibility in resource sharing
than DPAS, PPAS achieves an average of 19% performance improvement over the
predicated cyclic regions and 7% over the predicated acyclic regions, with an overall

performance gain of 11%.



Register Queues (RQs)

To increase the instruction level parallelism of a cyclic region, high performance
compilers use software pipelining [7, 8,22, 32,42,43] to overlap consecutive iterations
of the loop. Software pipelining generally results in higher performance, but increased
architected register requirements due to the large number of simultaneously live in-
stances of loop variables from different overlapped iterations of the original loop body,
where each such instance requires a unique register. Furthermore, each instance must
be uniquely identified (or named) to differentiate among live instances from different
overlapped iterations and to match the definitions from the current iteration with
their uses in future iterations. Two common schemes that support register allocation
for software pipelined loops are modulo variable expansion (MVE) [32] and the rotat-
ing register file (RR) [44, 46]. Each of these schemes increases the architected register
requirements of the software pipelined loops. In addition, MVE also increases the
code size, sometimes quite drastically.

The RQs scheme [52] proposed in this dissertation enables a decoupling of the
total register space for software pipelined loops into a small set of architected registers
and a larger physical register space that is organized as a set of circular queues and
accessed indirectly, where each entire queue is represented by just one architected
register. Variables with multiple simultaneously live instances are assigned to a queue
which holds all the live instances of the given variable. Hence, all these instances are
represented by a single architected register, rather than using a separate architected
register for each live instance as is done in conventional schemes. All other variables
are assigned to single entry architected registers.

As a new instance of each multiple live instance variable is defined in each it-

eration, this instance is automatically written into the next position in the queue
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without overwriting any previous instance that is still live. To access the correct live
instance, the register queues are accessed indirectly. The indirect access is accom-
plished through an architected register by using a special connect instruction which
connects this architected register to a specified position (offset) in the queue. All
future read accesses to this architected register automatically read the value from
this queue position. The specified position corresponds to the instance defined in
the appropriate previous iteration; the regular access pattern guaranteed by software
pipelining, together with the RQs implementation, ensures that the correct value is
always found at that specified position.

By using register queues, the architected register requirements of a software pipelined
loop are independent of the number of overlapped simultaneously live instances of
the loop variables. Our experimental results show that the RQs method signifi-
cantly reduces both the architected register requirements and the code size of soft-
ware pipelined loops. Note however, that when applied to predicated code the RQs
method does require additional support for disambiguation when several predicated
producers supply the same user.

Our studies show that the RQs method can also be very effective when used in
conjunction with DPAS and PPAS schemes. Application of these scheduling schemes
to software pipelined loops increases the architected register requirements of the loops
relative to the baseline software pipelining scheme; RQs can then be used to reduce
those requirements. More specifically, our results show that for a given set of 122
loops extracted from the MediaBench applications, by using rotating registers with
only 32 architected registers, 87% of all loops can be scheduled with DPAS or 72%
with PPAS. However, 99% of these loops would require no more than 32 architected

registers if they were scheduled by using the RQs scheme with either DPAS or PPAS.
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1.2 Dissertation Overview

This dissertation is organized as follows. Deterministic predicate-aware scheduling
is presented in Chapter 2, probabilistic predicate-aware scheduling is presented in
Chapter 3, and the register queues technique is described in Chapter 4. Conclusions

are presented in Chapter 5.
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CHAPTER 2

DETERMINISTIC PREDICATE-AWARE

SCHEDULING

2.1 Introduction

VLIW processors rely on an intelligent compiler for extracting, enhancing, and
exposing sufficient instruction-level parallelism (ILP) to deliver high performance.
To extract ILP more effectively in the presence of branches and reduce the branch
overhead, predicated (conditional) execution is often employed. With predicated
execution, operations are augmented with an additional Boolean operand known as
a guarding predicate. When the guarding predicate is True, the operation executes
normally. Conversely, when it is False, the operation is nullified. Predicated execution
can be exploited by compilers that use if-conversion to convert branching code into
straight-line segments of predicated operations [3,40]. As a result, many branches
and the difficulties associated with them can be eliminated.

Though generally effective at dealing with branches, predicated execution intro-
duces a serious overhead of its own. Predicated execution trades off sequential ex-

ecution of conditional operations for increased resource requirements. If-conversion
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is additive with respect to resources across branches to which it is applied. For
branches that are if-converted, the resources of the then and else clauses are added to
determine the overall resource requirements for the resultant sequence of predicated
operations. Intuitively this makes sense, since to remove a branch both clauses must
be scheduled, with the appropriate one nullified at runtime. As a result, a compiler
must apply if-conversion carefully to avoid oversaturation of the processor resources
[36].

Compile-time assignment of resources (e.g., fetch slots, register ports, function
units, memory ports) to predicated operations is traditionally handled in a conser-
vative manner. The compiler assumes that any predicate may evaluate to True at
runtime and accordingly ensures that all resources required by an operation are un-
conditionally available. However, this is not necessary. At runtime, an operation re-
quires resources only when its predicate evaluates to True; an operation with a False
predicate only requires a subset of its resources. In particular, only the resources
used between fetching the operation and determining that its predicate is False are
necessary. All later resources assigned to a nullified operation are superfluous.

For a predicated architecture, processor resources can be broken down into two
categories: must-use and may-use. A must-use resource is required by an operation
regardless of its runtime predicate value. Conversely, a may-use resource is only
required for those instances of the operation where its predicate evaluates to True.
The classification of resources into these two categories is based on the point in the
processor pipeline where operations with False predicates are nullified. Resources
before the nullification point are must-use; those after are may-use. A fundamental
design tradeoff exists with respect to where the nullification point is placed within

the processor pipeline: nullification later in the pipeline reduces the latency from
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predicate computations to uses of those predicates, whereas nullification earlier in
the pipeline minimizes the number of must-use resources.

To overcome the problem of superfluous resource utilization by nullified opera-
tions, we propose a technique referred to as deterministic predicate-aware scheduling
(DPAS). The central idea of DPAS is to allow static over-subscription of may-use
resources wherein multiple operations are allowed to reserve the same resource at the
same time. However, as the word ”deterministic” implies, dynamic over-subscription
of resources must not take place. Thus, the compiler must guarantee that no two op-
erations that are assigned to the same resource at the same time will ever have their
predicates both evaluate to True in the same runtime cycle. In Chapter 3 probabilis-
tic predicate-aware scheduling (PPAS) is introduced which relaxes this constraint and
therefore needs to employ a recovery technique whenever the hopefully unlikely event
of dynamic oversubscription occurs. DPAS and PPAS are collectively referred to as
predicate-aware scheduling (PAS). The overall effect of DPAS is to increase the uti-
lization of may-use resources, thereby increasing processor performance. A secondary
benefit is that with relaxed resource constraints, more aggressive if-conversion can be
applied to extract further benefit from branch elimination.

In order to accomplish predicate-aware scheduling, predicate analysis is employed
in the resource reservation process. Specifically, relational properties among the predi-
cates used in a program segment are derived [27, 36,49]. The most important property
for applicability of dpas is disjointness, wherein two predicates are disjoint if they can
never evaluate to True at the same time. For instance in an if-then-else statement, the
predicates controlling the then and else clauses are disjoint. Such predicate analysis
is already used extensively in compilers to assist with dataflow analysis, optimization,

and register allocation of predicated code [11,20]. A set of operations with pairwise
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disjoint predicates is allowed to reserve a common resource; the compiler’s predicate
analysis has guaranteed that in any dynamic instance of this set of operations, at most
one of these operations will be active, i.e. at most one will have a True predicate.

One obvious alternative to DPAS is to simply build a wider processor with more
resources. When the number of resources is sufficiently large, the problem of re-
source contention goes away. However, this solution may have a high cost; additional
function units, register file ports, busses, bypass logic, etc. may be necessary. For
either cost-sensitive or power-sensitive environments, this cost may be unacceptable.
DPAS offers an approach to increase the utilization of existing processor resources
and therefore increase application performance with a fixed, or more modest, set of
resources.

For this chapter, we present the necessary compiler and architecture extensions
to accommodate both deterministic predicate-aware acyclic scheduling and determin-
istic predicate-aware cyclic scheduling. In the next section, a brief background on
scheduling is presented followed by a motivational example to illustrate the potential
benefit of DPAS. Section 2.3 describes a deterministic predicate-aware processor to
support DPAS. Section 2.4 contains a description of the compiler support used to
accomplish deterministic predicate-aware acyclic scheduling and software pipelining.
The effectiveness of DPAS is evaluated experimentally on a sample deterministic pre-
dicate-aware processor in Section 2.5. The final section, Section 2.6, summarizes

and presents conclusions.
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2.2 Background and Motivation

Code scheduling refers to the process of binding operations to time slots and
resources for execution. In this section, we briefly describe two common scheduling
techniques: list scheduling (LS) [1] to schedule acyclic code regions and iterative
modulo scheduling (IMS) [41] to schedule innermost loop regions. Each technique is
applied to a basic block as a simple illustration.

The goal of IMS is to find a valid schedule of minimum length for an acyclic code
region. The minimum achievable schedule length is constrained by the maximum of
two lower bounds. The resource-constrained lower bound is equal to the number of
busy cycles required by the most heavily used resource during a single execution of
the region. The latency-constrained lower bound is determined by the sum of the
latencies along the longest path through the data dependence graph (i.e. the critical
path) of the region.

IMS finds a valid schedule for an innermost loop that can be overlapped with itself
multiple times using a constant interval (Initiation Interval (I1)) between successive
iterations. The goal of IMS is to find such a schedule with the minimum /7. The
II-cycle code region that achieves the maximum overlap between iterations is called
the kernel. The kernel is preceded in the schedule by a prologue that gradually builds
up to the maximum iteration overlap, and followed by an epilogue that tapers down.

The scheduler chooses its initial 71 to be the maximum of the two lower bounds
which, for the purposes of the IMS, are calculated in the limit, i.e. by implicitly
assuming that the performance will be dominated by repeated executions of the loop
kernel. The resource-constrained lower bound ResMII is equal to the number of
cycles that the most heavily used resource is busy during a single iteration of the

loop, or equivalently during the loop kernel. The recurrence-constrained lower bound
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(RecMIT) is determined by the ceiling function of the maximum ratio [D(C)/P(C)]
among all recurrence (or ”loop-carried dependence”) cycles, C, in the dependence
graph, where D(C) is the sum of the operation latencies over all edges of the cycle C,
and P(C) is the sum of all loop-carried dependence distances (measured in iterations)
over those edges.

As the number of machine resources increases, recurrence and latency constraints
begin to dominate the schedule length for IMS and LS techniques, respectively. In
general, LS is more latency-constrained than IMS, because IMS can look for indepen-
dent operations across loop iteration boundaries, whereas LS is limited to operations
within a single execution of a code region. Note that for loops, loop unrolling in
conjunction with LS can be applied to approximate the benefits of IMS.

Both scheduling techniques schedule operations at particular cycles so that both
data dependences and resource constraints are satisfied. To satisfy these scheduling
constraints, LS and IMS use a data structure known as the schedule reservation table
(SRT). The SRT records which specific operations (in an acyclic region or a single loop
iteration) use each particular resource (column) at each time (row) [9, 41]. Scheduling
an operation at a particular time is permitted only if its resource usage does not result
in a resource conflict, i.e. it does not attempt to reserve any resource at a time when
some other operation already reserved that same resource, and no latency constraints
of prior operations on which the operation being scheduled depends are violated. In
addition IMS uses a Modulo Reservation Table (MRT) (equivalent to taking the first
IT rows of the SRT and successively overlaying the next IT rows until the entire SRT
has been entered in the MRT) to facilitate tracking the modulo constraints. The
modulo constraint states that two operations that use the same resource may not be

scheduled an integer multiple of I cycles apart from one another, i.e. each cell of
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[ Function Unit | Operations

Mnemonics | Lat. ||

ALU (A) Add add 1
Subtract sub 1
Multiply mult 3
Or | 1
And & 1
Predicate Compare | cmpp 1,23
Memory (M) Load load 2
Store store 1
Branch (B) Branch on condition | if 1

Table 2.1: Description of a sample processor with a fetch/execute width of 3 opera-
tions

the MRT can hold no more than one operation.

IMS is generally applied to innermost loops that contain only a single basic block.
In processors that support predicated execution, if-conversion [3,57] is applied to
broaden the class of loops that can be modulo scheduled. If-conversion can also be
used in conjunction with LS on acyclic regions to increase the effectiveness of the

scheduler.

2.2.1 Example Code Segment

To illustrate the application of conventional LS and IMS along with the potential
benefits of making each scheduler predicate-aware, we consider a simple code example
and processor model. The example processor, which can fetch and execute up to three
operations per cycle, has three fully pipelined function units, as detailed in Table 2.1.
The mnemonics for the various operations, binding of operations to units, and the
operation latencies are shown in the table. The tables list three latencies, 1,2 and 3,
for the predicate-defining operation, cmpp, because, as discussed in Section 2.3, to
support predicate-aware scheduling, the cmpp latency must be increased by at least

one cycle; in this simple example, the cmpp latency is increased from 1 to 2 cycles.
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for (i =0;i <im_size;i + +)
{
prod = q_imli| * bin_size;
if (q.imli] > 1)
res(i] = prod — correction;
else
res[i] = prod + correction;

(a) Source code

opl: t1 = load(il, g_im) if p0;

op2: prod = mult(¢1,tbs) if pO;

op3: pl,p2 = cmpp.lt.uu(tl, 1) if po;
op4: t2 = sub(prod, tcor) if pl;

opb: t2 = add(prod, tcor) if p2;

op6: store(il+ = 4,res, t2) if p0;

op7: if(i + + < im_size) goto opl if pO;

(b) Assembly code after if-conversion (p0=True)

Figure 2.1: Example code segment

The motivational example in Chapter 3, which also assumes this machine model,

increases the predicate defining operation latency to 3 cycles.

The example code segment is a slight modification of a loop extracted from the
unquantize_image() function from the epic application in the MediaBench benchmark
suite [33]. Figure 2.1(a) shows the C source for the example loop. Figure 2.1(b) shows
the assembly code for the loop after if-conversion. For conciseness of the example we
assume that the instruction set supports post-increment load and store operations. In
this example, the if-then-else statement is replaced by the corresponding predicate-
defining operation (p1,p2 = cmpp.lt.uu(¢1, 1) if p0). Predicate pl is set to True and
p2 is set to False when the if condition (1 < 1) evaluates to True; whereas condition

False sets pl False and p2 True. The detailed semantics of cmpp operations are

described in [28].
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Figure 2.2: Data dependence graph for code segment

The data dependence graph of the if-converted loop segment is presented in Fig-
ure 2.2. Each node is annotated with the type of the operation (A=ALU, M=memory,
B=branch). Each edge is marked with the latency of that edge. Note that the edges
in the graph are all flow dependences with the exception of the edge from op6 to op7

which is a control dependence.

2.2.2 Applying Predicate-aware Scheduling

As stated above, the reservation table enforces resource constraints for both LS
and IMS. That is, operations that use the same resource cannot be scheduled in the
same cycle. Predicate-aware scheduling relaxes this constraint by allowing operations
guarded by disjoint predicates (referred to hereon simply as disjoint operations) to

reserve (or share) the same resource in the same clock cycle. The if-converted code
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Time| A M B Time A M B
0 opl 0 opl
L 1
2 op2
3 op3 2 op2
4 3 op3
5 op4 4
6 op5 5 op4 \ op5
7 0opé op7 6 op6 op7
(a) SchedLen = 8 (b) SchedLen = 7

Figure 2.3: LS schedule (a) versus DPALS schedule (b)

shown in Figure 2.1(b) is used to illustrate conventional LS and its counterpart deter-
ministic predicate-aware list scheduling (DPALS), along with conventional IMS and

its counterpart deterministic predicate-aware modulo scheduling (DPAMS).

2.2.2.1 LS versus DPALS

The application of LS to the example results in the 8 cycle schedule presented
in Figure 2.3(a). This schedule is optimal for this machine model. op/ is scheduled
at cycle 5 which is the earliest time at which it can be scheduled. The earliest schedule
time for opd is also cycle 5, but due to resource conflict with op4, it gets scheduled
at the next cycle. Hence, the earliest schedule time for opé, which depends on both
op4 and opd, is cycle 7. Note that both op4 and opd are executed conditionally,
but reserve the ALU unconditionally. In fact, during any particular iteration of the
loop at runtime, only one of these operations is executed; the other is nullified. As
a result, we effectively waste either cycle 5 or cycle 6 for each iteration of the loop
because the ALU is not utilized during the cycle in which it is assigned to a nullified
operation.

With DPALS, a 7 cycle schedule can be achieved, as shown in Figure 2.3(b).

Operations op4 and opd (from the then and else paths, respectively) can now both
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Time| A| M| B Time A M B

70 op5| opl 0 Op3 opl
1 | op4| opb
S Top2 1 |op4]|ops
7 | op3 op? 2 0p2 0pb6 op?
(a) IT =4 (b) IT =3

Figure 2.4: IMS kernel (a) versus DPAMS kernel schedule (b)

be scheduled at their earliest schedule time; both operations may reserve the ALU
in cycle 5 because they are provably disjoint. In the SRT of Figure 2.3(b), each
resource conceptually provides two schedule slots at each time. This allows up to two
disjoint operations to occupy the same resource at the same time. Two slots is not a
restriction of this technique. Rather, for this example, there are only 2 control paths;
thus we know that at most two operations can be mutually disjoint.

The overall result of the DPALS schedule is that the ALU resource is always
utilized in cycle 5 and the achieved schedule length is 7 cycles, a 14% speedup over
the 8 cycle LS schedule shown in Figure 2.3(a). Note that for this basic block, a
schedule of length 7 is optimal for any machine configuration. Since the latency-

constrained lower bound (critical path length in Figure 2.2) is 7 cycles.

2.2.2.2 IMS versus DPAMS

The application of IMS to this same loop example results in the /=4 schedule
presented in the MRT shown in Figure 2.4(a). Since each of the four ALU operations
(op2, op3, op4, ops) must reserve the ALU resource in a different cycle to avoid
conflict, ResMII=4 and this schedule is optimal. Note that RecMII is set to 1 by
default since there are no recurrence cycles.

With DPAMS, an II=3 schedule can be achieved as shown in Figure 2.4(b).
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Again, this improvement is achieved by enabling the provably disjoint operations,
op4 and opd, to reserve the ALU in the same cycle. Overall, DPAMS results in
a 33% speedup over IMS for this example. Note that for this particular loop, no
compiler strategy can do better than I = 3 because there is only one ALU and each
control path has three operations that require it.

This example shows that by allowing disjoint operations to reserve the same re-
source in the same time-slot, the resource requirement for a code segment can be
reduced. For code that is resource constrained, this relaxation results in a tighter
schedule, and hence a performance improvement. Of course if resources are not a
limiting factor, the benefit of predicate-aware scheduling is lessened. If the example
processor had two ALUs instead of one, LS would achieve an optimal list schedule of
7 cycles for this example, and IMS would achieve an optimum modulo schedule, with

an II of 3 cycles. However, the two ALUs would be poorly utilized by this example.

2.2.3 Characteristics of Improvable Regions

The previous section showed an example that can derive benefit from deterministic
predicate-aware scheduling. The central issue for further investigation is whether
application regions, both acyclic and cyclic, generally have properties that benefit
from DPAS. For details of the experimental evaluations see Section 2.5.

Two related metrics are: the fraction of runtime spent in regions with disjoint
operations, and the potential to combine the disjoint operations in those regions.
Figure 2.5 addresses these two metrics. Each stacked bar shows, for one benchmark
application or the overall Average, the dynamic operation breakdown in terms of the
code region they belong to.

In general there are three kinds of regions. First are acyclic regions with at least
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Figure 2.5: Characteristics of ’dpa-improvable’ regions

one pair of disjoint operations and hence some opportunity for combining, which we
call acyclic dpa-improvable regions (A). Second are cyclic regions with at least one
pair of disjoint operations, called cyclic dpa-improvable regions (C). Note that in our
case cyclic regions are only single-basic block inner-most loops with no early exits
that can be scheduled with our cyclic scheduler. Third are other regions with no
disjoint operations and hence no opportunity for combining.

The A and C regions are each further broken down into 2 distinct sub-regions
where each sub-region is represented by a sub-bar in Figure 2.5. The A _aftercombining
sub-bar contains the percent of all the dynamic operations that are in A regions and
remain after optimistic combining (an operation can represent a group of dynamic
operations and is counted as one operation, see below).

Optimistic combining produces groups of disjoint operations (regardless of their
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type and latency) in the region. If an operation is disjoint from any group already
formed (that is, it is disjoint from every operation in that group), it joins the group and
is not counted; in other words, it is eliminated as the result of combining. Conversely,
if an operation is not disjoint from any group already formed, it forms a new group
and is counted once. Thus during optimistic combining each group of combined
operations counts as one operation.

Similarly, the C_aftercombining sub-bar shows the percent of all the dynamic
operations that are in C regions and remain after optimistic combining. A _eliminated
and C_eliminated show the percent of all dynamic operations that are from A and
C regions, respectively, and are eliminated from the code as the result of combining.
Note that the number of dynamic operations in a region after combining is the total
number of dynamic operations in that region before combining minus the number of
operations that were eliminated as the result of combining. Finally, the fifth (others)
sub-bar shows the remaining operations, i.e. the percent of all dynamic operations
that are not in a dpa-improvable region.

By adding together the heights of the A _aftercombining and A _eliminated sub-
bars, we obtain the percent of all dynamic operations that lie in acyclic dpa-
improvable regions, an average of 21%. Similarly, by adding together the heights
of the C_aftercombining and C_eliminated sub-bars, we obtain the percent of all dy-
namic operations that lie in cyclic dpa-improvable regions, an average of 47%; thus
nearly half of the operations over all these benchmarks are from dpa-improvable
loops. In fact rawcaudio and rawdaudio spend almost all of their execution time in
dpa-improvable loops. The sum of all 4 sub-bars (68%) is the percent of the orig-
inal dynamic operations (before combining) that lie in either an acyclic or cyclic

dpa-improvable region.
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The overall potential benefit of DPAS depends on the frequency of the improvable
regions, on the percentage of disjoint operations within these regions, and on the
percentage of those disjoint operations that are eliminated by optimistic combining.
From Figure 2.5 we see that on average 4.5% of all dynamic operations are eliminated
operations from acyclic regions and 9% of all operations are eliminated operations
from cyclic regions, resulting in the elimination of a total of 13.5% of all dynamic
operations. Note that this does not imply an upper bound on the speedup obtained
with predicate-aware scheduling; the actual performance benefits can be higher or
lower as illustrated by the prior example. In that example, there are two disjoint
operations, one of which is eliminated by optimistic combining, which is 14% of the
original 7 dynamic operations. We have seen that DPALS achieves a 14% speedup

over LS, but DPAMS achieves a 33% speedup over IMS.

2.3 Deterministic Predicate-aware Architecture

All resources in the generic predicate-aware architecture can be divided into two
categories: may-use and must-use. Each resource used after the value of the guarding
predicate becomes known can be may-use, i.e. it can be reserved by several disjoint
operations at the same time. All the remaining resources are must-use and can only
be reserved by a single operation at a given time. Therefore, the earlier the predicates
are read, the more resources can be may-use, which can lead to shorter schedules. On
the other hand, accessing the predicate register file earlier in the processor pipeline
increases the latency of the predicate defining operation. This can be problematic if
many of the predicate defining operations lie on the critical path of the application.

The datapath pipeline of the baseline machine is shown in Figure 2.6(a). This
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Figure 2.6: Baseline vs. deterministic Predicate-aware machine models

processor pipeline organization is similar to the TI ‘C6x architecture [56], except
that its unified register read and execution stage is separated here into two stages.
The baseline processor pipeline has 6 stages: fetch, dispatch, decode, register read,
execute and write back. The predicate register file is read (and written) only during
the execution stage. Thus, resources in the execute stage and the preceding stages
are must-use. Only the resources in the write-back stage are may-use.

In order to make the baseline pipeline predicate-aware, four issues must be ad-
dressed. First, nullification should be performed earlier in the pipeline to make more
may-use resources available. Second, the disjoint operations should be easily iden-
tifiable. Third, the cmpp latency should be kept as small as possible. Fourth, the
pipeline complexity should not be increased so substantially that it compromises the
cycle time. To this end, we make two main changes in the baseline pipeline to make
it predicate-aware, as shown in Figure 2.6(b).

Change 1: The first change is to move the predicate register file (PRF) read to
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the dispatch stage to allow predicates to be read early in the pipeline. This allows
nullification to occur at the end of the dispatch stage. As a result, all the resources
in subsequent stages (general / floating-point register ports, function units, etc.) are
may-use. During the dispatch stage, the PRF is accessed early in the cycle to read the
predicates for all the operations. Then, the dispatch logic nullifies those operations
guarded under False and assigns the rest of the operations to their corresponding
function units. Note that compiler’s task is to assign only provably disjoint operations
to share the same resource, which ensures that no runtime resource conflict can ever
occur.

Change 2: In the baseline processor, the latency of the cmpp operation is 1
cycle. The first change above, however, increases it to 4 cycles. This can penalize
the performance of the predicated code, especially in the regions in which predicated
operations lie on the critical path. To mitigate the impact of increased cmpp latency,
our second change is to reverse the order of the decode and dispatch stages, thereby
delaying the predicate read by one stage, which reduces the cmpp latency to 3 cycles.
However, since decode now occurs before dispatch, the complexity of the decode
logic is increased somewhat. In the worst case, FW (fetch width) general purpose
decoders, one per operation in the instruction word, are required. In the alternative,
where decode follows dispatch, it might be possible to use more specialized and hence
less expensive decoders.

An interesting consequence of our design is that it is possible to selectively increase
the cmpp latency, so as to restrict the increase in critical path length. Only some
operations will see an increased cmpp latency; all other operations will see a cmpp
latency of 1, which means that they will execute unconditionally on their resources.

To allow both kinds of operations to read their predicates in the same cycle, the 1-bit
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wide PRF in Figure 2.6(b) can be simultaneously accessed from the execute stage, as
well as the predicate read and dispatch stage. Thus, twice as many PRF read ports
are required, but they are only 1-bit wide. If this poses a design problem, a shadow
PRF could be added for access by one of these stages.

When the operation’s predicate is first accessed in the predicate read and dispatch
stage, it may not be available because it has not been produced yet by the operation’s
corresponding cmpp. In this case, the operation reserves its resources unconditionally
and proceeds forward to the register read stage and then to the execute stage where
its predicate is accessed the second time and is guaranteed to be available, just as in
the baseline processor. Again, the scheduler must ensure that regardless of where the
operation’s predicate is accessed no resource conflict will ever occur.

Finally, it is possible to have more pipeline stages between predicate read / dis-
patch and execute as the result of increased processor frequency; register read or
comparator logic may then be split into multiple stages, and cmpp latency would
increase correspondingly. As the results in Section 2.5 indicate, higher cmpp latency
will degrade the performance of DPALS because cmpp operations are often on the
critical paths of acyclic regions. However, modest cmpp latency increases will not
have a significant impact on the performance of DPAMS because cmpp operations

are rarely on the critical paths of cyclic regions.

2.4 Deterministic Predicate-aware Scheduling

In this section, the details of the acyclic and cyclic deterministic predicate-aware
scheduling algorithms are presented. Deterministic predicate-aware list scheduling

(DPALS) and deterministic predicate-aware modulo scheduling (DPAMS) are exten-
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Figure 2.7: Scheduling algorithm flowchart

sions of conventional LS and IMS, respectively. As discussed in the previous section,
both techniques aim to decrease schedule length by relaxing resource constraints,
specifically by allowing a set of disjoint operations to reserve the same resource in the
same cycle.

Figure 2.7(a) shows the five main scheduling steps for conventional list and modulo
scheduling algorithms. First, the data dependence graph is constructed in which edges
between dependent operations are marked with the corresponding latencies (Step 1).
Next, in the case of modulo scheduling, the resource and recurrence based lower

bounds on /I are computed to provide a starting value of II for the main scheduler
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(Step 2). The main scheduler schedules each operation in accord with the resource and
latency constraints, until the entire region is scheduled with either the list scheduler
for acyclic regions (Step 3), or the modulo scheduler for cyclic regions (Step 4). Each
scheduler uses a resource reservation table to avoid resource conflicts (Step 5).

Our deterministic predicate-aware scheduling technique extends the conventional
scheduler (discussed in Section 2.4.2) as shown in Figure 2.7(b). Each extension
is discussed in the following sections. Section 2.4.1 describes the data dependence
graph latency extension step (Step la) which follows DDG construction (Step 1)
and selectively extends the cmpp latency for every operation that can potentially be
combined with some other disjoint operation. We have designed and implemented
three scheduling algorithms: two alternative DPALS algorithms (Steps 3 and 3’), and
one DPAMS algorithm (Step 4).

The first algorithm, called ’extend-all’ DPALS (Step 3), is described in Sec-
tion 2.4.3 and is used to schedule acyclic regions. 'Extend-all’ DPALS requires the
latency extension step (Step la), as shown by the arrow from Step la to Step 3 in
Figure 2.7(b), so that when an operation with extended cmpp latency is scheduled, it
is always far enough from its cmpp producer to be able to read its predicate early in
the pipeline (during the predicate read and dispatch stage), and hence conditionally
reserve and share its resource with another disjoint operation in the region. Note that
an operation in our scheduling examples explicitly reserves either an ALU, a Memory

M3

Port, or a Branch Unit as its execution unit. We refer to this unit briefly as "its
resource”. Other may-use resources (such as register ports) reservations are implicit;
reservations of the fetch width must-use resource are also generally implicit, but are

occasionally shown explicitly.

The second algorithm, called ’first-fit” DPALS (Step 3’), is described in Sec-
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tion 2.4.4 and may alternatively be used to schedule acyclic regions. Unlike ’extend-
all’ DPALS, ’first-fit’ DPALS does not require the latency extension step. Instead,
an operation can be scheduled at the earliest time that satisfies its resource and de-
pendence constraints, regardless of the distance from cmpp that defines its predicate.
However, an operation cannot share its resource with any other operation if it is
scheduled so close to its cmpp producer that its predicate is not available during the
early read stage; in this case the operation must reserve its resource unconditionally.
Each predicated operation has an associated cmpp operation that produces its pred-
icate; we refer to that cmpp operation as ”its cmpp producer” or sometimes as ”its
cmpp” for short. Furthermore we often refer to the latency from its cmpp to the
operation simply as the operation’s ”cmpp latency.”

DPAMS (Step 4) is used to schedule cyclic regions, as described in Section 2.4.1.
It is similar to ’extend-all’ DPALS in that it also requires the latency extension
step. Note that in addition DPAMS requires the ResMII and RecMII bounds to
be computed (in a deterministic predicate-aware manner), as indicated by the arrow
in Figure 2.7(b) from Step 2 to Step 4.

Both DPALS and DPAMS share much of the same underlying scheduling in-
frastructure, which employs a predicate-aware reservation table module (Step 5), as

described in Section 2.4.2.

2.4.1 DGG Latency Extension

As we said in Section 2.3, it is possible to selectively increase cmpp latency of
the predicated operations in the region as to restrict the growth of the critical path
length. 'Extend-all’ DPALS and DPAMS perform this latency extension immediately

after the DDG construction step.

33



The cmpp latency of a given predicated operation is the latency that places a la-
tency constraint on the schedule distance between the operation’s predicate-defining
cmpp and the predicated operation itself. As we said in Section 2.3, each predi-
cated operation can be selectively scheduled with one of the two cmpp latencies:
shortlatency, in which case it must reserve its resource unconditionally and cannot
share it with other disjoint operations since its predicate is not available until the end
of the execute stage, or extendelatency, in which case it can conditionally reserve and
share its resource with other disjoint operations since its predicate is available early
in the pipeline during the predicate read and dispatch stage.

The DDG latency extension step optimistically extends the cmpp latency of a
given operation to extendedlatency cycles if it can potentially be combined with some
other disjoint operation, i.e. only if it might result in some performance improvement.
If the operation cannot be combined with any other operation in the region, its cmpp
latency is set to shortlatency. Note that even when an operation’s latency is extended,
during actual scheduling the combining may or may not take place. Moreover, even if
such combining occurs during scheduling, it is not guaranteed to result in a schedule
length reduction.

The procedure DPAS-DDGLatency-Adjust performs the latency extension,
as shown in Figure 2.8. It takes four parameters: ddg - the data dependence graph
of the region, regiontype - a region type flag which indicates whether the region is
acyclic or cyclic, shortlatency - a short latency of the cmpp operation, and finally
extendedlatency - an extended longer latency of the cmpp operation.

The procedure consists of two phases. The first phase (lines 1-8) sets the mustres
bit field of every predicated operation. The mustrest bit is set to 0 if the operation

can be combined with some other operation, potentially resulting in some performance
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DPAS-DDGLatency-Exend(ddg, regiontype, shortlatency, extendedlatency)
1 /* phase 1: mark mustres bit of each operation */

2 for each predicated operation node, op, in ddg do

3 op.mustres = 1,

4 independenceSet = all operations in ddg independent from op/

5 if(op is disjoint from at least one operation from independenceSet then
6 op.mustres = 0

7 end if

8  end for

9 /* phase 2: adjust cmpp latencies */

10 for each cmpp operation outgoing edge, cmpp outedge) do

11 op = cmpp_outedge.destination;

12 if op.mustres == 1 then

13 setlatency(cmpp_outedge, shortlatency)

14 else

15 setlatency(cmpp_outedge, extendedlatency)

16  endif

17 end for

Figure 2.8: DPAS latency extension procedure

improvement; otherwise the mustres bit is set to 1. More specifically, at the beginning
of the first phase the mustres bit of every operation is conservatively initialized to 1
(line 3), assuming that there exists no combining opportunity for this operation. The
condition in line 5 tests if the operation is disjoint from at least one other operation
in its independence set, independeceSet, which consists of all operations in ddg that
are independent from this operation. If an operation is disjoint from at least one
operation in its independeceSet, the operation’s mustres bit is set to 0 (line 6),
as these two operations might get combined during scheduling and thus potentially
result in some performance improvement.

In the second phase (lines 10-16), the cmpp latency of those operations with a
mustres bit of 1 is set to shortlatency (line 13): these operations will reserve their
resources unconditionally. All the other operations with the mustres bit of 0 have

their cmpp latency extended to extendedlatency cycles (line 15): those operations
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will reserve their resources conditionally.

2.4.2 Deterministic Predicate-aware Unified Scheduling Al-

gorithm

As shown in Figure 2.7, list and modulo scheduling algorithms share much of the
same underlying scheduling infrastructure, in particular the Step 5 of the scheduling
algorithm. Thus, we begin this section with a unified discussion of both algorithms,
referred to as unified scheduling or simply scheduling. The term reservation table
(RT) is used in a generic sense to represent either a schedule reservation table (SRT)
for a list scheduling algorithm or a modulo reservation table (MRT) for a modulo

scheduling algorithm.

2.4.2.1 Baseline Unified Scheduling Algorithm

The heart of a typical instruction scheduling algorithm employs two important
functions (embodied here in FindTimeSlot and ResourceConflict, see below) to
identify a conflict-free time for each operation to be scheduled. The central data
structure used to identify resource conflicts is the RT. The general realization of an
RT (similar to Figure 2.3(a)) is a two-dimensional matrix in which columns correspond
to resources and rows correspond to schedule slots.

In our implementation, the scheduler selects an operation from the pool of un-
scheduled operations and calls the FindTimeSlot function (see pseudo code shown
in Figure 2.9(a)). This function scans forward from MinTime to MaxzTime looking
for the first conflict free slot in RT to schedule the operation. MinTime is the ear-
liest start time that the operation can have as constrained by its already scheduled

predecessors. MazTime (which is usually a very large number) is the latest time at
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FINDTIMESLOT(Operation, MinTime, MazTime) {
/* Successively try each time in the range */
for ( CurrTime = MinTime; CurrTime < MaxTime;
CurrTime + +) {
while ( there are remaining resource alternatives) do {
resource_alt = next resource alternative for Operation
if ( ResourceConflict(resource_alt, Operation,
CurrTime) == False )
return CurrTime;

(a) FindTimeSlot() function

RESOURCECONFLICT (resource_alt, Operation, CurrTime) {
while (there are remaining resources in resource_alt) do {
resource = next resource from resource_alt;
if ( IS . EMPTY (ReservationTable [CurrTime][resource])
== False)
return True;

return False;

(b) ResourceConflict() function

Figure 2.9: Baseline scheduling functions
which the scheduler will try to schedule the operation before giving up. Frequently,
an operation may execute on any one of several function units; in this case, the op-
eration is said to have multiple resource alternatives. All resource alternatives are
tried inside the while loop, and for each alternative, the function ResourceConflict is
called.

The ResourceConflict function, shown in Figure 2.9(b), checks if the operation
can be scheduled without conflict on resource_alt at time CurrTime. Each resource_alt
is a set of resources that the operation needs during execution. For example, one such
alternative may contain a set of two resources: a function unit (a real resource) and
fetch width resource (a virtual resource) which is used to ensure that the fetch width
constraints are not violated (an example using the fetch width resource is given in
Section 2.4.5.1). If for example, there are 2 ALUs and the operation may use either
one, that operation has two resource alternatives. For each resource alternative the

corresponding entries in the ReservationTable must be checked. If there is a conflict
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Figure 2.10: Predicate-aware reservation table

at any of those entries, then the operation cannot be scheduled on this resource
alternative at this time; otherwise, it can. Scheduling an operation is accomplished
at this level by reserving the entries in the RT that correspond to the first conflict-free

set of entries that is found.

2.4.2.2 Predicate-aware Extensions

Predicate-aware scheduling is accomplished by using the Predicate Query System
(PQS) [27] to determine the disjointness of two operations based on their predicates.
The PQS analyzes operations to determine relations between predicate values. These
relations (or facts) are stored as boolean expressions which can be efficiently ma-
nipulated. For a set of predicates, the boolean expression essentially represents the
disjunction of all the paths on which these predicates evaluate to True. For exam-
ple, the predicate expression that represents p0 from Figure 2.1 is True, since the
predicate evaluates to True on all the paths. To check if a predicate is disjoint from
another predicate, the corresponding predicate expressions are ANDed. If the result
is False, the predicates are disjoint, meaning that regardless of the execution path at
most one of the predicates will be True at any given time. Otherwise, the predicates
are not disjoint.

Predicate-aware scheduling uses a predicate-aware RT, as shown in Figure 2.10.
Each entry in the predicate aware RT has two fields: a list of disjoint operations

which have already reserved the entry, and a predicate expression (pred_expr), which
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RESOURCECONFLICT (resource_alt, Operation, CurrTime) {
pred = get_predicate (Operation);
while (there are remaining resources in resource_alt) do {
resource = next resource from resource_alt;
rt_entry = ReservationTable[CurrTime][resource]
if ( IS_DISJOINT (rt_entry.pred_expr,pred, PQS) == False)
return True;

return False;

Figure 2.11: Predicate-aware ResourceConflict() function
represents the union of the predicates of those operations.

In predicate-aware scheduling, FindTimeSlot calls the predicate-aware Re-
sourceConflict function (see Figure 2.11) which does the following.  First,
the operation’s guarding predicate, pred, is obtained. For each entry, Reserva-
tionTable[ CurrTime][resource] of the predicate-aware RT, a call is made to the
IS_DISJOINT function. This function takes three arguments: operation’s guarding
predicate, pred, the predicate expression for this entry in the RT, pred_ezpr, and the
PQS module, PQ.S, which is used to test the disjointness by performing the conjunc-
tion of the first two arguments, pred and pred_erpr. If the conjunction is False, the
ResourceConflict returns True; the operation is disjoint from every other operation
in the list, and therefore it can also reserve the resource resource at time CurrTime.
Otherwise the value returned is False and the operation is not disjoint from one or
more of the operations currently in the list. Therefore, this operation cannot reserve
this resource at CurrTime.

If there are no resource conflicts, the operation is placed into the operation list
of the corresponding entry in the RT. The operation’s predicate is then ORed into
the current pred_expr in that RT entry to reflect the new condition under which the
resource is busy.

As we said in Section 2.3, the predicate-aware scheduler divides machine resources
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into two categories: may-use and must-use. May-use resources can be reserved in the
same cycle by disjoint operations. Must-use resources can only be reserved by one
particular operation in a given cycle, as on the baseline machine. The categorization
rule is that every resource that is after the predicate nullification point in the pipeline
is may-use. May-use resources can be reserved by disjoint operations because the
operations whose predicates evaluate to False are discarded before those resources
are used. Conversely, resources before the nullification point are must-use, and only
one operation can reserve them at any time as these resources are used regardless of
the operation’s predicate value.

For our implementation, we add a pseudo must-use resource called the fetch width
(or FW) resource. This resource limits the maximum number of operations that can
be fetched in a given clock cycle. Since the fetch stage is a must-use resource, even
operations that will be nullified must be fetched. Note that in general the fetch width
can differ from the execution width, which is the maximum number of operations
that can be simultaneously issued to function units in a given clock cycle. However,

in our experiments these widths are the same.

2.4.3 ’Extend-all’ DPALS

Now that we have described the unified scheduling infrastructure that all three
deterministic predicate-aware scheduling algorithms share, in this and the next two
sections we describe the main differences for each of the three techniques. We start
with the ’extend-all’ DPALS algorithm which calls DPAS-DDGLatency-Adjust
to extend the cmpp latency for every operation that could potentially be combined
with another.

To illustrate ’extend-all’ DPALS scheduling, DPALS is applied to the example
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Figure 2.12: Example of ’extend-all’ DPALS

in Figure 2.12. Figure 2.12(a) shows a predicated basic block. Figure 2.12(b) shows
the corresponding data dependence graph. Each outgoing edge from a cmpp node
is marked with the shortlatency and extendedlatency of the operation. In order to
simplify this example we assume that shortlatency is 1 cycle and extendedlatency
is 2 cycles. One of these latencies will be chosen for each of these edges during the
latency extension phase. Note that in this case every predicated operation can be
combined with at least one other predicated operation, hence every edge’s latency
is extended to 2 cycles. Finally, since scheduling algorithms schedule operations in
decreasing priority order, Figure 2.12(c) shows the commonly used height-based
priority (HBP) order of operations from highest to lowest. The HBP of an operation

is computed as the length of the longest path from the operation to a node with
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no immediate successors. Note that in our example the HBP priority order of the
operations is the same before and after the cmpp latency extension step. Therefore, we
only show each operation’s priority before latency extension. Operations A1, A2 and
A3 are highlighted because they have the same priority. We assume the deterministic
machine model in Table 2.1.

The application of the baseline list scheduler to the example results in the sched-
ule length of 5 cycles as presented in the SRT shown in Figure 2.12(d). Note that
operations Al through A3 are executed conditionally but reserve the ALU uncondi-
tionally.

When the ’extend-all’ DPALS scheduler is applied to this example, as Figure 2.12(e)
shows, it places C'1 at Time 0 of SRT reserving the resource A, and the predicate
expression is updated to pl|p2 since this operation occurs on both control paths.
Here and in the other scheduling examples one FW resource is reserved (indicated
by shading in Figure 2.12(e)) for each scheduled operation. Placing C1 frees up Al,
A2 and A3 and makes them ready for scheduling. All three of them have the same
priority and any of the three operations can be combined with at least one of the
others: Al can combine with A3, A2 can also combine with A3, and A3 can combine
with both A1 and A2. The scheduler picks Al and schedules it at its earliest schedule
time which is Time 2 in the SRT. The entry’s predicate expression is updated with
pl (Al’s guarding predicate) to reflect the condition under which the operation will
reserve the resource. Next, A2 is scheduled in Time 3 also updating the predicate-
expression to pl. Next, operation A3 is chosen by the scheduler and is placed in
Time 2 together with its disjoint operation Al. A3 also reserves the A resource and
updates the predicate expression to pl|p2, which means the resource is now reserved

on both control paths: either A3 will utilize the resource on the False path (pl is
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False, p2 is True), or A3 will utilize the resource on the True path (pl is True, p2 is
False). Finally, M1 and B are placed in Time 4, resulting in 5 cycle schedule.

As can be seen, we have not gained any speedup over the 5-cycle baseline schedule
despite the fact that A1 and A3 share the same resource. The failure to achieve any
speedup is due to the fact that extending cmpp latency increases the critical path
length by 1 cycle. This removes the 1-cycle reduction in the schedule length gained
from the resource sharing by A1 and A3 at Time 2. If cmpp latency were extended
to 3 cycles instead of 2, ’extend-all’ DPALS would only achieve a 6 cycle schedule -

a one cycle loss in performance relative to baseline schedule.

2.4.4 ’First-fit’ DPALS

As the previous example demonstrates, and as is experimentally shown in Sec-
tion 2.5, extending cmpp latency often increases the length of critical path in the
acyclic code regions and degrades the performance of DPALS. To address this prob-
lem, our second deterministic predicate-aware list scheduling algorithm, ’first-fit’
DPALS, does not extend cmpp latency prior to scheduling, but takes advantage of
combining opportunities as they arise and extends the latency only where needed.

"First-fit’ DPALS, as opposed to ’extend-all’ DPALS, schedules an operation at
the first available cycle in which the resource required by this operation is available.
If that cycle is less than extendedlatency cycles away from its already scheduled
cmpp producer, its predicate cannot be read early and therefore that operation must
reserve its resource unconditionally at this cycle, and therefore cannot share the
resource with other disjoint operations. In the compiler an unconditional reservation
is accomplished by setting the predicate-expression of the corresponding SRT entry

to be the union of all the control paths in the region; as a result, no other operation
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Figure 2.13: Example of 'first-fit” DPALS

will be allowed to share its resource in this entry. If the first cycle where the resource
is available is at least extendedlatency cycles away from its cmpp, the operation’s
predicate can be read early, and, therefore, the operation can conditionally reserve
and share its resource with other disjoint operations.

The other difference between the ’extend-all’ DPALS and 'first-fit’ DPALS is which
operation the scheduler chooses from hpr_oplist_ready, the list of the highest priority
ready operations. As shown in the example in Section 2.4.3, an operation becomes
ready when all of its predecessors have been scheduled. As we have seen, for ’extend-
all’ DPALS, the choice of the highest priority ready operation is unimportant from the
resource sharing point of view, since each operation in the hpr_oplist_ready whose la-
tency has been extended will be able to share its resource regardless of when it is sched-
uled. ’First-fit” DPALS, on the other hand, chooses from hpr_oplist_ready the ready
operation with the least combining potential. An operation in the hpr_oplist_ready
list is said to have the least combining potential if it can be combined with the fewest
other operations in hpr_oplist_ready. Such an operation is chosen first, because if
this operation gets scheduled unconditionally (that is fewer than extendedlatency cy-
cles after its cmpp), it gives the remaining ready operations (particularly those with
higher combining potential) a chance to be scheduled conditionally at a later time

where they might take advantage of their higher potential for resource sharing.
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We now show in Figure 2.13 how to apply the ’first-fit’ DPALS scheduler to the
example in Figure 2.12(a). As in ’extend-all’ DPALS, it begins by placing C1 at
Time 0 and updating the corresponding predicate-expression. The hpr_oplist_ready
list currently contains three operations, A1, A2 and A3. A1l has a combining potential
of 1 since it can only combine with A3, not with A2. By the same token, A2 also
has a combining potential of 1. A3, on the other hand, can combine with either A1l
or A2, and hence its combining potential is 2. Since A1l and A2 have the smallest
combining potential, A1 is randomly chosen and is scheduled at Time 1. Since Al
is then only one cycle (< extendedlatency = 2 cycles) away from C1, the predicate-
expression of the corresponding SRT entry is set to the union of all paths, i.e., p1(p2,
to reflect the fact that this entry reserves its resource unconditionally and no sharing
is allowed. The hpr_oplist_ready list now contains A2 and A3 each of which has a
combining potential of 1, since each can combine with the other. A2 is chosen and
is scheduled at Time 2, and the entry’s predicate expression is set to pl. A3, the
remaining operation in hpr_oplist_ready, is then also scheduled at Time 2 and shares
the ALU with A2; the predicate expression is set to the union of their predicates,
pl|p2. Note that although A3’s earliest scheduling time is Time 1 and A3 is disjoint
from A1 (scheduled at Time 1), A3 cannot be scheduled together with A1, since A1l
has reserved the resource unconditionally. Finally, M1 and B are scheduled at Time
3, resulting in a 4 cycle overall schedule - a 1 cycle improvement over baseline LS and
‘extend-all’ DPALS schedules in Figure 2.12(c) and Figure 2.12(d), respectively.

Note that if *first-fit” DPALS had chosen A3 first instead of A1, A3 would have
reserved the ALU unconditionally at Time 1. Al and A2 then would have been
scheduled at Time 2 and Time 3, respectively, forcing M1 and B to be scheduled

at Time 4, resulting in a longer 5-cycle schedule for ’first-fit’ DPALS. Thus choosing
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one of the less-combinable A1 or A2 operations for scheduling before choosing the
more-combinable A3 operation is critical to the success of ’first-fit’ DPALS in finding

a short schedule.

2.4.5 Additional Extensions for DPAMS

As in ’extend-all’ DPALS, the deterministic predicate-aware modulo scheduler
(DPAMS) also calls DPAS-DDGLatency-Adjust. Note that there is no 'first-fit’
DPALS counterpart for DPAMS. As we will show in Section 2.5, modulo sched-
uled loops tend to be resource bound rather than latency bound, and extending the
cmpp latency has a very small impact on the overall schedule length for most loops.
Consequently, it is generally preferable to provide the maximum possible combining
opportunity even if cmpp latencies are sometimes extended unnecessarily.

An additional predicate-aware extension for supporting DPAMS is to compute
ResMI144ms in a predicate-aware manner. The baseline modulo scheduler, or IMS,
computes a resource-constrained lower bound for each resource by adding up the
number of cycles that each operation uses that type of resource and dividing that
total by the number of resources of that type. The resource with the highest bound
determines the overall ResMI1,,,, for IMS.

For DPAMS, the deterministic predicate-aware resource-constrained lower bound
(ResMIIpams) is computed by a similar calculation, except that (as in MRT) a
predicate expression is maintained for each resource usage that can now be shared by
several operations. Whenever the current operation being considered can be disjointly
combined with a previously combined set of operations, it is combined. When the
new operation joins the set, the usage count of that resource is not incremented,

but the predicate expression for that usage is updated to reflect that the current
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operation now shares the usage of this resource with those previous operations. If
the current operation is not disjoint from any such set of previous operations, a new
usage is created for this resource, the usage’s predicate expression is updated with
current operation’s predicate, and the resource usage count is incremented to account

for this new usage. Again, the resource with the highest usage determines the overall

ResM 114,45 for DPAMS.

2.4.5.1 Example of Applying DPAMS

To illustrate predicate-aware scheduling, DPAMS is applied to the example in Sec-
tion 2.2.1 (see Figure 2.1). The machine model in Table 2.1 is assumed with a cmpp
latency of 2 cycles and a fetch width equal to the number of function units (3).
DPAMS searches for a schedule with /1 = 3.

As each operation is scheduled at some time slot, the appropriate resource is
marked at that time slot in both the SRT and MRT. In addition, the predicate
expression of the corresponding SRT entry is updated.

Figure 2.14(a) and Figure 2.14(b) show the partial (up to op4) SRT and the final
MRT after the DPAMS algorithm is applied to this loop. op1 is scheduled at Time
0 of the SRT and the MRT (there is no MRT conflict) reserving resource M, and the
predicate expression is updated to pl|p2 since this operation occurs on both control
paths. Arithmetic operation op2 is also on both control paths and is data dependent
on two cycle opl. Therefore, the A resource is reserved at Time 2 in both the SRT
and the MRT, with its predicate expression set to pl|p2 in the corresponding SRT
entry. op3’s earliest scheduling time is Time 2, but it has a resource A conflict with
the currently scheduled op2 and is, therefore, scheduled at the next Time, 3, of the

SRT (Time 0 of MRT), also with predicate expression pl|p2.
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Figure 2.14: PAMS scheduling of the example in Figure 2.1

The earliest scheduling time for op4 is Time 5 (since it is dependent on the two-
cycle predicate defining operation op3), but op2 uses resource A at Time 2, which
causes resource conflicts with Time 5 since both map to Time 2 of the MRT (i.e. 2
and 5 are congruent modulo the IT of the MRT, which is 3). By the same token, op/
cannot be scheduled at Time 6 because of the conflict with op3 currently scheduled
at Time 3. So, op4 gets scheduled at Time 7 of the SRT (Time 1 of the MRT) which
has no conflicts. It reserves resource A and the predicate expression is set to pl (op4’s
guarding predicate) to reflect the condition under which the operation will reserve
the resource.

The rest of the schedule is not shown in Figure 2.14(a) but is shown in Fig-
ure 2.14(b). The earliest scheduling time for op5 is also at Time 5. But as with
op4, it cannot be scheduled until Time 7. It gets scheduled at Time 7 of the SRT
(Time 1 of the MRT), the same time as its disjoint operation, op4. op5 also reserves

the A resource and updates the predicate expression to pl|p2, to indicate that the
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resource is now reserved on both control paths: either op4 will utilize the resource
on the False path (pl is True), or op5 will utilize the resource on the True path (pl
is False, p2 is True). Next, operation op6 is scheduled at Time 8 of the SRT (Time
2 of the MRT). Finally, as is customary in IMS (and, hence, also in DPAMS), the
region ending branch is replaced with a special control operation (called brtop in [45])
that is scheduled somewhere within the first II rows of the SRT. op7 at Time 2 of
the MRT in Figure 2.14(b) shows this operation. The result is a successful modulo

schedule with 11=3.

2.5 Performance Evaluation

We use an existing VLIW compiler technology, Trimaran [55], to evaluate the
effectiveness of our technique. This compiler system is capable of performing if-
conversion with hyperblock formation [36], scalar and modulo scheduling, and pred-
icate analysis, among other back-end optimizations. We implemented the determin-
istic predicate-aware reservation table within the resource management module of
ELCOR (Trimaran’s back-end compiler); our deterministic predicate-aware resource
manager uses Predicate Query System [27] to analyze predicated code and construct
the relationships among the predicates, in particular the disjointness relationship.
In addition, we implemented two deterministic predicate-aware list scheduling algo-
rithms (‘extend-all’ DPALS and ’first-fit’ DPALS) and a deterministic predicate-aware
modulo scheduling algorithm (DPAMS) within ELCOR’s list and modulo scheduling

modules, respectively.
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Benchmark Description

cipeg JPEG image compression

dipeqg JPEG image decompression

epic Efficient Pyramid Image coder

unepic Efficient Pyramid Image decoder

g721encode |G.721 voice encoder

g721decode |CCITT G.721 voice decoder

ghostview PostScript Interpreter & 38 & 107 & 91

gsmdecode _ |GSM 06.10 full-rate speech decoder

gsmencode _ |GSM 06.10 full-rate speech encoder

mesa 3-D graphics library

mpeg2enc MPEG?2 video encoder

mpeg2dec MPEG?2 video decoder

pegwitenc public key encryption

pegwitenc public key decryption

rasta program for the rasta-plp processing

rawcaudio Adaptive Difference Pulse Code Modulation compression
rawdaudio Adaptive Difference Pulse Code Modulation decompression

Table 2.2: Benchmark set (MediaBench [33])
2.5.1 Benchmarks and Processor Models

All evaluations presented in this dissertation use the set of seventeen Media-
Bench [33] applications benchmarks shown in Table 2.2. Note there is a total of
22 MediaBench applications. We have not performed the experiments on the other 5
applications because the Trimaran compiler was not able to compile them correctly
due to an error in one of Trimaran’s modules that is difficult to fix at this time.
The MediaBench suite was chosen because of its control-intensive nature, as well as
the fact that these media applications spend the majority of their execution time in
loops [19].

We use the notation (F,E,I,FP,M,B,C) to represent the processor in this study.
F is fetch width, E - execution width, I - number integer units, FP - number of
floating-point units, M - number of memory units, B - number of branch units, and
C - latency of the predicate defining operation (cmpp). We use two base processors in

our study: (4,4,2,1,1,1,1) and (6,6,4,2,1,1,1) called Pysse(4) and Pyse(6), respectively.
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In addition, we assume 64 scalar and 64 rotating registers in our experiments and
operation latencies that match the Itanium processor.

Each baseline processor Py (%) is compared with three corresponding determin-
istic predicate-aware processors Pypas(?, 1), Pupas(%,2) and Ppypes(7,3) with the same
number of resources as the corresponding baseline processor, but with a cmpp la-
tency of 1, 2 and 3, respectively. Note that when we refer to predicate-aware pro-
cessor cmpp latency in our experiments, we always imply an extended cmpp latency
of extendedlatency cycles, that is the scheduling distance required between an oper-
ation and its cmpp to guarantee that the predicate value is available for read in the
predicate read and dispatch stage; the short cmpp latency, shortlatency, which can
only guarantee the availability of the predicate value in the execute stage, is always
assumed to be one cycle in our experiments. Although maintaining a cmpp latency
of one cycle in a deterministic predicate-aware architecture is almost impossible (it
would effectively require predicate read and dispatch, register read and execute to
happen in a single cycle, severely compromising the clock speed), the results when
compared with those for cmpp latencies of 2 and 3 indicate the performance degra-
dation that is specifically due to the increased cmpp latency.

We evaluate all of our applications, applying deterministic predicate-aware schedul-
ing optimizations to every region in the entire code. The various measurements (such
as schedule length, resource- and latency-constrained lower bounds, etc.) are reported
as a weighted average, weighted by the execution frequency of each individual region in
the benchmark. Clearly, DPAS can only benefit if-converted dpa-improvable regions
of code (regions that contain at least two disjoint operations); DPAS will be ineffective
for other code regions due to their lack of disjoint operations. The dpa-improvable re-

gions can come from a large variety of the original source code control constructs; our
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compiler can aggressively predicate nested if-then and if-then-else statements as well
as case selection statements. We also assume that non dpa-improvable regions will ex-
ecute with the deterministic predicate-aware support turned off and will be scheduled
using the baseline list and modulo scheduling algorithms, abbreviated as BALS and
BAMS in this section. In addition, whenever the DPAS schedule for a dpa-improvable
region results in lower performance than the corresponding baseline schedule for that
region, the baseline scheduler is used instead, so as to avoid degradation in perfor-
mance. Therefore in our experiments the deterministic predicate-aware schemes, by
incorporating baseline scheduling within them, will never produce a schedule that
is worse than the baseline scheme. Note that for loops, a schedule with a lower IT
is considered better because it executes iterations at a faster rate; however, a nega-
tive speedup may occasionally occur relative to the baseline schedule for loops with
a short trip count and a long start-up time in its modulo schedule, as explained in
Section 2.5.2.4.

The reported DPAS processor speedup over the baseline processor for various
regions is measured as the number of dynamic cycles that the baseline processor
spends in these regions divided by the number of dynamic cycles that the DPAS
processor spends in these regions.

The remaining sections show the results for ’extend-all’ and ’first-fit’ DPALS, for
DPAMS, as well as for the overall speedup achieved by deterministic predicate-aware

scheduling for each benchmark, and over the entire suite.
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Benchmark SLpais CPL1 | CPL2 CPL3 | ResMSLy,s | ResMSLypais | llbams | RecMIl1 | RecMII2 | RecMII3 | ResMllyams | ResMllgpams
Icipeg 67.42 56.13] 61.35 66.13 60.51 54.26] 10.00 1.00 1.00 1.00 10.00 7.00
Idipeg 20.13 14.30f 15.15 16.22 16.70 15.20| 58.64 1.00 1.00 1.00 58.64 53.17
lepic 7.06 5.47 6.24 6.35 5.20 4.05] 23.01 1.00 1.00 1.00 23.01 18.84
lunepic 20.72 18.99] 19.17 20.72 8.15 7.04] 6.00 1.00 1.00 1.00 6.00 5.00
ag721encode 33.62] 22.87| 2512 27.29 28.58 20.66] 30.00 1.00 1.00 1.00 30.00 21.00
a721decode 29.53| 20.03] 22.03 24.03 25.06 18.01{ 30.00 1.00 1.00 1.00 30.00 21.00
ahostscript 17.77 12.54] 13.98 15.47 12.44 9.76] 44.10 7.88 7.88 7.88 43.13 33.35
asmdecode 37.07 33.07] 34.33 34.53 35.00 31.20] 27.92 7.93 9.68 11.44 27.73 24.95
asmencode 40.84 33.53] 35.26 38.00 38.47 34.18] 76.40 7.93 8.47 9.02 75.93 47.69
mesamipmap 51.90 37.63] 39.63 41.62 37.82 34.82] 22.00 1.00 1.00 1.00 22.00 16.33
mpeg2dec 45.68| 32.11 33.85 36.83 39.68 28.23| 28.35 1.00 1.00 1.00 28.35 25.85
mpeg2enc 44.04] 37.71] 3519 3550 26.47 23.83] 20.01 2.98 3.98 4.97 20.01 17.02
pegwitdec 21.68] 20.23] 21.21 22.29 13.05 12.00| 20.67 1.97 1.97 1.97 20.67 18.70
pegwitenc 2249 19.90] 2090| 2225 16.49 15.43| 22.91 1.00 1.00 1.00 22.91 20.20
rasta 19.14 17.10] 18.14 19.33 11.44 10.19] 8.00 1.96 1.96 1.96 8.00 7.00
rawcaudio 25.80] 20.00] 20.99 21.99 18.97 12.99] 26.00 20.00 25.00 30.00 24.00 22.00
rawdaudio 12.91 10.99] 11.99 12.99 11.97 7.99] 20.00 6.00 8.00 10.00 20.00 18.00
|Average 30.46| 24.27] 25.56 27.15 23.88 19.99] 27.88 3.86 4.47 5.07 27.67 22.18
(a) Scheduling Headroom for P(4)
Benchmark SLypas CPL1 | CPL2 | CPL3 | ResMSLy, ResMSLm Ilbams | RecMII1 [ RecMII2 | RecMII3 [ ResMllams [ ResMilgpams
Icipeq 54.98 56.13] 61.35 66.13 30.44 29.09] 5.00 1.00 1.00 1.00 5.00 4.00
ldipeg 14.78] 14.30] 15.15| 16.22 8.74 8.52| 29.32 1.00 1.00 1.00 29.32 26.84
lepic 6.55 547| 624 6.35 3.19 2.49| 11.50 1.00 1.00 1.00 11.50 11.17
lunepic 20.43| 1899 19.17| 2072 4.08 4.07)] 4.00 1.00 1.00 1.00 4.00 4.00
g721encode 26.45| 2287 2512| 27.29 14.58 12.25| 15.00 1.00 1.00 1.00 15.00 12.00
g721decode 23.16] 20.03] 22.03| 24.03 12.85 10.67] 15.00 1.00 1.00 1.00 15.00 12.00
ghostscript 14.44] 12.54] 1398 1547 6.43 6.22| 22.55 7.88 7.88 7.88 21.58 19.63
gsmdecode 35.67 33.07] 34.33 34.53 17.93 16.07| 14.75 7.93 9.68 11.44 13.87 12.94
gsmencode 33.09] 33.53] 35.26 38.00 19.35 17.55] 39.40 7.93 8.47 9.02 38.42 30.91
mesamipmap 41.56 37.63] 39.63 41.62 19.11 18.15] 12.33 1.00 1.00 1.00 12.33 10.67
mpeg2dec 34.48| 32.11 33.85 36.83 20.10 18.32| 14.19 1.00 1.00 1.00 14.19 13.04
mpeg2enc 48.94 37.71 35.19 35.50 13.70 12.28] 11.00 2.98 3.98 4.97 10.00 9.01
pegwitdec 20.97] 20.23] 21.21 22.29 6.54 6.54] 10.84 1.97 1.97 1.97 10.84 9.84
pegwitenc 21.09 19.90f 20.90 22.25 8.47 7.83] 11.56 1.00 1.00 1.00 11.56 10.58
rasta 18.06 17.10f 18.14 19.33 6.52 6.20] 4.00 1.96 1.96 1.96 4.00 4.00
rawcaudio 20.86] 20.00] 20.99 21.99 9.99 8.99] 20.00 20.00 25.00 30.00 12.00 11.00
rawdaudio 11.91 10.99] 11.99 12.99 5.99 5.98] 10.00 6.00 8.00 10.00 10.00 9.00
Average 26.32] 24.27] 25.56 27.15 12.24 11.25] 14.73 3.86 4.47 5.07 14.04 12.39

(b) Scheduling Headroom for P(6)

Table 2.3: Scheduling headroom estimates for the deterministic predicate-aware sched-
ulers

2.5.2 Evaluation Results

2.5.2.1 Scheduling Headroom for DPAS

The goal of the deterministic predicate-aware scheduler is to reduce the length

of resource constrained baseline schedules on a baseline machine of a given width.

The deterministic predicate-aware scheduler takes the advantage of the gap between

the upper-bound defined by the length of the baseline schedule and the lower bound

which is the maximum of the resource-constrained and latency-constrained schedule

lengths of the deterministic predicate-aware processor. For cyclic regions the resource-

constrained schedule length is equal to ResMIlgpems (Section 2.4.5). For acyclic re-
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gions, the resource-constrained schedule length (ResMI1gp,5) is computed in exactly
the same way as for cyclic regions, ignoring all data dependencies in the original data
dependence graph. The latency-constrained schedule length is the length of the crit-
ical path. For cyclic regions the critical path length is equal to RecMI14q,. For
acyclic regions the critical path length is the length of the longest path from the ddg
node with no immediate predecessors to a ddg node with no immediate successors.
The gap between these lower bounds and the upper bound (the length of the baseline
schedule) constitutes the headroom for the deterministic predicate-aware scheduler.

Table 2.3(a) shows an estimate of the deterministic predicate-aware scheduler
headroom on acyclic (columns 2-7) and cyclic (columns 8-13) dpa-improvable regions
for the 4-wide deterministic predicate-aware machine. Table 2.3(b) shows similar
data for the 6-wide machine. The data is presented for each benchmark shown in
column 1. The last tow of each table shows the average over entire suite. Column 2
shows the length of the baseline acyclic schedule. Columns 3-5 show the critical path
length for cmpp latencies 1, 2 and 3, respectively. Columns 6 and 7 show the resource-
constrained schedule length for baseline processor, and the deterministic predicate-
aware processor, respectively. Since the resource-constrained schedule ignores all data
dependencies, cmpp latency has no effect here. Columns 8-13 show similar data for
the cyclic regions.

For the dpa-improvable acyclic regions, we see from Table 2.3 that on aver-
age the critical path length for cmpp latencies of 1, 2 and 3 cycles, respectively
is 20.32%(7.79%), 16.09% (2.89%) and 10.87% (-3.15%) shorter than the schedule
length on the baseline 4(6)-wide machine (with a cmpp latency of 1 cycle). As the
latency of the cmpp operation increases, the latency-constrained lower bound more

closely approaches the length of the achieved baseline schedule, and eventually ex-
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ceeds it. We can thus infer that cmpp operations are often on the critical path of
the acyclic region, and that increases in cmpp latency will significantly reduce the
headroom for DPALS in acyclic regions.

On the other hand, cmpp latency is not a limiting performance factor in cyclic
regions as seen from the fact that ResMIlpams is much larger than RecMII1,
RecMII2, and RecMII3 for both 4 and 6-wide machines. The only exceptions
are the rawcaudio and rawdaudio benchmarks for which RecMII in most cases ap-
proaches or exceeds ResMIlgyqms. These two benchmarks have a dominating loop

with a recurrence cycle that passes through all the cmpp operations.

2.5.2.2 ’Extend-all’ DPALS

Figure 2.15(a) shows the speedup relative to the 4-wide baseline processor that
is achieved by ’extend-all’ DPALS on the acyclic regions only by the three 4-wide
deterministic predicate-aware processors with cmpp latencies of 1, 2 and 3 cycles.
Figure 3.19(b) shows similar data for the 6-wide processors.

As stated earlier, the schedule length for acyclic regions tends to be constrained by
the latencies of the operations, with cmpp operations generally being on the critical
path. Therefore, the performance of DPALS decreases with increased cmpp latency
for both processor models, resulting in a very small speedup of 5% and 3% on two
4-wide machines with cmpp latency of 2 and 3 cycles, respectively, and 1% speedup
for the 6-wide machines with the same latencies.

For epic we see that the 4-wide deterministic predicate-aware machine with cmpp
latencies of 1 and 2 actually performs worse than the 4-wide deterministic predicate-
aware machine with cmpp latency 3. This behavior is counterintuitive, since the

increase in cmpp latency, should cause an increase in the critical path length, which
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Figure 2.15: "Extend-all’ DPALS speedup over BALS for acyclic regions only

in turn should cause an increase in the schedule length. This anomaly is due to

the side-effects of how

schedules regions in particular. The ELCOR list scheduler consists of three main
phases: pre-pass scheduling, register allocation and post-pass scheduling. During pre-
pass scheduling a unique register drawn from an infinite number of virtual registers
is allocated to each operation’s destination operand within the region. Therefore, the

data dependence graph constructed from this region is least constrained: the only

(b) Speedup of Pypes(6,1/2/3) over Pygse(6)

the list scheduler works in general, and the way ELCOR
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dependences that result in an edge between the operations are flow dependences, all
the other dependences (such as anti and output- dependences) are eliminated by the
virtue of the unique destination identifiers. In addition, if an operation is followed
by a subroutine call operation, no edge is drawn between this operation and the
call operation during the pre-pass scheduling stage, since the callee will use different
virtual registers than the caller; hence, the callee does not need to save any of the
caller’s registers. The register allocation which is done after the pre-pass scheduling
phase, tries to allocate the limited number of physical registers for a given region
in order to minimize spilling. After this register allocation, post-pass scheduling is
done. When the post-pass scheduler builds the data dependence graph, it must take
the physical registers into account. Because physical registers are limited and hence
are often reused, there may now be anti-, output-, and other dependence edges in
the graph. In addition, if a long latency operation is followed by a subroutine call
operation, and the operation’s source operands happen to be caller saved (as a result
of register allocation), new flow edges will be constructed between the long latency
operation and the store operations that save these operands in memory and, most
importantly, between the store operations and the subroutine call operation to assure
that the source operand registers will be saved correctly across the call.

In the case of epic, there are a number of cases in one of the time-critical regions
where a long latency divide operation, which lies on a ddg path with several cmpp
operations, is followed by a subroutine call operation. For the 4-wide machine with
longer cmpp latencies of 2 or 3, the pre-pass scheduler places the divide operation
after the subroutine call operation, so that no edges are drawn between them during
post-pass scheduling. For the 4-wide machine with the shorter cmpp latency of 1, it

so happens that the pre-pass scheduler places the divide operation (with its source
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operands allocated to the caller saved registers by the register allocator) before the
subroutine call operation, which causes long latency edges to be drawn between these
operations and the register-saving stores during post-pass scheduling. A number of
such long latency edges makes the schedule latency-bound on the 4-wide machine with
cmpp latency of 1, and thus causes its increase in schedule length over the 4-wide
machines with longer cmpp latencies of 2 and 3. Since this anomaly occurs in several
other instances in this and in the next chapter, we will refer to it as the long latency
operation anomaly.

We have seen that as we go to a wider machine, while keeping the latency of
the deterministic predicate-aware machine fixed, the latency-constrained lower bound
remains the same. However, the length of the baseline schedule (and the resource-
constrained upper bound) decreases, approaching (and even finally falling below) the
latency-constrained lower bound as resources (F'W and/or others) are added. This
reduction of headroom for the deterministic predicate-aware scheduler explains the
degradation in the speedup achieved by ’extend-all’ DPALS as we go from a 4-wide

to the corresponding 6-wide baseline machine.

2.5.2.3 ’First-fit’ DPALS

In this section we study the performance of "first-fit’ DPALS which, unlike ’extend-
all’ DPALS, does not extend the operation’s cmpp latency, but instead schedules the
operation in the earliest time slot that satisfies data and resource constraints. DPALS
simply allows the scheduled operation to combine whenever the opportunity arises
and tries to increase those opportunities by scheduling less combinable operations
first.

As we said in Section 2.4.4 | if an operation is scheduled at a cycle that is less than
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Figure 2.16: "First-fit’ DPALS speedup over BALS for acyclic regions only

extendedlatency cycles

unconditionally and cannot share the resource with other disjoint operations. On the
other hand, if the operation is scheduled at a cycle that is at least extendedlatency

cycles away from its cmpp, the operation can conditionally reserve and share its

(b) Speedup of Pypes(6,1/2/3) over Pygse(6)

away from its cmpp, this operation must reserve its resource

resource with other disjoint operations.

Figure 2.16(a) shows speedup over the 4-wide baseline processor that is achieved

on the acyclic regions by ’first-fit’ DPALS on the three 4-wide deterministic predicate-
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aware processors with cmpp latencies of 1, 2 and 3 cycles.

By comparing with Figure 2.15 we see that 'first-fit’ DPALS achieves 1% and 2%
more speedup than ’extend-all’ DPALS for the 4-wide machine and cmpp latencies
of 2 and 3 cycles, respectively. This improvement comes from the fact that ’first-
fit’ DPALS does not extend the cmpp latency of every operation, which allows the
latency-constrained lower bound for cmpp latencies of 2 and 3 cycles to remain the
same as for cmpp latency of 1 cycle. The bound may be very optimistic, but it will
never grow beyond the baseline schedule length, as happens with ’extend-all’ DPALS
as cmpp latency grows to 2 and then to 3 cycles.

We also see that for the 6-wide machines with cmpp latencies of 2 and 3, first-fit’
DPALS achieves no performance improvement over ’extend-all’ DPALS. As indicated
by the results in Section 2.5.2.1, for the 6-wide machine the baseline schedule length is
very close to the critical path length for almost all acyclic regions, which leaves a very
small headroom for both DPALS schedulers to improve upon. However, for some indi-
vidual benchmarks, such as g721encode, g721decode, ghostscript and mpeg2dec, first-
fit’ DPALS does achieve a noticeably better performance than ’extend-all’ DPALS.
For gsmdecode and gsmencode, 'first-fit’ actually performs worse than ’extend-all’
DPALS due to a long latency operation anomaly (see Section 2.5.2.2).

These results indicate that ’first-fit” DPALS should always be used instead of
‘extend-all’ DPALS, provided that a long latency operation anomaly can be prevented.
One way to prevent this anomaly from happening is to modify the register allocator
so that the source operands of long latency operations, such as divide, are callee
saved, rather then caller saved as in the current version of our compiler. In this
case, the caller will not issue the store operation to save the long latency operation’s

source registers. This will eliminate the long latency dependence chain between this
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operation and the register-saving stores, and between the stores and the subroutine
call operation, thus giving the scheduler freedom to move the long latency operation
across the subroutine call where its latency may more effectively be masked. However,

this is not done in our current implementation.

2.5.2.4 DPAMS Speedup

In this section we present the performance results of DPAMS. In order to explain
the results, we first need to explain how the epilogue affects the performance of the
modulo scheduled loops.

The epilogue stage count of a modulo scheduled loop is defined as 1 less than the
ceiling of the loop’s single iteration schedule length divided by the achieved I1. The
runtime of a modulo scheduled loop with the trip count, n, and epilogue stage count,
esc, is equal to (n+esc) x I1 for a given I1. If n is small, a large esc can significantly
lower the performance of the modulo scheduled loop. As a result, it is possible for
a low trip count loop with a larger /1 and shorter epilogue to outperform the same
loop with a smaller /1 and longer epilogue. For example, a 5 iteration loop with esc
of 4 and IT of 8 will take a total of 72 cycles ((5+4) x 8) = 72) to complete, whereas
the same loop with esc of 1 and IT of 10 will take 60 cycles ((5+ 1) x 10) = 60) to
complete: a 20% speedup over the same loop with a shorter 77, but longer epilogue.

If the scheduler fails to find a valid schedule for a given IT due to resource or
latency constraints of the machine, it increases the I/ and tries again. Increase in
11, generally leads to shorter epilogue size, since it enables each operation to have
more scheduling slots within a given I, which may lead to a shorter single iteration
schedule. Therefore, although smaller 17 is generally the primary performance ob-

jective, a small trip-count loop, which has higher I1 due to the resource or latency
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(b) Speedup of Pypes(6,1/2/3) over Pygse(6)

Figure 2.17: DPAMS speedup over BAMS for cyclic regions only

than when the same loop is scheduled on the less constrained

Figure 2.17(a) shows the cyclic regions only speedup relative
processor that is achieved by DPAMS on the three 4-wide de
aware processors with cmpp latencies 1, 2 and 3 cycles. Figure

data for the 6-wide processors.
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constraints of the machine, but a shorter epilogue, may result in better performance
machine with smaller
I1 and longer epilogue. We refer to this anomaly as the low trip count problem.

to the 4-wide baseline
terministic predicate-

2.17(b) shows similar




In the case of cyclic regions, the DPAMS lower-bound is determined by the
resource-constrained schedule length of the deterministic predicate-aware processor
(ResMI14pams, see Table 2.3). The latency-constrained schedule length (RecMI1)
is not a limiting factor for either the 4-wide or 6-wide machine models (for given
operation latencies, RecMII is the same for both 4- and 6-wide machines, since
RecM1II only depends on operation latencies and does not depend on other resource
constraints of the machine). As Table 2.3 shows RecM 11, even for a cmpp latency of
3, is much smaller than ResM I14,.ms for all of the applications except rawcaudio and
rawdaudio. Therefore, as Figure 2.17(a) and (b) show, DPAMS achieves substantial
speedups for all cmpp latencies (14%, 16% and 14% for the 4-wide machines with
cmpp latency of 1, 2 and 3 respectively, and 8%, 8% and 5% for the corresponding
6-wide machines). The speedup is more modest for the 6-wide machines since the
6-wide machines have more resources than the 4-wide machines and thus resource
sharing is less helpful and less is done.

We also see that the DPAMS speedup for an individual application varies with
cmpp latency, although DPAMS is less sensitive than DPALS to cmpp latency. For
some of the benchmarks, DPAMS performance decreases as cmpp latency increases.
For example, for ghostscript performance decreases for 4-wide machines as cmpp
latency increases from 1 to 2 and from 2 to 3 cycles. For such benchmarks the
performance degradation for increased cmpp latencies occurs because higher cmpp
latency increases the length of the loop epilogue (although the IT remains the same),
which leads to longer total execution time. The drop in performance due to increased
cmpp latency is particularly visible for loops with low trip count. For example, for
g721encode and g721decode the speedup drops below 1.0 for a cmpp latency of 3

cycles. Note that we do report this loss in performance here, instead of assuming
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that these loops will be scheduled with the baseline modulo scheduler and reporting
a speedup of 0%. The reason for this is as follows. In all these cases DPAMS still
satisfies its primary objective of achieving a smaller 17 than the baseline scheduler.
However, DPAMS makes no attempt to control the size of loop epilogue. DPAS only
employs baseline scheduling when it fails to improve I7; it may thus result in negative
speedup when the epilogue size is significantly increased over the baseline, and the
trip count is small.

On the other hand, for some benchmarks the performance increases as cmpp
latency increases. For example, for djpeg on the 4-wide machine the speedup increases
when the cmpp latency increases from 2 to 3. For g721lencode the speedup increases
as the cmpp latency increases from 1 to 2 for the 6-wide machine. These increases
are due to the fact the DPAS machine with the higher cmpp latency sometimes
simply fails to find a schedule for the same [T as the machine with the lower cmpp
latency. Hence, the II is increased which results in a shorter epilogue, which in
turn can lead to better performance in loops with a low trip count. In some cases,
as cmpp latency increases, DPAMS failure to find a valid schedule for a given IT
happens due to rotating register limitations; the increase in cmpp latency results in
an increase in the length of the single iteration schedule, which causes an increase in
the number of rotating registers required for the modulo scheduled loop. When there
are insufficient rotating registers to support a schedule with the current /7, the current
IT is increased. Finally in other cases, as cmpp latency increases, DPAMS failure to
find a valid schedule for a given II happens due to an increase in the recurrence
constrained lower bound, RecM1Igp.ms. The presence of recurrence cycles degrades
the achieved performance since the modulo scheduler becomes more constrained in

terms of where it can place operations in order to satisfy the loop carried dependence.
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This can often result in the scheduler’s failure to find a valid schedule for a given I7,
in which case the 11 must be increased.

The performance increase for a cmpp latency of 2 compared with a cmpp latency
of 1 is substantial in several cases (such as g72lencode and g721decode); these few
cases result in the small average performance gain of Py,.s(4,2) over Py,.s(4,1).

Finally, for some applications, such as rasta, the performance remains the same
for all three cmpp latencies. This happens because the dominant loops are long trip
count loops with a small RecMII for all three cmpp latencies. Therefore RecMI1
is not a limiting factor, and the size of the epilogue does not impact the overall
performance since the loops spend most of their execution time in the steady-state

kernel.

2.5.2.5 Overall Results

The full application results presented in this subsection assume that the acyclic
regions are scheduled with ’first-fit” DPALS (rather than ’extend-all’ DPALS). Fig-
ure 2.18 shows the overall speedup due to deterministic predicate-aware scheduling.
Figure 2.18(a) shows the speedup of each of the three deterministic predicate-aware
processors, Pupas(4,1), Pipas(4,2), Papas(4,3), over the corresponding baseline proces-
sor, Pyse(4), for each application. Figure 2.18(b) shows similar data for the 6-wide
Processors.

The average speedups achieved over all applications are 8%, 9% and 7% for the
4-wide machines, and 5%, 4% and 3% for the 6-wide machines with cmpp latencies of
1, 2 and 3 cycles, respectively. Note that overall, the 4-wide deterministic predicate-
aware machine with cmpp latency 2 (Pypas(4, 2)) outperforms the same machine with

cmpp latency 1 (Pgpas(4,1). This happens due to the fact that, as explained in
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(b) Speedup of Pypes(6,1/2/3) over Pygse(6)

Figure 2.18: Overall Speedup

Section 2.5.2.4, Pyyes(4,2) achieves better performance than Ppy,s(4, 1) for the cyclic
regions. Also note that in some cases, the speedup is less than 1.0, such as in case
of the g721decode benchmark on the 4-wide DPAS machine with a cmpp latency of
3 cycles. Such a loss in performance relative to the baseline processor, is caused by
a loss of performance in the benchmark’s cyclic regions that correspondingly occurs
with increased cmpp latency, as also explained in Section 2.5.2.4.

For the 6-wide machine with cmpp latencies of 2 and 3, most of the performance

66



improvement comes from DPAMS, since as Figure 2.16(b) shows, DPALS achieves an
average improvement of only 1% for all 6-wide machines. Of course, the speedup
achieved by these 6-wide machines on the entire application is smaller than the
speedup achieved on dpa-improvable cyclic regions alone, since as Figure 2.5 shows,
these regions constitute on average only 38% of the total baseline execution time over

all these application benchmarks.

2.6 Summary

We have proposed and evaluated new deterministic predicate-aware scheduling
techniques which can achieve better schedules on both acyclic and cyclic predicated
code regions by reducing the resource wastage in VLIW /EPIC processors that occurs
with predicated execution. These techniques enable the compiler to schedule opera-
tions on the same processor resource in the same cycle as long as two conditions hold:
(i) the compiler can prove that the operations are guarded by disjoint predicates,
and (ii) the processor nullifies all operations guarded under False before they use any
may-use resource.

These predicate-aware modulo and scalar schedulers have been implemented and
evaluated on the Mediabench suite of applications. The overall results show an aver-
age performance gain of 7% and 3% for 4-issue and 6-issue VLIW /EPIC processors,
respectively. These gains are primarily due to loops where resources, and not depen-
dences, often limit performance. For loops, predicate-aware scheduling achieves an

average gain of 14% and 5% for these same processors.
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CHAPTER 3

PROBABILISTIC PREDICATE-AWARE

SCHEDULING

3.1 Introduction

In the previous chapter, we presented a deterministic predicate-aware schedul-
ing technique (DPAS), wherein the compiler schedules disjoint predicated operations
to conditionally oversubscribe the same resource. The hardware reads operations’
predicates and discards the ones guarded under False conditions. Disjointness guar-
antees that runtime conflicts will never occur. Although, DPAS is effective for many
regions, its application is still limited only to regions that contain at least one if-then-
else clause. However, as will be shown in Section 3.2.2, there are many regions (both
acyclic and cyclic) that contain many predicated operations, not necessarily disjoint,
whose predicates are False a large fraction of the time during program execution. Al-
lowing two or more of these operations to oversubscribe the same resource will result
in better utilization of this resource and reduced schedule length, but will also result
in a runtime conflict, whenever the predicates of more than one of these operations

evaluate to True at the same time during program execution.
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To overcome the problem of superfluous resource utilization by nullified opera-
tions, we propose probabilistic predicate-aware scheduling (PPAS). The central idea
of PPAS, as in DPAS, is to allow over-subscription of may-use resources wherein mul-
tiple operations are allowed to reserve the same resource at the same time. However,
PPAS is a generalization of DPAS, as it allows for dynamic over-subscription of re-
sources to take place even when two or more resource-sharing operations may have
their predicates evaluate to True at the same time during program execution, result-
ing in a resource conflict. By allowing some conflicts to occur, PPAS finds many more
combinable operations than DPAS. Thus PPAS significantly increases the utilization
of may-use resources and leads to improved processor performance. A secondary
benefit of PPAS is that with resource constraints much lessened, more aggressive
if-conversion can be applied to extract further benefit from branch elimination.

To deal with the problem of dynamic resource over-subscription, our proposed
scheduling technique tries to estimate and account for conflicts while maximizing the
benefits of over-subscription. Predicates are probabilistically analyzed using a combi-
nation of predicate profile information and predicate analysis [27]. Predicate profile
information provides statistics on the expected number of times that a predicate will
evaluate to True. Predicate analysis computes superset/subset and disjointness re-
lations among predicates to identify when two or more predicates are guaranteed to
conflict, or guaranteed not to. Probabilistic analysis is used to identify profitable
opportunities for resource oversubscription. The scheduler takes advantage of these
opportunities when they lead to a tighter schedule.

In this chapter, we present the necessary hardware and software extensions to
support both acyclic and cyclic PPAS. In the next section, a motivational example is

presented to illustrate the potential benefit of probabilistic predicate-aware scheduling
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by applying it to a modulo scheduled loop. Section 3.3 describes a probabilistic pre-
dicate-aware processor with conflict detection and recovery. Section 3.4 describes the
compiler support used to accomplish PPAS. The effectiveness of PPAS is evaluated
experimentally in Section 3.5. The final two sections describe related work and

present conclusions.

3.2 Motivation

3.2.1 Example of Probabilistic Predicate-aware Modulo Sched-
uling

As in Chapter 2, we illustrate the application of probabilistic predicate-aware
modulo scheduling (PPAMS) by applying it to a simple modulo scheduled loop. We
use the same processor model as in Table 2.1, except that to support predicate-aware
scheduling in this example we increase the cmpp latency to 3 cycles.

Figure 3.1(b) shows the assembly code of the if-converted loop body whose source
code is shown in Figure 3.1(a). The predicate-defining operation cmpp, which replaces
the branch in the original control statement, sets the predicate(s). For example C1
sets two disjoint predicates, pl and its complement p2, replacing a branch in the
original if-then-else statement. Operations which were on either the then or else
paths are now guarded under the corresponding predicate. For example, A2 is guarded
under pl and A5 is guarded under p2. Figure 3.1(c) shows the data dependence graph
for the code in Figure 3.1(b). Each node shows the corresponding operation, and its
outbound arcs are labeled with the operation’s latency. Note that the edges in the
graph are all data dependences with the exception of the edge from M2 to B which

is a control dependence. Figure 3.1(d) lists each predicate used by the code along
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for(i=0; i <N; i++)
{
Iv = Alil;
if (1v<20) {
a=0;
if (Iv>10) {
a=I1v+2;
}
if (lv==14) {
a=lv-4;
H
}
else {
a=1v|0x7,
}
if(a==0) {
t=atlv;
Ali]=t;
}
}
(a) Original C source code (c) Data Dependence Graph
Al: i=i+4ifp0 Predicates Freq. Operation Freq. HBPr
M1:1v =load(i, A) if p0 pl: 0.2 Al: 1.0 10
C1: p1,p2 = cmpp(lv < 20) if p0 p2: 0.8 Ml: 1.0 9
A2: a=0ifpl p3: 0.09 Cl: 1.0 7
C2: p3 = cmpp(lv > 10) if p1 p4: 0.01 Cc2: 1.0 6
A3: a=Ilv+2ifp3 p5: 0.11 C3: 1.0 6
C3: p4 =cmpp(i ==14) if pl A2: 0.2 5
A4: a=1lv-4ifp4 A5 :0.8 5
AS: a=1v|0x7 if p2 A3:  0.09 5
C4: p5 = cmpp(a==0) if p0 A4:  0.01 5
A6: t=a+1vifps C4: 1.0 4
M2: store(i, A, t) if p5 A6 0.11 1
B: if(i < 400) goto Al if p0 M2:  0.11 0
B: 1.0 0
(b) Assembly code (d) Activation and execution frequencies

Figure 3.1: Example of if-converted loop body and its data dependence graph
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Time A M B Time A M B Time A M B
0 n:Al 0 n:Al 0 n-2:A3 n-2:A4 n-3:C4
1 n-1:C4| oMl 1 n-1:A3 n:M1 1 n:Al
2 |n-1:A6 2 n-1:A4 2 n-1:C2 n:Ml
3 nCl | n-1:M2 3 nCl 3 n-1:C3 n-3:A6
4 nC2 4 n-1:C4 4 nCl n-3:M2
5 nC3 5 n-2:A6 5 n-1:A2 n-1:A5 nB
6 A3 6 2 n-2:M2 0.42 expected delay due to conflicts
7 n:A4 7 nC3
8 A2 8 |mA2 nAS n:B
9 n:A5 nB
(a) Baseline 1I=10 (b) Determinisitc PAMS 1I=9 (c) Probabalistic PAMS Ilexpected=6.42

Figure 3.2: Three schedules for the example code segment

with its activation frequency, which is the fraction of all (profiled) loop iterations in
which the predicate evaluates to True. It also shows the execution frequency of each
operation which is equal to the activation frequency of its guarding predicate. Note
that we use unconditional cmpp operations in this example. An unconditional cmpp
operation always writes a value to its destination predicate. In this case, the predicate
input acts as an input operand rather than as a guarding predicate, and the cmpp
operation is never nullified. The value written to the destination predicate register
is simply the conjunction of the input predicate and the compare result. Thus, the
execution frequency of an unconditional cmpp operation is always 1.0. For example,
C2 has an activation frequency of 1.0 even though the activation frequency of pl is
only 0.2. For more details about unconditional cmpp operations see [28].

The application of the conventional iterative modulo scheduler to this example
results in the II=10 schedule presented in the MRT shown in Figure 3.2(a). The
notation used for each operation is iteration:opname, where iteration is the itera-

tion to which the operation belongs relative to the most recently initiated itera-
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tion, which is called the current (n'™) iteration. Since each of ten ALU operations
(A1, A2, A3, A4, A5, A6,C1,C2,C3,C4) must reserve the ALU resource at a differ-
ent cycle to avoid conflict, ResMII=10 and this schedule is optimal. Note that
RecMII=1 by default as there is no loop-carried dependence in this example.

Note that predicated operations A2, A3, A4, A5 and A6 are executed conditionally
but reserve the ALU unconditionally in the cycles in which they are scheduled. Con-
sequently an ALU cycle is wasted every time the guarding predicate of its assigned
operation is False. We can increase ALU utilization and hence reduce the schedule
length if we combine two or more of these predicated operations to share the ALU in
the same cycle.

Deterministic Predicate-Aware Modulo Scheduling (DPAMS), presented in the
previous chapter, guarantees that no conflicts will occur by combining only provably
disjoint operations to share the same resource. A DPAMS schedule is shown in Fig-
ure 3.2(b). Disjoint operations A2 and A5 are scheduled in the same slot of the MRT.
As a result, the ALU is always utilized in cycle 5, and the achieved schedule length is
9 cycles, an 11% performance improvement over the 10 cycle baseline schedule in Fig-
ure 3.2(a). Note that the ALU is still underutilized in cycles 1, 2 and 5 by operations
A3, A4 and A6, but none of these operations can be combined by DPAMS because
no pair of them is disjoint.

Probabilistic Predicate-Aware Modulo Scheduling (PPAMS) achieves a 6 cycle
static schedule by combining operations A3 and A4 from the same iteration and C4
from the previous iteration to share the ALU at Time 0 as shown in Figure 3.2(c).
In addition, C3 is also combined with A6 from two iterations earlier at Time 3. Note
that none of these new combinations is disjoint. Because C'4 always requires the ALU

resource, each time at least one of operations A3 and A4 executes there will be at
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least one conflict, and therefore a recovery delay due to conflict. Operations C3 and
A6 will also conflict and delay the execution whenever A6 executes. If A3, A4 and
A6 always execute, there will be at least 2 cycles of delay at Time 0 and 1 cycle
of delay at Time 3 of the MRT in Figure 3.2(c), resulting in no improvement over
DPAMS. But as shown in detail in Section 3.4.2.1 and Section 3.4.4.3, we expect an
average of 0.42 cycles of penalty (as entered in the last row of MRT in Figure 3.2(c)).
PPAMS thus achieves an ezpected schedule length (I1ezpecreq) Of 6.42 cycles: a 40%
performance improvement over DPAMS, and 56% over the baseline.

Note that even though any number of operations can simultaneously reserve each
function unit, the processor can only fetch a maximum of three operations per cycle.
Thus, the scheduler must also ensure that the fetch width (FW) constraint is not
violated, namely that no more than three operations are scheduled in any MRT row.

Note that for Figure 3.2(a) and (b), FIWW = 2 is sufficient, whereas to achieve the 6

13 operations =3
6 cycles schedule | —

cycle schedule in Figure 3.2(c), the processor must have FIW > [

This simple example shows that allowing predicated operations to reserve the same
resource in the same time-slot reduces the resource requirements and static schedule
length for a predicated code segment, but will cause conflicts at runtime whenever two
or more operations that are combined together have their predicates evaluate to True
in the same cycle. In general, the goal of probabilistic predicate-aware scheduling
(both acyclic and cyclic) is to decrease the expected schedule length by maximizing
the degree of useful overlap (which reduces the static component of the expected
schedule length), subject to controlling the expected delay due to conflict component
of expected schedule length so that the benefit of reducing the static component is

not undone.
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Figure 3.3: Characteristics of ’dpa-improvable’ and ’ppa-improvable’ Regions
3.2.2 Characteristics of Improvable Regions

The previous section showed that an isolated example can derive a significant
benefit from probabilistic predicate-aware modulo scheduling. The central issue for
further investigation is whether the regions, both acyclic and cyclic, in applications
generally have properties that benefit from PPAS. For details of the experimental
evaluations, see Section 3.5.

Two related metrics are: the fraction of time spent in the regions with predicated
operations and the number of predicated operations in these regions that are nullified
at runtime.

Figure 3.3 addresses these two metrics. There are two bars for each application
or the overall Average. The left bar is the same as in Figure 2.5 (see Section 2.2)
and is shown for comparison. The right bar shows the dynamic operation breakdown
in terms of the type of code region they belong to and whether their predicates
evaluate to True or False. As in Section 2.2 there are three kinds of regions. First are

acyclic regions with at least one predicated operation and hence some opportunity
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for combining; these we call acyclic ppa-improvable regions (A). Second are cyclic
regions with at least one predicated operation, called cyclic ppa-improvable regions
(C). As in Section 2.2.3, all these cyclic regions must be single-basic block inner-
most loops, with no early exits, that can be scheduled with our cyclic scheduler.
Third are others regions with no predicated operations and hence no opportunity for
probabilistic predicate-aware combining.

The A and C regions are each further broken down into 2 distinct sub-regions
where each sub-region is represented by a sub-bar in Figure 3.3, along with a fifth
sub-bar representing others regions. Each of the five sub-bars indicates the percent-
age of all dynamic operations that it represents. The A_true sub-bar represents the
dynamic operations from acyclic ppa-improvable regions whose predicates evaluate
to True during program execution. Similarly the C_true sub-bar represents the dy-
namic operations from cyclic ppa-improvable regions whose predicates evaluate to
True during program execution. A _false and C_false, respectively, represent the dy-
namic operations from A and C ppa-improvable regions and whose predicates evaluate
to False.

By adding together the heights of the A_true and A _false sub-bars, we obtain the
percentage of all dynamic operations that lie in acyclic ppa-improvable regions, an av-
erage of 27%. Similarly, by adding together the heights of C_true and C_false sub-bars,
we obtain the percentage of all dynamic operations that lie in cyclic ppa-improvable
regions, an average of 52%; over half of the operations over these benchmarks are
from ppa-improvable loops. In fact rawcaudio and rawdaudio spend almost all of
their execution time in ppa-improvable loops. The sum of all 4 sub-bars (72%) is the
percentage of the original dynamic operations that lie in either an acyclic or cyclic,

ppa-improvable region. Note that the others sub-bar represents the remaining 28%
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of all the original dynamic operations, i.e. the dynamic operations before combining,
summed over all benchmarks.

The overall benefit of PPAS depends not only on the frequency of the improvable
regions, but also on the percentage of dynamic operations whose predicates evaluate
to False during program execution. From Figure 3.3 we see that on average 30% of all
dynamic operations (A_false (10%) + C_false (20%)) have their predicates evaluate
to False and hence get nullified at runtime. This means that without predicate-aware
scheduling, 30% of the time that a function unit is reserved, it does not do useful
work.

It is interesting to compare the left and right bars. The 30% percent of all oper-
ations eliminated due to False predicates, the sum of A _false and C_false sub-bars of
the right bar, is twice the percentage of operations eliminated as the result of deter-
ministic combining, namely 14.5% which is the sum of A _eliminated and C_eliminated
sub-bars of the left bar. The additional 15.5% of all operations that have False predi-
cates represent nullified predicated operations for which there were no corresponding
disjoint operations that the deterministic scheduler could combine them with.

By combining several predicated operations to share the same function unit in
the same cycle, PPAS increases the utilization of that function unit. If the group
of combined predicated operations is counted as one operation, then by combining
several operations, PPAS effectively eliminates some of the nullified operations from
the dynamic operation stream. However, note that the fact that 30% of all opera-
tions are nullified does not imply an upper bound on performance with probabilistic
predicate-aware scheduling; as is the case with deterministic predicate-aware schedul-
ing, the actual performance benefits can be higher or lower. Nevertheless, this 30%

does indicate that PPAS has substantial headroom over what DPAS has achieved.
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This headroom motivated the further development and analysis of PPAS as presented

in the remainder of this chapter.

3.3 Probabilistic Predicate-aware VLIW Proces-

sor Architecture

In this section we present the main extensions to the deterministic predicate-aware
architecture described in Section 2.3, for supporting PPAS. Our baseline architec-
ture is shown in Figure 3.4(a) and the deterministic predicate-aware architecture
in Figure 3.4(b). The main change necessary to ensure the correct execution of the
probabilistic predicate-aware schedule, as shown in Figure 3.4(c), is the addition of a
Resource Conflict Detection and Recovery Unit. During the predicate read and dis-
patch stage, if more than one of the operations scheduled to execute on a particular
function unit has its predicate set to True, the conflict is detected and the conflict
signal is set. As a result the stall signal is sent to the fetch and decode stages, and a
recovery process is executed.

A recovery process must address two important issues: first is how to dispatch the
conflicting operations during recovery and second is when to start dispatching these
operations.

To address the first issue, we note that there are two alternative schemes to dis-
patch operations to recover from such a conflict. In the first scheme, those operations
in the dispatch stage that have True predicates are dispatched in parallel to the func-
tion units that they were originally assigned to, and one such operation is dispatched
to each function unit in each cycle until there are no such operations left for that func-

tion unit. This process continues until the entire instruction word is dispatched. This
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Figure 3.4: Baseline verses deterministic and probabilistic predicate-aware pipeline
organizations
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A1if 1|A2if1|A3if1|A4if 0| A5 if 1
0 Al A5 A1if1|A2if 1| A3if1 | A4if0 | A5if 1
1 A2 0 Al A5
2 A3 1 A2 A3
ALU1 ALU2 ALU1 ALU2
(a) one operation per assigned FU (b) one operation per any FU (not evaluated)

Figure 3.5: Design alternatives to dispatch conflicting operations

scheme results in a simpler design, but a longer stall time than the second scheme.
In the second alternative scheme, an operation may be dispatched to any available
function unit that can serve it (rather than only to the function unit it was originally
assigned to, as in the first scheme). This scheme will reduce the stall time, but its
design is somewhat more complex. In our experiments we use the former, simpler
recovery scheme.

Figure 3.5 demonstrates these two recovery schemes with a simple example. The
bottom row of each table indicates that there are two function units, ALU1 and
ALU2. The top row of each table shows 5 operations together with the values of
their guarding predicates, and indicates that 3 operations with True predicates are
assigned to ALU1 (a 3-way conflict) and 2 operations are assigned to ALU2 with
no conflict because one operation has a False predicate. The first recovery scheme,
shown in Figure 3.5(a) takes a total of three cycles to dispatch all operations, as it
can simultaneously dispatch operations A1 and A5 to function units ALU1 and ALU2
in cycle 0, and A2 and A3 to ALU1 in cycles 1 and 2. The second scheme takes only
2 cycles to complete as it can reassign A3 to ALU2, as shown in Figure 3.5(b).

The second issue is whether the recovery itself may begin immediately, in the
same cycle in which a conflict is detected, or requires additional time to initiate. To

model the effect on performance, a machine parameter called the conflict detection
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and recovery unit latency (CDRL) is used in the experiments. We investigate CDRL
values of 0 cycles, wherein the first conflicting operation is dispatched in the conflict
detection cycle itself, and 1 cycle, wherein it is dispatched one cycle later.

To address the issue of delay and complexity of the conflict detection and recovery
unit, we note that there already are reasons why a dispatcher may be unable to
dispatch an operation or group of operations in a particular cycle, e.g. the input
buffer of a required execution unit may be full. The conflict described above is just
one more simple reason, and the ’stall’ or interlock mechanism it needs to invoke is
no more complex than the mechanisms that already exist in today’s microprocessors
for this purpose. The stall signal is produced by simple combinational logic; as soon
as the predicates are read early in the cycle, this logic generates the stall signal if
more than one predicate that has reserved the same resource has a True value. This
‘stall” signal could simply be added as an additional trigger to any of those existing
mechanisms to effect a stall or fetch/decode restart, as appropriate.

As with DPAS (see Section 2.3), it is possible to selectively (rather than always)
increase the cmpp latency of the operations scheduled to execute on the probabilistic
predicate-aware machine, so as to restrict the increases in the critical path lengths.
Only some operations will see an increased cmpp latency; these operations will execute
conditionally and require their may-use resources only when their predicates are True.
All other operations will see a cmpp latency of 1, which means that they will always
execute unconditionally on their resources, i.e. their execution frequency is increased

to 1.0.
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3.4 Probabilistic Predicate-aware Scheduling

In this section, we present the details of two probabilistic predicate-aware schedul-
ing (PPAS) algorithms: probabilistic predicate-aware list scheduling (PPALS) and
probabilistic predicate-aware modulo scheduling (PPAMS). Both algorithms are the
extensions of the corresponding conventional list and modulo scheduling algorithms.
They decrease the expected dynamic schedule length by relaxing resource constraints.
They achieve this by allowing arbitrary operations to reserve the same resource in
the same cycle, while estimating and accounting for the resulting expected delay due
to conflicts.

Figure 3.6(a) shows the five main scheduling steps for conventional list and mod-
ulo scheduling algorithms. These steps are described in Section 2.4. Our proba-
bilistic predicate-aware scheduling technique extends the conventional scheduler as
shown in Figure 3.6(b). Each extension is discussed in the following sections. Sec-
tion 3.4.1 describes the data dependence graph latency extension step (Step 1a) which
follows DDG construction (Step 1) and selectively extends the cmpp latency for every
predicated operation that can potentially be combined with some other predicated
operation in a way that might lead to some performance improvement. Section 3.4.2
describes the probabilistic expected delay model that is integrated into the resource
reservation module to compute the expected delay due to conflicts (Step 5). We
have designed and implemented three scheduling algorithm: two alternative PPALS
algorithms (Steps 3 and 3’), and one PPAMS algorithm (Step 4). Both PPALS al-
gorithms and PPAMS use the delay computation model to derive better acyclic and
cyclic schedules as described in Section 3.4.3 and Section 3.4.4, respectively.

The first algorithm, called ’extend-all’ PPALS (Step 3), is described in Sec-

tion 3.4.3.1 and is used to schedule acyclic regions. ’Extend-all’ PPALS performs
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Figure 3.6: Scheduling algorithm flowchart

the latency extension step, so that when an operation with extended cmpp latency is
scheduled, it is always far enough from its cmpp to be able to conditionally reserve
its resource and thus share it with other predicated operations in its region.

The second algorithm, called ’first-fit’ PPALS (Step 3’) may alternatively be used
to schedule acyclic regions and is described in 3.4.3.2. Unlike ’extend-all’ PPALS,
first-fit’ PPALS does not require the latency extension step. Instead, an operation can
be scheduled at the earliest time that satisfies its resource and dependence constraints
regardless of the distance from its cmpp producer. However, if the operation is

scheduled so close to its cmpp producer that its predicate is not available during
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early read, the operation must reserve its resource unconditionally; this will increase
the operation’s execution frequency to 1.0 and, hence, can result in higher delay due
to conflicts when combining with other operations.

PPAMS (Step 4), which is used to schedule cyclic regions, uses the same delay
computation model as PPALS in conjunction with its backtracking to derive a cyclic
schedule with the objective of minimizing I, as described in Section 3.4.4. Similar
to ’extend-all’ PPALS, PPAMS performs the latency extension step, as shown by the
arrows in Figure 3.6(b). In addition PPAMS requires the ResMII and RecMII
bounds to be computed (in the probabilistic predicate-aware manner) as also shown

by the arrows in Figure 3.6(b).

3.4.1 DGG Latency Extension

As we said in Section 3.3, it is possible to selectively increase cmpp latency for
the predicated operations so as to restrict the growth of the critical path length in a
region. 'Extend-all’ PPALS and PPAMS perform this latency extension immediately
after the DDG construction step.

PPAS optimistically extends the cmpp latency of a given predicated operation
if (i) it can potentially be combined with some other predicated operation, and (ii)
such combining may result in some performance improvement. As in DPAS (see Sec-
tion 2.4.1), the actual performance improvement may vary depending on the number
of function units of the machine and the latencies of the operations within the region.

The procedure PPAS-DDGLatency-Adjust performs the latency extension as
shown in Figure 3.7. It takes four input parameters: ddg - the data dependence graph
of the region, regiontype - a region type flag, which indicates whether the region is

acyclic or cyclic, shortlatency - a short latency of the cmpp operation, and finally an
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PPAS-DDGLatency-Extend (ddg, regiontype, shortlatency, extendedlatency)

/* phase 1: mark ‘mustres’ bit of each operation */
for each predicated operation node, op1, in ddg do
opl.mustres =0
if op! is unconditional cmpp then
opl.mustres = 1
end if
if regiontype is acyclic then
independenceSet = all operations in ddg independent from op/
if independenceSet is empty then
opl.mustres = 1
else
if there exists other operation, op2, in independenceSet s.t. delay due to conflict
that results from combining op/ and op2 is less than 1.0
opl.mustres = 0
end if
end if
end if
/* phase 2: adjust cmpp latencies */
for cach cmpp operation outgoing edge, cmpp _outedge do
opl = cmpp_outedge.destination;

if opl.mustres == 1 then
setlatency(cmpp_outedge, shortlatency)
else
setlatency(cmpp_outedge, extendedlatency)
end if
end for

Figure 3.7: PPAS latency extension procedure

extendedlatency - an extended longer latency of the cmmpp operation.

The procedure consists of two phases. The first phase (lines 1-17) sets the mustres
bit field of each predicated operation to 0 if it can be combined with some other
operation potentially resulting in some performance improvement. Otherwise, the
mustres bit is set to 1. More specifically, at the beginning of the first phase the
mustres of each predicated operation, opl, is optimistically initialized to 0 (line 3).
However, if opl is an unconditional cmpp (line 4), its mustres bit is then set to

1, because in this case the operation always executes and thus requires its resource

unconditionally. The first phase is complete at this point if the region is cyclic.
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Lines 8-16 are for acyclic regions only. Line 8 computes the independence set,
independenceSet, of all operations in ddg which are independent of opl. Since two
dependent operations must be scheduled at different times in an acyclic region, an
operation can be combined only with operations from its independence set. Thus if the
independenceSet is empty (line 9), opl cannot be combined with any other operation
in this region. In this case we can safely set opl’s mustres bit to 1, since extending its
cmpp latency cannot result in any performance improvement, but may in fact worsen
the performance by increasing the critical path length. If the independenceSet is not
empty, the test in lines 12-13 is executed. The test checks if there exists some other
predicated operation, op2, from the independenceSet, such that the expected delay
due to conflict that would result from combining opl and op2 is less than 1.0. This
test is based on the main idea of PPALS (described in Section 3.4.3) that allows two
operations to be combined only if the overall conflict delay does not exceed 1 cycle.
If the tested condition is True, the opl’s mustres bit is set to 0, since this operation
has at least one combining opportunity that may improve performance.

If the region is cyclic, opl’s mustres bit remains 0 (line 3). Indeed, for cyclic
regions, we optimistically assume that opl can always be combined with another
predicated operation either from the same iteration (if there are some operations that
are independent of opl) or from a different iteration. In the latter case, the latency
extension procedure optimistically ignores loop-carried dependences and assumes that
operations across different iterations are always independent. Also note that for
cyclic regions, unlike for acyclic regions, we do not require that the operations can
be combined only if the overall delay due to conflicts does not exceed 1 cycle. As
discussed in Section 3.4.4 and experimentally shown in Section 3.5.2.4, PPAMS can

sometimes achieve higher performance by combining several operations even when
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the conflict delay is greater than 1 cycle.

In the second phase (lines 18-26), the cmpp latency of those operations with
mustres = 1 is set to shortlatency (line 22): these operations will reserve their
resources unconditionally. All other operations have mustres = 0 and their cmpp
latency is extended to extendedlatency cycles (line 24): those operations will reserve

their resources conditionally.

3.4.2 Computing Expected Delays Due to Conflicts

A key feature of PPAS is its method of estimating the expected delay due to
conflicts when two or more predicated operations share the same resource. We use
the example code in Figure 3.1 and the machine model in Table 2.1 to demonstrate
this technique.

We define an ezxecution vector for a group of predicates as an assignment of a
particular boolean value to each of these predicates. In general, the overall expected
delay, ED.j;, for a group of predicated operations is the sum of Ed.p(ev) over all
legal execution vectors, ev, that result in conflicts, where Ed.(ev) is the expected

delay due to execution vector ev.

ED., s (group of predicated operations) =

Z Edg(ev)

Y legal conflicting execution vectors, ev

An execution vector is illegal if its assignment of boolean values will never occur.
For example, execution vector (pl = T,p2 = T), where pl and p2 are disjoint predi-

cates, is illegal. For a particular legal execution vector, ev, that results in a conflict,
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the conflict delay, Ed.(ev), is the product of the number of extra delay cycles, nex-
tradelaycycles(ev), due to that execution vector times the probability of occurrence,

P(ev), of that execution vector.

ED.g (group of predicated operations) =

Z Edclf(ev) ==

V legal conflicting execution vectors, ev

Z nextradelaycycles(ev) x P(ev)

V legal conflicting execution vectors, ev

Note that nextradelaycycles(ev) = (CDRL + ndispatchcycles(ev) — 1), where
CDRL is conflict detection recovery latency (either 0 or 1), ndispatchcycles(ev) is the
total number of cycles required to dispatch all conflicting operations in ev (namely,
the maximum number of True operations in ev that are assigned to any one function
unit), and the -1 accounts for the fact that when there are no conflicts, it takes

exactly one cycle to dispatch all the operations in ev. Hence,

ED., s (group of predicated operations) =

Z (CDRL + ndispatchcycles(ev) — 1) x P(ev)

V legal conflicting execution vectors, ev

For example, assuming a conflict detection and recovery latency of 1 cycle (CDRL=1),
the delay expected when operations A3, A4 and A6, guarded by the predicates p3,
p4 and p5, respectively, are scheduled at the same time on a single ALU is computed

as follows:
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ED.; (A3 7 p3, A4 7 p4, A6 7 p5)
—(14+2-1)x P(p3="T,p4 =T,p5 = F)
+(14+2-1)xPp3=T,pA=F,p5=T)
+(1+2-1)xP(p3=F,pA=T,p5=T)
+(1+3-1)x P(p3=T,pd=T,p5="T)
=2xPp3=T,pA=T,p5=F)+2x P(p3=T,pA=F,p5=T)

+2xPp3=Fpi=T,pb=T)+3x P(p3=T,pA=T,p5 =1T)

The first three terms on the right side compute the expected delay for all possible
execution vectors that cause exactly one conflict. For example, when the execution
vector (p3 = T,pd = T,p5 = F) occurs, it will cause A3 and A4 to conflict over the
ALU, resulting in 2 extra cycles of delay: 1 cycle (CDRL) to detect the conflict, plus 2
more cycles to dispatch the two conflicting ALU operations, minus 1 cycle to account
for the fact that when there are no conflicts, it takes exactly one cycle to dispatch all
operations. Similarly, to recover from conflicts in (p3 = T,p4 = T,p5 = T) will take

3 extra cycles.

3.4.2.1 Example of Computing the Probability of an Execution Vector

To compute the probability of a given execution vector, we introduce a Predicate
Relationship Graph (PRG), which is similar in concept to the partition graph in [27]
and the predicate hierarchy graph in [36]. A PRG represents the relationship between
the predicates in the predicated block of code. Each node in the graph corresponds to

a predicate and is labeled with the activation frequency of this predicate, as obtained
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from a profile run. There are two kinds of edges which connect the nodes of the
PRG: implication edges (I-edges) and disjointness edges (D-edges). There is an I-
edge from predicate pi to pj if pj implies pi, i.e. if whenever pj is True, pi is also
True; this means that in the original non-predicated code, an operation guarded by pj
lies on every control path that passes through an operation guarded by pi. A D-edge
indicates that the two predicates it connects are disjoint, i.e. whenever one of these
two predicates evaluates to True during execution, the other will evaluate to False;
this means that there is no control path that contains both p: and pj.

One important assumption that we make in this approach is the independence
assumption. This assumption states that any two predicates that are not connected
by an edge are deemed to be independent, i.e. the probability that one of them
evaluates to True (or False) is the same, regardless of the value of the other predicate.
Note that no two predicates defined in different loop iterations are ever connected by
an edge since predicates are always local to the loop iteration in which they are defined
and are never carried into the successive loop iterations; that is, a predicate is never
defined in one iteration and used in a later iteration. Thus any two predicates defined
in different loop iterations are always independent. There are two main motivations
behind the independence assumption. First, as shown in 3.4.2.2, it allows us to derive
an exact closed form expression for P(ev), which is the probability of occurrence of
a given execution vector, ev. Second, as the experimental results in Section 3.5
show, this assumption is fairly accurate in that the error resulting from applying this
assumption to both PPALS and PPAMS is very small.

The PRG for the example code of Figure 3.1 is shown in Figure 3.8. The root of a
PRG is predicate p0 which always evaluates to True during the execution of this code,

hence it has a frequency of 1.0. Obviously, pl implies p0, as do p2 and p5. p3 implies
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p3 (0.09)

Figure 3.8: Predicate Relationship Graph (PRG)

pl since the cmpp operation C2 may only set p3 if its guarding predicate, pl, is True
(and its condition, lv > 10, is also True); likewise, p4 implies pl. Since implication is
a transitive relation, we avoid cluttering the graph with redundant I-edges, e.g. we do
not need to include an I-edge from p0 to p3 since there is an I-edge from p0 to pl and
one from pl to p3. There is a D-edge between pl and p2 since these two predicates
(as defined in C1) are disjoint. Furthermore, since p3 and p4 imply pl, they must
also be disjoint from p2. Therefore the corresponding D-edges between p3 and p2 as
well as p4 and p2 are not shown, as they can be inferred from the graph.

We use the PRG, the independence assumption above, and techniques from ele-
mentary probability to compute the probability of occurrence of an execution vector.
In this section we demonstrate this computation for a few interesting cases, the gen-
eral derivation is given in the next section.

Case I. Suppose A1, A3, and A6 of the example are scheduled in the same row of
an MRT. One probability we would need to compute is P(p0 = T,p3 = F,p5 =T) for

the case that A1 and A6 execute, but A3 does not. Furthermore, suppose that A1 and
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A3 are scheduled at the same time in the SRT, but A6 is scheduled at a different time
in the SRT, i.e. the A1 and A3 in the MRT row are from the same loop iteration,
but the A6 in that MRT row is from a different iteration. Since predicates from
different iterations are not disjoint nor can they imply one another, the independence

assumption applies between them. Hence,

Ppo=T,p3=F,p5=T)=P(p0=T,p3=F) x P(p5=1T)

To compute P(p0 = T,p3 = F'), we notice from the PRG that p0 evaluates to True
and p3 evaluates to False, when one of two events occurs: (i) p0 evaluates to True,
pl evaluates to True and p3 evaluates to False, or (ii) p0 evaluates to True and pl
evaluates to False (in which case p3 is guaranteed to be False by the implication

relationship). Hence,

Ppo=T,p3=F)=Pp0=T,pl =T,p3=F)+P(p0=T,pl =F)

We use the definition of conditional probability to compute each of the terms. For

the second term,

Ppo=T,p1l=F)=P(pl=F|p0=T) x P(p0=T)

For the first term,
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Pp0o=Tpl=T,p3=F)
=Pp3=F |p0=T,pl=T)x P(p0=T,pl =T)

=Pp3=F |pl=T)xPlpl=T|p0=T) x P(p0=T)

P(pi =T) is the frequency of times that pi evaluates to True. P(pi =T|pj =T)

is the conditional edge transition probability that p: evaluates to True given that

P(pi=T)
P(pj=T)"

pj evaluates to True. When pi implies pj, P(pi = T|pj = T) is equal to

Furthermore, P(pi = Flpj =T)=1— 1;((’; ZJ::TT))) . Expanding each term, we obtain

Ppo0=Tp3=F,p5=T)=P(p0=T,p3=F) x P(p5=1T)
=[Pp3=Flpl=T)x Plpl=T|p0=T) x P(p0=T)

+P(pl=Fjp0=T)x P(p0=T)] x P(pb=T)
Pp1=T)-Pp3=T) Ppl=T)

T Pei=T) Ppo=1) < "P0=T)
P(pO=T)—-P(pl=T)
P(p0=T P(p5=T
Hence, by plugging in the values, we obtain
Pp0=Tp3=F,p5=1T)
_ (02-0.09) 0.2 (1-0.2)
= [T X 10 x 1.0+ o0 x 1.0] x [0.11]

= (0.11 4 0.8) x 0.11 = 0.10

Case II. Next, suppose A3 and A4 both execute, but A6 does not and the prob-

ability P(p2 = F,p3 = T,p4d = T) is desired. Suppose all three operations are
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scheduled at the same time in both the MRT and the SRT, i.e. these combined oper-
ations all come from the same loop iteration. First we notice that since p2 is disjoint
from both p3 and p4, the condition p2 = F' is redundant and can be dropped from

the execution vector, that is

Pp2=Fp3=T,p4=T)=P(p3=T,p4=1T)
Further, from PRG we see that both p3 and p4 imply pl which, in turn, implies

p0. Hence,

Pp3=Tpd=T)=Pp0=T,pl =T,p3 =T,p4=T)
=Ppd=T,p3=T |pl=T,p0=T) x P(p0 =T,pl =T)

=P(pd=T,p3=T |pl=T) x P(pl =T | p0 = T) x P(p0 = T)

From the independence assumption, it follows that

PpdA=T,p3=T |pl=T)=Ppd=T |pl=T)x P(p3=T |pl =T)

Thus, finally,

0.01 0.09 0.2
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Case III. Certain execution vectors are illegal since they will never occur, and
hence have 0 probability. For example, P(pl = T,p2 = T) = 0 since pl is disjoint
from p2 as indicated by the D-edge in the PRG. As another example, it is impossible
for both A2 and A6 to execute and M2 not to execute if all three operations are from
the same iteration; this is due to the fact that A6 and M2 are guarded under the

same predicate p5, and clearly P(pl =7T,p5="T,p5 =F) =0.

3.4.2.2 General Formula to Compute the Probability of an Execution

Vector

In general, the probability of an execution vector ev, given the PRG, can be
expressed in terms of the PRG edge transition probabilities.

We start out by calling Eliminate-Redundant-Conditions, shown in Fig-
ure 3.9(a), to eliminate the redundant conditions from the execution vector, ev, and
verify that the remaining conditions are legal. This routine iterates over all pairs of
execution vector predicates found in ev.

If each predicate implies the other (line 3), there are two cases to consider. In the
first case, the predicates have the same boolean values (line 4), in which case one of
them is eliminated because if it is True then the other will always be True as well, and
likewise for False. In the second case, the predicates have opposite boolean values
(line 6), in this case the execution vector is illegal and will never occur; consequently,
the False value is returned and the execution vector is not considered.

If the second predicate implies the first (line 10), but not vice versa, there
are also two cases to be considered. In the first case both predicates are False
(line 11), and therefore the second predicate is eliminated, since if the first predi-

cate is False, the second predicate must be False (i.e., P(second predicate = False |
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Eliminate-Redundant-Conditions(ev)
1 for each element, ev/, of ev do
2 for each element, ev2, which is not ev/, of ev do
3 if ev/ and ev2 predicates imply each other then
4 if evl and ev2 have the same boolean values then
5 eliminate ev/
6 else
7 return False /* illegal vector */
8 end if
9 end if
10 if ev2 predicate implies ev/ predicate then
11 if ev/ has boolean value F and ev2 has boolean value F then
12 eliminate ev/
13 end if
14 if evI has boolean value F and ev2 has boolean value T then
15 return False /* illegal vector */
16 end if
17 end if
18 if ev/ and ev2 predicates are disjoint then
19 if evI has boolean value T and ev2 has boolean value F then
20 eliminate ev2
21 end if
22 if evl has boolean value F and ev2 has boolean value T then
23 eliminate ev/
24 end if | pl:Al | | p2:if (cond2) |
25 if evl has boolean value T and ev2 has boolean value T then
26 return False /* illegal vector */
27 end if ¢ EENIEEE
28 end if
29 end for
30 end for p1, p2 = cmpp(cond1)
31 if ev contains complete disjoint set of predicates p1, p2, ..., pn Al if pl
32 in ev, s.t. corresponding evl, ev2, ..., evn have boolean value F then p3,p4 = cmpp(cond?) if p2
;3; dr.efturn False A2ifp3
end i .
35 return True and ev Adifp4
(a) Algorithm pseudo-code (b) Example of a complete set of disjoint
predicates

Figure 3.9: Algorithm to eliminate redundant conditions from an execution vector

first predicate = False) = 1). In the second case, which occurs when the first pred-
icate is False, but the second is True (line 14), the execution vector is illegal (i.e.,
P(ev) = 0), since it violates the implication relationship, the algorithm returns False
and the execution vector is not considered.

If both predicates are disjoint (line 18), there are three cases. In the first case,
the first predicate is True and the second predicate is False (line 19), the second

predicate can be eliminated since if the first is True, the second must be False (i.e.,
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P(second predicate = False | first predicate = True) = 1), and hence the second will
not impact the probability of the execution vector. The second case (line 22) is
similar, but with the first predicate False and the second one True. The third case
occurs when both disjoint predicates have the value True (line 25): this is illegal,
hence the False value is returned and the execution vector is not considered.

Note that it is possible for two disjoint predicates to both have value False in
the execution vector; this case is special and is handled by the code in lines 31-34
of the Eliminate-Redundant-Conditions algorithm. To explain this condition,
we define a set of disjoint predicates pl, p2, ..., pn to be complete if one and only
one of them must evaluate to True at runtime. An example of a complete set of
disjoint predicates is given in Figure 3.9(b), which shows a control flow graph and the
corresponding predicated code. Predicates p3 and p4 are disjoint but not complete
disjoint, since both of them can legally evaluate to False at runtime, namely whenever
p2 evaluates to False. On the other hand, p1, p3 and p4 form a complete set of disjoint
predicates, since one and only one of these predicates must evaluate to True on each
control path. Hence the if condition in line 31 tests if there exists a complete disjoint
set of predicates in ev, where every predicate in the set is assigned value False in
ev. If this condition occurs, the execution vector is illegal, since by the definition of
a complete set of disjoint predicates, exactly one of these predicates must evaluate
to True in a legal execution vector. Lines 25 and 26 ensure that no more than one
predicate in the set is assigned True; lines 31 through 33 ensure that not all of the
predicates in the set are assigned False.

Note that when ev satisfies none of the cases that Eliminate-Redundant-
Conditions explicitly checks for, the original ev is returned with the value True at

line 35. Similarly when no illegal case is detected, the non-redundant ev is returned
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least common ancestor
of p0, p3, p4 and pS nodes

(a) PRG with D-edges eliminated (b) Subtree of PRG (shaded) corresponding
to ev = (p0=T, p3=F, p4=T, p5=T)

Figure 3.10: Example of PRG reduced to a tree

with the value True at line 35.

Assume now that ev is a legal execution vector, with all the redundant conditions
eliminated, as found after Eliminate-Redundant-Conditions is run and returns a
value of True. Initially, we assume that no two predicates in ev are disjoint (we later
remove this assumption), i.e. assume there is no D-edge between any pair of nodes in
the corresponding PRG. In this case the PRG reduces to a tree because no node in the
PRG will have more than one immediate predecessor: due to the way that programs
are written, a predicate, p, can never imply two other predicates, pl and p2, if the two
implied predicates are independent. If, however, pl and p2 are dependent, then one
implies the other, say p2 implies pl. But in this case, the implication edge from p2 to
p is redundant (by transitivity) and is not shown in the PRG. Figure 3.10(a) shows
the PRG from Figure 3.8 which is reduced to a tree after its D-edge is eliminated.

An execution vector, ev, must correspond to some subtree SO in the PRG. The
root of the subtree corresponds to the least common ancestor of all the ev predicates.

Figure 3.10(b) highlights the subtree S0 of PRG which corresponds to the execution
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vector ev = (p0 = T,p3 = F,pA = T,p5 = T). The nodes of SO are shaded. The least
common ancestor of all the predicates in ev is the p0 node. Note that it is possible
that a least common ancestor is a predicate that is not explicitly listed in ev. For
example, the least common ancestor of ev = (p3 = F,p4 =T, p5 = T) is also p0.

We can write ev in the following form: ev = (p0 = T,[G1],...,[Gn]), where p0
corresponds to the root of S0, and Gi (i > 1) is the group of conditions in ev
whose predicates belong to the ith subtree, Si, of the root of S0. For example,
ev = (p0 = T,p3 = F,p4 = T,p5 = T) is written as ev = (p0 = T, [p3 = F,p4 =
T],[p5 = T]) = (p0 = T, [G1],[G3]). The group G1 = [p3 = F,pd = T] is the group
of conditions whose predicates p3 and p4 belong to the leftmost subtree S1 of SO0.
G3 = [pb = T is the group that has a single condition whose predicate p5 belongs to
the rightmost (in this case the third) subtree S3 of S0. Note that the least common
ancestor’s predicate always has the value True in an execution vector, ev, that results
in conflicts; otherwise, by implication, the execution vector would contain only False
conditions and there would be no conflicts.

Suppose, as in this example, the group G1 does not contain the predicate pl
which is at the root of the first subtree S1. If the group G'1 contains at least one True
predicate (of the form p = T'), we can safely extend G1 by adding a new condition:
pl = T. The extended execution vector is equivalent to the old execution vector,
and has the same probability of occurrence, since if p executes, then by implication
pl must also execute, as pl is the root of the subtree and is implied by every node
in the subtree. Hence, the extended execution vector will have the following form:
(p0 =T,[pl =T, G1,...,[Gn]). In this example, the group G1 = [p3 = F,p4 = T
would thus be extended with the condition pl = T to become G1 = [pl = T,p3 =

F,p4 =T since whenever p4 is True, pl, which is the root of the first subtree of S0,
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must also be True. As GG3 already includes its subtree root, the extended execution
vector in this example is ev = (p0 =T, [pl = T,p3 = F,p4 =T, [p5 = T]).
On the other hand, suppose the group G1 contains no True predicates, only False

ones. In this case, we represent the execution vector ev = (p0 = T, [G1], [G2], ..., [Gn])

as the union of two non-overlapping execution vectors, evl = (p0 = T, [pl = F|, [G2], ...

and ev2 = (p0 = T,[pl = T, G1],[G2],...,[Gn]). This representation is valid be-
cause all of group G1’s predicates are False in one of two cases: (i) either the
root predicate pl, which is implied by each of G1’s predicates, is False, in which
case all G1’s predicates must be False, or (ii) pl is True, but the predicates in
G1 are False. Note that both evl and ev2 contain the predicate pl of the root
of the first subtree GG1. In addition, since these two vectors are non-overlapping,
P(ev) = P(evl) + P(ev2). Following through with the example, consider a new ex-
ecution vector with p4 = F| namely, ev' = (p0 = T, [p3 = F,p4 = F|,[pb = T]). At
this step ev’ is represented as the union of evl’ = (p0 = T, [pl = F],[pb = T]) and
ev2' = (p0="T,[pl =T,p3 = F,pd = F|, [pb =T)).

The above two steps, which extend the execution vector, and when appropriate
represent it as a union of two non-overlapping execution vectors, are applied iteratively
to the remaining groups of ev as necessary until the given ev is transformed into the
union of a number of execution vectors in normal form. A normal form execution
vector includes p0 = T as its first element, followed by a number of groups where
each group is associated with a subtree whose root predicate, pi, is connected by an
implication edge to p0 in the PRG. Furthermore, each group must contain a value
assignment for the root predicate pi of its corresponding subtree; if that assignment
is pi = F' then that group contains no other predicate assignments. We represent a

normal form execution vector with the notation ev = (p0 = T, [pl = B1, G1],[p2 =
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B2, G2|,...[pn = Bn, Gn]), where Bn is a boolean value, True or False. Note that if
pt = F, the corresponding group G is empty.

We now show how to compute the probability of an execution vector ev that is
written in normal form. Since we assumed that there are no D-edges between any pair
of nodes in PRG, the predicates corresponding to the subtree roots are independent.
Hence, by the definitions of elementary conditional probability and our independence

assumption:

P(ev) = P(p0 =T, [pl = B1, G1], [p2 = B2, G2], ...[pn = Bn, Gn])
= P([pl = B1, G1],[p2 = B2, G1],...[pn = Bn, Gn] | p0 =T) x P(p0 =T)
=P([pl=B1,G1] |p0=T) X ... x P([pn=Bn, Gn] | p0 =T) x P(p0 =T)

(3.1)

P([pi = F, Gi] | p0 = T) can be easily computed. As we said, if pi is False,

P(pi=T)

Gi is empty, and hence P(pi = F | p0 =T) =1 — F0=T)"

Otherwise, we have

P([pi =T, Gi] | p0 = T)) which is computed as follows:

P(pi=T,Gi] | p0=T) = P([pi =T, Gi],p0 = T)

P(p0=T)
_ P(Gi] |pi=T,p0=T) x P(pi =T,p0 =T)
Pl =T) (3.2)
_ P(Gi]| pi=T) x P(pi=T | p0 = T) x P(p0 = T)
P(p0=T)
_ Ppi=T,[Gi) - _
= Pi=T) X Plpi=T |p0=T)

By looking at Equation 3.1 and Equation 3.2, we see that the probability P(ev)

of the execution vector ev corresponding to the subtree in PRG rooted at p0 can
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be expressed in terms of the probabilities of the sub-vectors of ev rooted at the
corresponding subtrees of p0, as well as probabilities, P(pi =T | p0 = T'), of transition
from root p0 to the root of each subtree, pi.

The only remaining terms that are not trivial to evaluate are the P(pi = T, [G1i])
terms. But each (pi = T, [Gi]) is just an ev on a tree that has fewer levels than the
ev with which we began. Hence its probability can be evaluated by finite induction
on the levels of the tree, using this same procedure at each level.

Finally, we dismiss the assumption that no pair of PRG nodes is disjoint. Note
that the only nodes of interest are those whose predicates appear in an ev being
evaluated. Since ev is evaluated recursively level by level, we can without loss of
generality concern ourselves only with the set of pi’s associated with the roots of the
subtrees of p0, and in fact only with those pi’s that appear in the ev being evaluated.
Initially, let us suppose that there is only a single set of pairwise disjoint predicates,
pl, p2, ..., pk, corresponding to the roots of some of the subtrees S1, 52, ..., Sk
of p0. That is there is a D-edge between each pair of these root nodes, and no D-
edges connected to any other subtree root node. Note that all of the predicates in
this set of disjoint predicates must have the value False in the execution vector, i.e.,
ev = (pl = F,p2 =F,...,pk = F,[pk+ 1= Bk+1, Gk + 1],...), since if one of
them had value True, the others would be redundant and would therefore have been
eliminated from ev by the Eliminate-Redundant-Conditions procedure.

The execution sub-vector of ev with predicates pl, p2, ..., pk omitted can be
represented as a union of execution vectors with all the legal boolean assignments to

pl, p2, ..., pk. That is,
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(pk+1=Bk+1,Gk+1],...)
—(l=F,p2=F,....pk=F,[pk+1=Bk+1,Gk+1],...)
Ulpl=T,p2=F,....pk=F,[pk+1=Bk+1, Gk +1],...)
Ulpl=F,p2=T,...,.pk=F,[pk+1=Bk+1, Gk +1],...)

U...Upl=F,p2=F,...,.pk=T,[pk+1=Bk+1, Gk +1],...)

The expression written on the first line of the right hand side is the ev of interest.
Note that each valid boolean assignment to pl, p2, ..., pk can contain at most one True
value since the pl, p2, ..., pk are all mutually disjoint. Thus the execution vectors of

the right hand side of the equation above represent all possible legal assignments to
pl, p2,..., pk.

Since the ev terms on the right hand side are pairwise non-overlapping, the prob-
ability of the right hand side can be found by evaluating the probability of each ev
separately and then simply adding those probabilities together. Using this fact, and

rearranging terms so that the ev of interest is on the left, we have

P(pl=Fp2=F,. .. pk=Fpk+1=Bk+1,Gi,...)
=P(lpk+1=Bk+1,Gk+1],...)
PGl =T,)2=F,...,pk=F,[pk+1=Bk+1, Gk +1],...)
—Plpl=Fp2=T,...,.pk=F,[pk+1=Bk+1, Gk+1],...)

—...—Plpl=F,p2=F,....pk=T,[pk+1=Bk+1, Gk +1],...)
The first execution vector on the right hand side contains no disjoint predicates.
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Each remaining execution vector contains one and only one disjoint predicate as-
signed value True and the remaining disjoint predicates are assigned value False. The
Eliminate-Redundant-Conditions procedure then eliminates the False disjoint
predicates from each of these execution vectors which changes the previous equation

into the following form:

Plpl=Fp2=F,...,pk=F,[pk+1=Bk+1, Gk +1],...)
=P([pk+1=Bk+1,Gk+1],...)
— P(pl =T,[pk+1=Bk+1, Gk +1],...)
—Pp2=T,pk+1=Bk+1,Gk+1],...)

—...—Ppk=T,[pk+1=Bk+1,Gk+1],...)

Note that none of the execution vectors on the right hand side contains more
than one predicate of the set of mutually disjoint predicates associated with the roots
of the subtrees. Hence we can use Equation 3.1 and Equation 3.2, together with
the repetition of this procedure to eliminate mutually disjoint sets of nodes at lower
levels. If at some level, several distinct sets of mutually disjoint predicates correspond
to the subtrees at that level, the above procedure is applied to each set individually
until at most one predicate from each set remains in any ev to be evaluated, and that
predicate is assigned value True.

The above general evaluation procedure is quite complex. Two transformations
of the execution vector that we described, (i) transforming ev into normal form and
(ii) eliminating disjoint predicates from ev, can take time that is exponential in the

size of an execution vector, in the worst case. However, in practice the benchmark
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evaluations we carried out were quite straightforward and rarely required these trans-
formations to be performed. In addition, the number of predicates considered for
such evaluation hardly ever exceeded 2 or sometimes 3, with the conflict recovery
scheme and the limited fetch width that we use in our probabilistic predicate-aware
architecture (see Section 3.3). Remember that with this scheme the conflicting op-
erations assigned to different function units can be dispatched into these function
units in parallel, one per unit. Obviously, in this case, the execution vector need only
contain the predicates of the operations that may conflict as the result of sharing
the same unit; the predicates of the operations that do not share a unit with other
operations need not to be included in the execution vector since they will never result

in a conflict.

3.4.3 Probabilistic Predicate-aware List Scheduling Exten-

sions

Our probabilistic predicate-aware list scheduling (PPALS) algorithm uses the ex-
pected delay computation technique to select profitable combining opportunities dur-
ing operation scheduling with an overall goal of reducing the schedule length relative
to the baseline algorithm. We have proposed and evaluated two PPALS scheduling
algorithms. The first algorithm, called ’extend-all’ PPALS, extends the cmpp la-
tency from every cmpp operation to each of its consumers to create the maximum
combining opportunity for every predicated operation. The second algorithm, called
first-fit’ PPALS, does not extend the cmpp latency, but instead allows the operation
to be placed in the first available scheduling slot that satisfies its resource and data
constraints. If it is scheduled less than extendedlatency cycles after its cmpp, the

scheduled operation must reserve its resource unconditionally. As we said earlier,
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PPALS-MainScheduler(opiist, ddg)

1 For every op in oplist, use ddg to initialize MinTime and compute priorities
2 ready oplist = all operations in oplist with no incoming edges

3 CurrSchedLen = 0;

4 while ready_oplist is not empty do

hpr_ready oplist = highest priority operations in reay_oplist
if ‘extend-all’ PPALS then

curr_op = hpr_ready oplist.pop()
else if ‘best-fit” PPALS then

curr_op = LeastCombiningPotential(hpr _ready oplist)
end if
compute MinTime for curr_op
minCurrSLIncrease = 1 /* minimum current schedule length increase */
for t = MinTime; t <= MaxTime; t++ do

for each resource alternative, resource_alt, on which curr_op can be scheduled do

if resource_alt is available at time ¢ then
if t <= schedule time of the latest scheduled operation so far then
CurrSLIncrease = compute delay due to conflict incurred from scheduling
curr_op in time ¢ on resource_alt

else /* increases delay due to conflict component of current expected SL */
CurrSLIncrease = 1 /* increases static component of current expected SL */
end if

if CurrSLIncrease <= minCurrSLIncrease then
minCurrSchedlIncrease = CurrSLIncrease
tmin =t
minresource_alt = resource_alt
end if
end if
end for
end for
Schedule curr_op in time ¢, on minresource_alt
Update ready oplist with the ready successors of curr_op;

32 end while

this increases the operation’s execution frequency to 1.0 and, hence, combining this
operation with other operations may result in higher conflict delay than when the
operation is scheduled at least extendedlatency cycles after its cmpp and reserves it

resource conditionally. These two algorithms are described below in Section 3.4.3.1

Figure 3.11: Generic PPALS scheduling algorithm

and Section 3.4.3.2, respectively.

which is common to both ’extend-all’ PPALS and ’first-fit’ PPALS. The main idea of

Figure 3.11 shows the generic PPALS algorithm, PPALS-MainScheduler,
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the algorithm is to schedule each operation at the time which minimizes the increase
in the current expected partial schedule length (due to already scheduled operations).
This increase may in part be due simply to an increase in the current static sched-
ule length: if a new operation gets scheduled 1 or more cycles later than the latest
scheduled operation so far, the static component of the current expected schedule
length is increased. The increase may also be due in part to an additional conflict
delay that results from combining the operation with other operations that are al-
ready scheduled. In this case the expected conflict delay component of the current
expected schedule length gets increased.

The underlying principle of PPALS is to avoid combining an operation if the
increase in the expected delay due to conflicts that it causes exceeds 1. If the operation
cannot be successfully scheduled between cycle 0 and the CurrentStaticScheduleLength
- 1 (which is the time of the latest scheduled operation so far) without violating this
principle, the scheduler then places the operation one cycle after the latest scheduled
operation (i.e., at cycle CurrentStaticScheduleLength), thus increasing the current
static schedule length by 1 cycle. Since the overall goal is to reduce the expected
schedule length, it is a better scheduling decision to increase the static component of
the expected schedule length by only one cycle, than to increase the expected conflict
delay component of the expected schedule length by more than one cycle; it results
in less total increase at this step, and it provides more combining opportunity for the
operations to be scheduled next.

The algorithm takes the list of all operations, oplist, and the corresponding data
dependence graph, ddg, and constructs the valid schedule. As in the baseline schedul-
ing algorithm, the PPALS-MainScheduler starts by computing each operation’s

earliest start time (EarlyCycle) and its scheduling priority using ddg (line 2). At
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the beginning, the ready_oplist, which at every scheduling step contains the list of
currently unscheduled operations whose predecessors have been already scheduled,
is initialized with the operations from oplist that have no incoming edges (line 2).
The main while loop (lines 4-32), iterates over the elements of ready_oplist, choosing
and scheduling one operation from the list per iteration until the ready_oplist be-
comes empty, at which point the final schedule is produced and the routine PPALS-
MainScheduler returns.

When an operation becomes scheduled, its outgoing edges are removed. This
may free up some other operations, which are then put into the ready list. As in
the baseline scheduler, the hpr_ready_ oplist (line 5) is the list of highest priority
ready operations in ready_oplist. From hpr_ready_oplist we choose one operation to
be scheduled (lines 6-10). This choice depends on whether ’extend-all’ or ’first-fit’
PPALS is used and is discussed in the corresponding subsections.

Before scheduling the operation, MinTime is computed. MinTime is the ear-
liest cycle at which the operation can be scheduled as constrained by the currently
scheduled operations that the operation being scheduled is dependent upon. We also
set the minCurrSLIncrease variable to 1. This variable is used in the body of the
for loop (lines 13-29), described below, to choose the scheduling time for the op-
eration that corresponds to the minimum increase in the current expected schedule
length; this initial 1 is used as an upper bound, as the algorithm avoids combining
the operation if the conflict delay increase that results from the combination exceeds
minCurrSLIncrease.

The most important part of the algorithm is the innermost for loop (lines 13-29)
which tries to find a valid time slot for the operation to be scheduled. Recall that the

baseline scheduler iterates over consecutive cycles, from MinTime to MaxTime, and
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multiple resource alternatives, until it finds the first cycle and a resource alternative
with no resource constraints, at which point the operation is scheduled. MazTime =
max( CurrentStaticScheduleLength, MinTime) is the first cycle at which the operation
can be guaranteed to be schedulable. Unlike the baseline scheduler, which schedules
the operation in the first cycle where there are no resource constraints, PPALS iterates
over every cycle, from MinTime to MazTime (lines 13-29).

For each time, ¢, PPALS tries to schedule the operation on every alternative
resource, resource_alt (lines 14-28). If the operation cannot be scheduled at this time
(line 15), and if this time is less than or equal to the schedule time of the latest
scheduled operation (CurrentStaticScheduleLength - 1) (line 16), the added delay
due to conflicts that would be incurred by scheduling the operation on this resource
alternative at this time is computed (lines 17-18) and added to CurrSLIncrease.
Note that if this slot is empty, there is no resource sharing, and hence the added
delay due to conflicts is obviously 0. On the other hand, if time ¢ is greater than
the schedule time of the latest scheduled operation (line 19), the CurrSLIncrease
is set to 1 (line 20) to reflect the fact that scheduling the operation at this time
will increase the current static schedule length, CurrentStaticScheduleLength, and
hence also the current expected schedule length by at least one cycle. Note that there
is only one case in which ¢ is two or more cycles larger than the schedule time of the
latest scheduled operation. In this case, the operation being scheduled is dependent
on a scheduled operation whose latency is not satisfied until two or more cycles past
latest scheduled operation; therefore this operation will never share its resource and
will be scheduled in the first (and only) iteration of its scheduling loop (line 13-29).

If CurrSLIncrease is no greater than minCurrSLIncrease (line 22), which is

the minimum CwurrSLIncrease seen so far, minCurrSLIncrease is updated with
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CurrSLIncrease, and t,,;, and minresource_alt are updated with ¢ and resource_alt,
respectively. When the for loop (lines 13-29) terminates, ., and minresource_alt
contain the time and resource that result in the minimum increase in the current
expected schedule length for the current operation being scheduled. As a result, the
operation, curr_op, gets scheduled on resource minresource_alt at time t (line 30),
the ready_list is updated with the freed successors of curr_op, and the scheduling

process repeats until the ready_list becomes empty.

3.4.3.1 ’Extend-all’ PPALS

"Extend-all”’ PPALS calls PPAS-DDGLatency-Adjust to extend the cmpp la-
tency for every cmpp operation whenever it might potentially improve the perfor-
mance (see Section 3.4.1).

Specific to the ’extend-all’ algorithm is how it chooses which operation
from hpr_ready_oplist to schedule next. Choosing the best operation from
hpr_ready_oplist, so as to guarantee the shortest final schedule, requires backtracking
and may result in exponential complexity. By noticing that any predicated operation
in hpr_ready_oplist, whose cmpp latency has been extended, may potentially result
in improved performance when combined with another such operation from the list,
‘extend-all’ PPALS takes a simple heuristic approach and, as line 7 of Figure 3.11
shows, chooses the first ready operation from hpr_ready_oplist to schedule.

We now demonstrate the working of ’extend-all’ PPALS using an example shown
in Figure 3.12. Figure 3.12(a) shows the predicated basic block. Figure 3.12(b) shows
the corresponding data dependence graph. Each edge is marked with the original
short latency, shortlatency, of 1 cycle. The latency extension step also marks the

incoming cmpp edge of each arithmetic operation A1 through A5 with the extended
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C1: p1,p2 = cmpp(tl < 10) if p0 Predicates Freq. Operation Freq. HBP
Al: t3=t1+t2ifpl pl: 09 C2: 1.0 5
A2: 3=t1-t2if p2 p2: 0.1 Cl: 1.0 4
A3: t4=12 | 2if p2 p3: 0.25 A4: 025 2
M1: store(t4, A, t3) if p0 Al: 0.9 1
C2: p3 = cmpp(t5 > 20) if p0 A2: 0.1 1
A4: t6 =t5 & 0x7 if p3 A3: 0.1 1
AS5: t7=t6+1if p3 AS: 025 1
M2: store(t8, B, t7) if p0 MI1: 1.0 0
B: if(t3<1)goto... M2: 1.0 0
B: 1.0 0

(a) Assembly code (b) Data Dependence Graph (c) Execution and activation frequencies

Figure 3.12: Assembly code and data dependence graph to demonstrate PPALS

Time A M B
C2
Cl

A47p3

Al?pl

A27p2

A37p2

A57p3 M1

M2 B

N|o|ja|Rh|WIN|=|O

Figure 3.13: Schedule Reservation Table for baseline LS

latency, extendedlatency, of 3 cycles; all five of these operations are marked because
each can be combined with at least one other arithmetic operation so that the result-
ing delay due to conflicts does not exceed 1. As above, we assume the machine model
in Table 2.1 with cmpp latency of 3 and CDRL=1. Finally, Figure 3.12(c) shows acti-
vation frequencies of the predicates as well as execution frequencies of the operations.
Note further that it shows the height-based priority (HBP) of each operation. Note
that operations are listed in the decreasing order of their HBP. In addition, in our
example the HBP priority order of the operations is the same before and after cmpp
latency extension step. Therefore, we only show each operation’s priority before the
latency extension.

The application of the baseline list scheduler to the example results in a schedule
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Scheduling A4 Scheduling A1 Scheduling A2 Scheduling A3 Scheduling A5

hpr_ready_oplist| hpr_ready_oplist hpr_ready_oplist hpr_ready_oplist hpr_ready_oplist
A4?p3 A17p1 A27p2 A37?p2 A57p3
A27p2 A37p2 A5?p3
A37p2 A5?p3
A57p3
Time] Sched CSLI| Sched CSLI Sched CSLI Sched CSLI Sched CSLI
0 C2 C2 C2 C2 C2
1 Cl Cl Cl Cl Cl
2
3 | A47p3 1.0 A47p3 A47p3 A42p3 A42p3
4 A12pl 1.0 Al?pl  A2?2p2 0.0 |A1%p1 A22p2A32p2 0.2 | Al?pl A27p2 A37p2
5 A27p2 1.0 A37p2 1.0 A5?p3 1.0
CSL 4 5 5 5.2 6.2
(a) Scheduling record of A4, A1, A2, A3 and A5 (CSLI — current schedule length increase)
Time A M B | CflDel
0 C2 0
1 Cl 0
2 0
3 A47p3 0
4 |Al1%p1 A2%p2 A3p2 0.2
5 A57p3 Ml 0
6 M2 B 0
0.2 expected delay due to conflicts
(b) Complete schedule

Figure 3.14: Schedule Reservation Table for ’extend-all’ PPALS

length of 8 cycles, as presented in the SRT shown in Figure 3.13. Note that operations
Al through A5 are executed conditionally but reserve the ALU unconditionally. In
fact, each of these operations only executes a fraction of the time, i.e. only when
its predicate is True. In addition, among operations Al, A2 and A3, either Al is
executed or A2 and A3 are both executed, because pl and p2 form a complete set of
disjoint predicates. As a result, we effectively waste either cycle 3 or both cycles 4
and 5 whenever this code segment is executed.

With ’extend-all’ PPALS, an expected schedule length of 7.2 cycles can be achieved
as shown in Figure 3.14(b). Figure 3.14(a) shows how this schedule is derived.
Each column corresponds to scheduling a single operation (Al through A5). In the
first column operations C2 and C'1 have already been scheduled in cycles 0 and 1,

respectively. The top of each column shows the list of highest priority ready operations
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(hpr_oplist_ready) among which ’extend-all’ PPALS picks the first ready operation
to schedule. The schedule also shows the CurrSLIncrease (abbreviated as CSLI
in the figure), which for a given Time ¢ represents an increase in the current partial
schedule length due to scheduling the current operation at this time (see description
of PPALS-MainScheduler in Figure 3.11). The last row of the table shows the
current partial schedule length (CSL) after each operation is scheduled.

Initially, A4 is the only operation in the hpr_oplist_ready and it gets placed at
Time 3 since it is dependent on the three cycle cmpp operation C2, which is scheduled
at Time 0. The corresponding CurrSLIncrease is 1 in this case, since scheduling
A4 at Time 3 increases the current schedule length by 2 cycles (see Line 20 of Fig-
ure 3.11 and corresponding explanation in the text). Scheduling A4 frees A5. As
the second column shows, there are now 4 ready operations with the same highest
priority (HBP=1). The scheduler picks the first operation A1 and places it at Time
4 - the first cycle which satisfies its data dependence with C'1, and CurrSLIncrease
is set to 1.

Next, A2 is picked. It can be scheduled in one of two cycles: Time 4 to share
the ALU resource with A1, resulting in CurrSLIncrease = 0, since A1 and A2 are
disjoint and there is no conflict delay, or Time 5 resulting in CurrSLIncrease = 1,
since the current schedule length is increased by 1 cycle. Both choices are shown in
the Scheduling A2 column in Figure 3.14(a); the lower cost choice is highlighted. A2
gets scheduled at Time 4 since that has the lower CurrSLIncrease.

A3 is picked next and it can go either at Time 4 or time 5. Scheduling A3 at Time
4 to share the ALU resource with A1 and A2 will increase the schedule length by 0.2
cycles due to conflict delay ( 2 recovery cycles x P(p2 =T) = 2 x 0.1 = 0.2). This

delay results from the fact that A1 and A2 are disjoint, hence their joint execution
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frequency is 1, and the A3 execution frequency is 0.1.

Finally, the only remaining operation with a height-based priority of 1 is A5. The
earliest time it can be scheduled is time 4 since it is data dependent on A4 with a 1
cycle latency. However A5 cannot be scheduled at Time 4 since there are 3 operations
already scheduled at this time and our machine has a fetch width of 3 operations.
Therefore A5 gets scheduled at Time 5, which increases the current expected schedule
length by 1 cycle.

Finally, operation M1 gets scheduled at Time 5, and operations M2 and B get
scheduled at Time 6, resulting in the final schedule shown in Figure 3.14(b) which
has an expected length of 7.2 cycles. The last column shows the delay due to conflicts

for each schedule time slot.

3.4.3.2 ’First-fit> PPALS

As shown in our experiments (see Section 3.5.2.1), extending the cmpp latency
leads to critical path increases in acyclic code regions which degrades the performance
of ’extend-all’ PPALS. Consequently, we propose a second, alternative algorithm,
called ’first-fit’ PPALS which does not extend cmpp latency prior to scheduling, but
only takes advantage of combining opportunities as they arise.

When first-fit’ PPALS chooses an operation from hpr_oplist_ready, as in ’extend-
all’ PPALS, it also tries every alternative in the range from MinTime to MaxTime to
find the cycle (and resource) that causes the smallest increase in the current schedule
length, CurrSLIncrease. If an operation is scheduled less than extendedlatency
after its cmpp producer, this operation must reserve its resource unconditionally at
this cycle, since its predicate cannot be read early (during the predicate read and

dispatch stage, see Section 3.3). In this case, this operation’s execution frequency
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will be increased to 1.0, since it always requires its resource. If the operation is
scheduled at least extendedlatency cycles after its cmpp, the operation’s predicate
can be read early, and therefore it can reserve its resource conditionally, just as in
‘extend-all’ PPALS.

Of course, if the operation reserves its resource unconditionally, it will incur a
higher conflict delay penalty when combined with another predicated operation than
if it reserves its resource conditionally. Since the scheduler chooses the cycle with
minimum CurrSLIncrease, operations will only be scheduled unconditionally if this
will lead to a minimum increase in the current schedule length. Note that an operation
that unconditionally reserves its resource can legally (if not beneficially) be combined
with other operations. However, even thought it is legal to combine for two operations
that unconditionally reserve the same resource, they never will be combined since it
is never beneficial to do so. Combining two such operations would result in a conflict
delay of at least 1 cycle, and thus will be ruled out by our PPALS-MainScheduler
algorithm because the algorithm will later consider scheduling the operation one cycle
later than the end of the current schedule and will choose that schedule slot (or one
with even lower cost) over this one.

Whereas ’extend-all’ PPALS chooses the first ready operation from hpr_oplist_ready
to schedule, 'first-fit” PPALS needs to make a more intelligent decision and calls the
LeastCombiningPotential function to choose the operation with the least combin-
ing potential. An operation in hpr_oplist_ready is said to have the least combining
potential if it would result in the highest conflict delay when combined with the other
operations in hpr_oplist_ready.

The scheduler chooses an operation with the least combining potential first be-

cause scheduling this operation unconditionally gives the remaining ready operations
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LeastCombiningPotential(/pr ready oplist)
1 for each operation, op, in hpr_ready oplist do
2 if (op is cmpp operation) then

3 return op

4 end if

5 end for

6  mincombiningpotential = +inf

7  for each operation, op!, in hpr_ready oplist do
8 combiningpotential = 0

9 for each operation, op2, which is not op!, in hpr_ready oplist do
10 if(op! is NOT disjoint from op2) then

11 combiningpotential -= CflDelay from combining op! and op?2
12 else

13 combiningpotential +=1

14 end if

15  end for

16  if combiningpotential < mincombiningpotential then

17 mincombiningpotential = combiningpotential

18 op_mincombiningpotential = opl

19  endif

20 end for

21 return op_mincombiningpotential

Figure 3.15: Algorithm to choose operation with the least combining potential

in hpr_oplist_ready, those with higher combining potential, a chance to be sched-
uled conditionally at a later time where they may be far enough from their cmpp
to achieve a small conflict delay when combined. Note that if an operation with
a higher combining potential is scheduled earlier, it is more likely to be scheduled
unconditionally, thus losing its opportunity to reserve its resource conditionally at a
later time whenever it might combine with a smaller conflict delay. Symmetrically, if
an operation with a lower combining potential is scheduled later, it is more likely to
be scheduled conditionally, and thus could share its resource with other operations;
however, because this operation’s combining potential is low, it is more likely to be
unable to take good advantage of that opportunity to combine due to the lack of an
available low conflict partner to combine with.

The LeastCombiningPotential function is shown in Figure 3.15. It takes the
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hpr_oplist_ready list and returns an operation with the least combining potential.
The first for loop (lines 1-5) iterates over all the operations in hpr_oplist_ready and
returns the first cmpp operation found, if any. This cmpp operation is given the
highest scheduling priority for two reasons: (i) it must always reserve its resource
unconditionally, (ii) scheduling it early gives more opportunity to its dependent op-
erations to be scheduled extendedlatency cycles later so that they may reserve their
resources conditionally.

If there are no cmpp operations in hpr_oplist_ready, i.e. the ready cmpp opera-
tions with the current highest priority have already been scheduled, the second loop
executes (lines 7-15). The combining potential of each operation, opl, is computed
by cumulatively adding to combiningpotential the combining potential of combining
opl with each other operation, op2, in the list (lines 9-15). If opl and op2 are not
disjoint (line 10), their combining potential is equal to the negative value of the delay
due to conflict when both are combined (line 11). In this way, a higher conflict delay
results in a smaller overall combiningpotential. If opl and op2 are disjoint (line 12),
we set their combining potential to 1 (line 13). In this way, operations with more
disjoint partners will tend to be delayed more, which is desirable since disjoint op-
erations result in zero delay due to conflicts when combined if they are delayed long
enough to be extendedlatency cycles away from their cmpp operations. The last if
condition (line 16) chooses the operation, op_mincombiningpotential, that has min-
imum combining potential, mincombiningpotential, so far (lines 17-18). When the
for loop exits, op_mincombiningpotential, the operation with the smallest combining
potential in hpr_oplist_ready is returned (line 21).

We now demonstrate the working of ’first-fit’ PPALS using the same example

shown in Figure 3.12. The scheduling record of all five predicated operations is
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Scheduling A4

Scheduling A5

Scheduling A3

Scheduling A1

Scheduling A2

hpr_ready LCP |hpr_ready LCP hpr_ready LCP hpr_ready oplist LCP | hpr_ready_oplist LCP
Ad?p3 — A17p1 155 A17p1 2 A17p1 1 A27p2 —
A27p2 0.75 A27p2 0.8 A27p2 1
A37p2 0.75 A3?p2 0.8
A5?7p3 -0.55
Time|] Sched CSLI [ Sched CSsLI Sched CSLI Sched CSLI Sched CSLI
0 C2 C2 C2 C2 C2
1 JC1 A4?7p3 2.0 Cl Cl Cl Cl
2 | a47p3 1.0 A47p3 A47p3 A37p2 2.0 A47p3 A47p3
3 A5?p3 1.0 | A5?7p3 A3?p2 0.5 [A5?7p3 A3?p2 A1?p1 3.5 | A57p3 A37p2A2?p2 3.5
4 A37p2 1.0 A1?pl 1.0 | Al?pl A2?p2 0.0
5 A2 ?p2 1.0
CSL 3 4 4.5 5.5 5.5
(a) Scheduling record of A4, AS, A3, Al and A2 (CSLI — current schedule length increase)
Time A M B CflDel
0 C2 0
1 Cl 0
2 A4?p3 0
3 AS57p3 A32p2 0.5
4 Al?pl A27p2 M2 0
5 M1 B 0
0.5 expected delay due to conflicts

(b) Complete schedule

Figure 3.16: Schedule Reservation Table for 'first-fit’ PPALS

shown in Figure 3.16(a). Here again we assume the initial partial schedule in which
operations C'2 and C'1 are already scheduled at Time 0 and 1, respectively. The
list of ready highest priority operations (hpr_oplist_ready) along with the combining
potential of each operation is shown at the top of each column. Among these, ’first-fit’
PPALS picks the operation with the least combining potential and schedules it.
Initially, A4 is the only operation in the hpr_oplist_ready. A4’s earliest scheduling
time is Time 1, since it is dependent on C'2 which is scheduled at Time 0. Scheduling
A4 in this cycle to share the ALU with C'1 would increase the current schedule length
by 2 cycles, because it results in 2 cycles of delay due to conflicts since both C'1 and

A4 must reserve the ALU unconditionally and will therefore always execute. On the

other hand, scheduling A4 at Time 2 will increase the current schedule length by only
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1 cycle. Hence, A4 gets scheduled at Time 2.

Scheduling A4 frees A5. As the second column shows, there are now 4 operations
with the same highest priority of 1. Also shown is the combining potential for each
operation. For example, the combining potential of Al is equal to1+1—2x P(pl =
T,p3=T)=14+1-2x0.9 x0.25 = 1.55. The first and second terms , which
represent combining Al with A2 and A3 respectively, are both 1 due to the fact that
Al is disjoint from both A2 and A3. The third term is the negative of the expected
conflict delay due to nondisjointly combining A1 and A5. Among the operations in
hpr_oplist_ready A5 has the least combining potential (-0.55), which is calculated as
—2xPpl=T,p3=T)—-2xPp2=T,p3=T)—-2xP(p2=T,p3=T) =
—2%0.25%0.9—2%0.25%0.1 —2%0.25%0.1 = —0.55, where the first, second and third
terms are the conflict delays due to combining A5 with A1, A2 and A3, respectively.
That A5 has the least combining potential makes sense intuitively: A5 is not disjoint
from any other operation, whereas the remaining operations in hpr_oplist_ready, Al,
A2 and A3, are each disjoint from at least one other operation in the list. Thus A5
is chosen to be scheduled next and is placed at Time 3, which is the earliest cycle in
which it can be placed.

In the next scheduling step, both A2 and A3 have the least combining potential of
0.8 as shown in the third column of Figure 3.16(a). Each of them can combine with
A1l without conflict delay since they are disjoint from A1l and they can be combined
with each other with a conflict delay penalty 2 x P(pl = T) = 0.2. Al, on the other
hand, is disjoint from both A2 and A3, hence its combining potential is 2. A3 is
chosen and Times 2, 3 and 4 are tried. Scheduling A3 at Time 3 together with A5
gives the smallest conflict delay, namely, 2 x P(p2 = T') = 0.5. Note that A3 reserves

the ALU unconditionally, since it is only 2 cycles away from C'1, whereas A5 reserves
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the ALU conditionally since it is 3 cycles away from C2.

In the next scheduling step, A1 and A2 have the same combining potential since
they are disjoint from one another. A1l is chosen and scheduled at Time 4 which has
lower combining potential than Time 3.

Then A2, is scheduled at Time 4, resulting in 0 conflict delay since it is disjoint
from Al, which is also scheduled in this cycle, and both are 3 cycles away from C'1
so that they can reserve the ALU conditionally.

The final schedule with an expected length of 6.5 cycles is shown in Figure 3.16(b).
The last column shows the delay due to conflicts for each schedule timeslot. Note
that this ’first-fit’ schedule is 0.7 cycles shorter than the corresponding ’extend-all’
schedule in Figure 3.14(b). This reduction in length is due to the fact that instead of
having to schedule A4 at Time 3, as ’extend-all’ does in order to satisfy the 3 cycle
extended latency of C'2, *first-fit’ places A4 at Time 2. Although A4 then reserves the
ALU unconditionally in this cycle, the slot is not wasted as it was with the ’extend-all’

scheduler.

3.4.4 Probabilistic Predicate-aware Modulo Scheduling Ex-

tensions

Probabilistic predicate-aware modulo scheduling (PPAMS), like ’extend-all’ PPALS,
calls PPAS-DDGLatency-Adjust which extends the cmpp latency for each opera-
tion when it may improve the performance. Note there is no ’first-fit’ counterpart for
PPAMS. Since, as we will show in Section 3.5, modulo scheduled loops are resource
rather than latency bound, and extending cmpp latency has only a small impact on
the overall schedule length for most loops.

Our probabilistic predicate-aware modulo scheduling algorithm also uses the ex-
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pected delay computation technique to try to find the smallest expected initiation
interval (Ilegpectea) for which valid schedule can be found. Ileipected = Ilstatic +
Ilcfipetay, Where Ilgq. is the static initiation interval when the delay due to con-
flicts is ignored, and Il¢fipeiqy is the expected delay due to conflicts. The following
describes our main changes to baseline iterative modulo scheduling (IMS) in order to

support PPAMS.

3.4.4.1 Computing ResMII

As described in Section 2.4.5, the baseline modulo scheduler (IMS), computes
the resource-constrained lower bound (ResM1IIy,,s) by unconditionally adding the
number of times that each operation reserves a particular type of resource to that
resource’s usage count, regardless of the operation’s guarding predicate. The cumula-
tive usage count for the most heavily used resource determines ResM I Iy, for IMS.
For our example in Figure 3.1, ResM I I,,,s = 10, since there are 10 ALU operations
and only a single ALU unit.

For PPAMS, a similar calculation is done, except that (as in DPAMS) an op-
eration is allowed to reserve a particular may-use resource conditionally and use
it during only a fraction of those reservations, based on its execution frequency.
Each time an operation reserves a resource, this resource’s usage count is only in-
cremented by operation’s execution frequency. Thus, for example in Figure 3.1,

the probabilistic predicate-aware resource-constrained lower bound ResMI1,,q4ms =

1.O(A1)+1.0(Cl)-|—0.2(A2)+1.0(02)+0.09(A31)ZE.[(J)(03)+0.01(A4)-|—0.8(A5)+1.0(C4)+0.11(A6) — 6.21, which

is the sum of the execution frequencies over all ALU operations since the single ALU
is the most heavily used resource. The corresponding operation is shown in paren-

theses for each term in the numerator. Note that un-predicated operations have
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a frequency of 1.0. Finally, since the must-use resources are reserved regardless of
guarding predicate values, their usage count is computed as in the baseline case. The
lower bound obtained is an optimistic estimate of the actual schedule length since
such ideal combining may not be possible and the bound does not estimate the ad-
ditional conflict delay that may occur. Note that for the same example, DPAMS
resource-constrained lower bound ResMIlgyms = 9; the DPAMS bound is higher

since only disjoint combinations are allowed.

3.4.4.2 Main Scheduler

The main PPAMS driver (shown in Figure 3.17(a) uses a binary search method
to find the smallest value of Il¢zpecteq for which a valid schedule can be found. The
lower bound, I1j4,, is computed as the maximum of ResMIlpp.ms and RecM11Lpqms.
RecM1I1,p,ms is the recurrence-constrained lower bound computed from the ddg af-
ter latency extension step. The upper bound, Il;g, is computed as the maximum
of the ResMIlpyms and RecMIlyqms. Note that RecMIl,,qms is never less than
RecM I I,,,,, because latency extension may increase the length of the critical path,
but never decreases it. The while loop in Figure 3.17(a) calls the ppams_FindSchedule
routine which tries to find a valid schedule for I1,,;44. - a halfway point between 11;,,
and Ilpign. If a schedule is found, Ilp;g, is reduced to Ilpiqae, otherwise 11y, is in-
creased to Il;q4qe- These steps are repeated until the difference between 1., and
I}, drops below some small threshold value (smalldelta), at which time the IIoypectea
value is set equal to the current value of I1;g.

ppams_FindSchedule ( Figure 3.17(b)) tries to find a valid schedule with 77 no
greater than Il,pectea (the sum of Ilgatic and Ilcfipeisy)- In fact, it is possible for

several valid schedules of length Il.;pcceq to exist for several different values of I1q4c
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ppams-Main()

1 1, = max(ResMIl,,,,,, RecMll,, )
2 1y, = MaxX(ResMll,,,;, RecMll,,,)
3 while 11, — 1I),,, > smalldelta do
4 idate = (Mpigh T Migy) / 2
5 if ppams-FindSchedule(Il,,.) == true do
6 ]Ihigh =11, 41
7 else
8 ]Ilow - ]Imiddle
9 end if
10 end while
11 return 77,

(a)
PPAMS-FindSchedule(11,,,,....)

1
2
3
4
5
6
7
8

for /1,

static

= ceiling(max(WidthResMIl, RecMII . ));

ppams.
Ilstatic < ﬂoor([[expected) + 1; I[stutic++) do
1 CflDelay =1I expected ~ IIstatic
if PPAMS-IterativeScheduler(i7, .. 1lype,,)==True then
return True
end if
end for

return False

(b)

Figure 3.17: Main PPAMS scheduling routines

123




and II¢fipeiay as long as both add up to Il gpecteq- Therefore we vary 1144 in the loop
starting from the ceiling of the maximum of the width resource- and the recurrence-

constrained lower bound up to the floor of I1.;pccteq. The width resource-constrained

lower bound, WidthResMII, is defined as numbfigh?f:rfzzic%nivigt;h?ﬁ%’ body and is a hard
limit on I, for a machine of the given fetch width (FW). Thus 44, can never
be less than WidthResM1I, and since Iy, must be an integer, it cannot be less
than ceiling(WidthResMII). I 5,4, is also constrained by the recurrence-constrained
lower bound, RecM11,,4,s. Note that contrary to baseline modulo scheduling, with
PPAMS, Il 4. can be less than ResMII. In addition, since we are only interested
in schedules with IT < I'l.gpected, the Ilgqi. term of any schedule of interest cannot
exceed floor (I l.spected)-

For each value of Iy, the corresponding value of I1¢fipeiqy is computed (as
the difference between Ilegpecteq and Ilgq,.) and the ppams_TterativeScheduler
is called with both values passed as parameters. The ppams_IterativeScheduler
returns True if a valid schedule is found, in which case ppams_FindSchedule also
returns the value True. Otherwise, the next combination of Il and Ilcfipeiay
is tried, until either the ppams_IterativeScheduler returns True or the for loop
terminates. If the loop terminates, no valid schedule has been found for a given value
of Il zpected, and ppams_FindSchedule returns False to the ppams_Main driver.

ppams_IterativeScheduler (I uic, 11cfipeiay) is a slightly modified version of
the baseline iterative modulo scheduler algorithm [41] which iteratively schedules and
unschedules the operations of the loop until either a valid schedule is found or the
maximum number of allowed scheduling steps (a runtime budget) is exceeded. In
PPAMS, the scheduler tries to place an operation, op, in a row, r, of the Il ..

rows of the MRT that is chosen so that the increase in total estimated conflict delay
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Schedule Reservation Table Schedule Reservation Table Schedule Reservation Table

Time A M__| CfiDelay Time A M | cfiDelay Time A M | cfiDelay
0 Al 0 Al 0 Al
1 M1 1 M1 1 Ml
2 2 2
3 Cl 3 Cl 3 Cl
4 C2 4 2 4 C2
5 C3 5 3 5 C3
6 6 6
7 A27pl _A5%p2 7 A27pl ASp2 7 A2?pl A5?p2
8 A37p3  A4?p4 0.0018 8 A37p3 Ad2pd 8 A3%p3 A42p4
9 0.02 9 20 9
10 0.02 10 20 10
11 0.02 1 20 11
12 0.02 12 20 12
13 0.02 13 20 13
14 14 C4 0.1991 14 C4
15 15 15
16 16 16
17 17 17 A6 0.22
18 8 18 M2 0.22
19 19 19 0.22
20 20 20 invalid
21 1 21 0.22
22 > 22 0.22
23 23 23 0.22
Modulo Reservation Table Modulo Reservation Table Modulo Reservation Table
Time A M CflDelay Time A M CflDelay Time A M CfiDelay
0 n:Al 0 0 n:Al 0 0 n:Al n-3:M2 0
1 n-1:A2  n-1:AS5 | n:M1 0 1 n-1:A2 n-1:A5 | Ml 0 1 n-1:A2 n-1:A5 | nMi 0
2 n-1:A3  n-1:A4 0.0018 2 n-1:A3 n-1:A4 n-2:C4 0.1991 2 n-1:A3 n-1:A4 n-2:C4 0.1991
3 n:C1 0 3 n:Cl 0 3 n:Cl 0
4 n:C2 0 4 n:C2 0 4 n:C2 0
5 n:C3 0 5 n:C3 0 5 n:C3 n-2:A6 0.22
0.0018 expected delay due to conflicts 0.1991 expected delay due to conflicts 0.4191 expected delay due to conflicts
(a) Scheduling A4 (b) Scheduling C4 (c) Scheduling A6

Figure 3.18: PPAMS Scheduling of the example in Figure 3.1 for Il ,;,=6 and
IICleelay:0-42

(i.e. the summation of the estimated conflict delays over all rows of the MRT) is
minimized. If an operation cannot be placed without exceeding the delay constraint
Ilcfipelay, a backtrack step is executed in which some operations are chosen to be
unscheduled (to be tried again later) so as to allow the current op to be scheduled

without violating the delay constraint.

3.4.4.3 Example Application of PPAMS

To illustrate probabilistic predicate-aware scheduling, PPAMS is applied to the
example in Figure 3.1 with the machine model in Table 2.1, a cmpp latency of 3

cycles, and CDRL of 1 cycle. The operations are scheduled in decreasing order of their
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height-base priority (HBP) shown in Figure 3.1(d). PPAS-DDGLatency-Adjust,
called prior to scheduling, sets the latencies of all outgoing cmpp edges, other than
the (C1,02) and (C1,C3) edges, to 3 cycles. Recall that cmpp operations always
execute regardless of their distance to their cmpp producer. Therefore extending their
cmpp latency will not provide any additional performance benefit, and the latency of
an edge from 8ne cmpp operation to another is always set to the short latency, 1.
We show the details of a single call to the ppams_IterativeScheduler function.
Suppose the goal is to find a valid schedule with Il ,;. ==6 that also satisfies the
delay constraint I1cfipeqy < 0.42 cycles. As each operation is scheduled at some
time slot, the appropriate resource is marked at that time slot in both the SRT and
the MRT. In addition, the current conflict delay values in the CflDelay column
are updated: the overall expected delay due to conflicts, II¢fiperay, Which is the
summation of C flDelay entries over all rows is shown in the last row of MRT. The
sum of Ilgq. and the overall Ilcfipeay is equal to the overall expected schedule
length. We use the probability computation result from Section 3.4.2.2 and the PRG
in Figure 3.8 to compute the value of C flDelay at each step. We omit the B-resource
column to save space: in traditional modulo scheduling a single branch operation B1
is always scheduled first within the first 11 rows of the SRT and never causes conflicts.
Figure 3.18(a) shows the partial SRT and MRT with operations Al, M1, C1,
C2, C3, A2 and A3 and A5 already scheduled, and operation A4 is being sched-
uled. Note that the partial schedule (before A4 is scheduled) has no conflicts since
each ALU operation occupies a separate entry in the MRT, except for A2 and
A5 which are disjoint. The earliest schedule time for A4 (in the SRT) is Time 8
since A4 is dependent on the three-cycle C'3 operation scheduled at Time 5. If

A4 is scheduled at Time 8, it will share the ALU with A3 from the same iter-
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ation and will result in 0.0018 cycles of expected delay due to conflict, namely
2 recovery cycles x P(p3 = T,p4d = T) = 2 x 0.01 x 0.09 = 0.0018, as shown in
the rightmost column. Scheduling A4 at any of Times 9 through 12 of the SRT would
result in 0.02 cycles of delay (2 recovery cycles x P(p4d =T) = 2 x 0.01 = 0.02), since
the operations scheduled at each of these times in the MRT always execute (execution
frequency = 1.0). Scheduling A4 at Time 13 will also result in 0.02 cycles of delay
since A2 and Ab are a complete set of disjoint operations (they are guarded under
complementary predicates). The scheduler places A4 at Time 8 of the SRT (Time 2
of the MRT) which causes the smallest increase in the overall conflict delay for the
given partial schedule.

Figure 3.18(b) shows the scheduling of C4. Scheduling it at any of Times 9
through 13 of the SRT will cause a 2 cycle delay since C4 itself always executes and
so do the operations that C'4 conflicts with at each of these times. Scheduling C'4 at
time 14 will make it share the ALU with A3 and A4 from the next iteration resulting
in an estimated 0.1991 cycles of delay due to conflict, replacing the previous 0.0018
cycles delay at this row of MRT. This causes the smallest conflict delay increase for
the given partial schedule, and hence C4 is scheduled at Time 14 of the SRT (Time 2
of the MRT). The right column of the second row of MRT is also updated to reflect
the new overall conflict delay for this partial schedule.

Figure 3.18(c) shows the scheduling of A6. Its earliest scheduling time is time
17 in the SRT, since it is dependent on the 3 cycle C'4. This produces a conflict
with C'3 at Time 5 of the MRT which causes a conflict delay of 0.22 cycles since A6
has execution frequency 0.11 and C'3 has execution frequency 1.0. Scheduling A6 at
any of Times 18 through 23, except Time 20, would cause the same conflict delay

of 0.22 cycles. A6 cannot be scheduled at Time 20, because that would exceed the
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fetch width resource constraint: there are already three operations A3, A4 and C4,
scheduled at Time 2 of the MRT. Hence A6 is scheduled at Time 17 of the SRT (Time
5 of the MRT), the earliest SRT time with the minimum added conflict delay. At this
point the overall delay is increased to 0.4191 cycles (0.1991 cycles from Time 2 of the
MRT plus 0.22 cycles from Time 5 of MRT).

Finally the scheduler places the last operation M2 at Time 18 of the SRT (Time
0 of the MRT), and places B at Time 5 (not shown) in both the SRT and the MRT,

which results in a valid schedule that satisfies both the resource and delay constraints.

3.5 Performance Evaluation

To study the effectiveness of PPAS, we use the same evaluation infrastructure as
in Section 2.5. Specifically, we perform our evaluations using the Trimaran com-
piler on the set of seventeen MediaBench applications. We implemented probabilistic
predicate-aware reservation table and the expected delay model within the resource
management module of ELCOR (Trimaran’s back-end compiler); our probabilistic
predicate-aware resource manager uses the Predicate Query System module to an-
alyze predicated code and construct predicate relationship graphs to compute the
expected delay due to conflicts as described in Section 3.4.2. In addition, we im-
plemented two probabilistic predicate-aware list scheduling algorithms (‘extend-all’
PPALS and ’first-fit’ PPALS) and a probabilistic predicate-aware modulo scheduling
algorithm (PPAMS) within ELCOR’s list and modulo scheduling modules, respec-

tively.

128



3.5.1 Benchmarks and Processor Models

We use the extended notation (F,I,FP,M,B,C, CDRL) to represent the processor
in this study. As in Section 2.5, F is the fetch width, I the number integer units,
FP the number of floating-point units, M the number of memory units, B the num-
ber of branch units, and C the latency of the predicate defining operation (cmpp).
Here we add the seventh parameter, CDRL, which is the conflict detection and re-
covery latency defined in Section 3.3. We use two baseline processors in our study:
(4,2,1,1,1,1,undefined) and (6,4,2,1,1,1, undefined) called Pyyse(4) and Pyyse(6), re-
spectively. As in Section 2.5 we assume 64 scalar and 64 rotating registers in our
experiments and operation latencies that match the Itanium processor.

Each baseline processor Pyse(i) with a cmpp latency of 1 cycle is compared with
the six corresponding probabilistic predicate-aware processors Ppp,s(%,1/2/3,0/1),
(i-e. Pppas(iy1,0), Pppas(i,2,0), Pppas(i,3,0), Popas(i, 1, 1), Pppas(?,2,1) and Pppas(i, 3, 1))
with the same number of resources as the baseline processor, but cmpp latency of 1,
2, and 3 cycles, as well as conflict detection latencies of 0 and 1 cycles.

For comparison, we also report the performance of three corresponding deter-
ministic predicate-aware processors Pupas (%, 1), Papas(?,2) and Ppes(i, 3) with a cmpp
latency of 1, 2 and 3 cycles, respectively. As described above in Chapter 2, in contrast
to PPAS, DPAS avoids conflicts altogether by conservatively combining only provably
disjoint operations.

We evaluated all of our applications, applying deterministic and probabilistic
predicate-aware scheduling optimizations to every region in the entire code. The
various measurements (such as schedule length, resource- and latency-constrained
lower bounds, etc.) are reported as the same weighted average as in Chapter 2, where

again each individual region is weighted by its execution frequency within its bench-

129



mark. Clearly, PPAS can only benefit ppa-improvable if-converted regions of code,
which are the regions that contain at least one if-then clause; PPAS will be ineffec-
tive at improving other code regions. All the remaining regions are scheduled using
the baseline list or modulo scheduling algorithms, abbreviated as BALS and BAMS,
respectively. In addition, when a ppa-improvable region turns out to have a schedule
that is longer than the corresponding baseline schedule, the baseline schedule is used
instead so as to avoid degradation in performance. Therefore, in our experiments the
probabilistic predicate-aware schemes will always produce schedules that are at least
as good as the baseline scheme, where the metric of goodness for predicate-aware
schedules is their expected schedule length; in particular, where a smaller I ;,ccteq 1S
considered better in cyclic regions (regardless of epilogue size).

The reported PPAS processor speedup over baseline processor for various regions
is measured as the dynamic cycles that the baseline processor spends in these regions
divided by the dynamic cycles that the PPAS processor spends in these regions.

The following sections show the results for 'extend-all’ and ’first-fit” PPALS, and
PPAMS, as well as the overall speedup achieved by probabilistic predicate-aware

scheduling for each benchmark, and over the entire suite.

3.5.2 Evaluation Results
3.5.2.1 Scheduling Headroom for PPAS

The goal of the probabilistic predicate-aware scheduler is to reduce the length of
the resource constrained baseline schedule on the baseline machine of fixed width.
PPAS takes advantage of the gap between the upper-bound defined by the length of

the baseline schedule and the lower bound which is the maximum of the resource-
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Benchmark SLpals CPL1 | CPL2 | CPL3 | ResMSLpais | ReSMSLppais | llbams | RecMIl1 | RecMI2 | RecMII3 | ResMllpams| ResMllppams

Icipeg 46.11] 37.20] 41.51 46.00 40.80 30.55[ 6.49 1.31 1.62 1.93 6.49 4.69
ldipeg 14.03] 10.41] 12.13 13.33 11.72 10.49| 58.64 1.00 1.00 1.00 58.64 42.69
lepic 13.55] 11.57] 12.54 13.58 5.67 5.51] 21.41 2.16 2.54 2.93 21.02 16.38
lunepic 20.11f 18.43] 20.52 22.70 7.75 6.06] 13.27 1.00 1.00 1.00 13.27 10.52
g721encode 29.96{ 20.46] 22.68 24.96 25.43 18.00] 30.00 1.00 1.00 1.00 30.00 20.24
g721decode 29.53[ 19.89] 22.30 24.37 25.13 17.87] 30.00 1.00 1.00 1.00 30.00 20.26
ghostscript 15.14] 10.81] 12.30 13.86 11.10 8.67] 44.10 7.88 7.88 7.88 43.13 31.35
gsmdecode 2352 19.98] 20.76 21.20 21.68 15.24] 27.92 7.93 9.68 11.44 27.73 21.46
gsmencode 30.73[ 23.54] 25.67 28.38 28.41 18.66] 74.85 7.87 8.40 8.93 74.39 45.61
mesamipmap 50.49] 36.56] 39.42 43.20 36.91 33.03] 22.00 1.00 1.00 1.00 22.00 15.92
mpeg2dec 16.44] 11.95] 13.48 14.95 14.42 11.54] 28.35 1.00 1.00 1.00 28.35 18.70
mpeg2enc 32.38[ 27.52] 28.14 27.31 20.26 15.20] 20.27 2.97 3.95 4.93 20.27 12.36
pegwitdec 18.72] 17.12] 18.83 20.53 11.92 11.12] 20.67 1.97 1.97 1.97 20.67 12.46
pegwitenc 16.57] 13.87] 15.61 16.80 12.67 10.88] 19.33 1.61 1.61 1.61 19.33 12.67
rasta 18.71] 14.04] 15.64 17.29 12.66 11.25] 6.81 3.02 3.58 4.14 6.80 4.85
rawcaudio 17.46| 13.54| 12.55 13.06 12.03 9.52| 26.00 20.00 25.00 30.00 24.00 17.13
rawdaudio 12.91] 10.99] 11.99 12.99 11.97 11.95] 20.00 6.00 8.00 10.00 20.00 14.21
Average 23.90] 18.70] 20.36 22.03 18.27 14.44| 27.65 4.04 4.72 5.40 27.42 18.91

(a) Scheduling Headroom for P(4)

Benchmark SLpais CPL1 | CPL2 | CPL3 | ResMSLyas ResMSLE,_,a.s llpams | RecMIl1 | RecMII2 | RecMII3 | ResMilyams| ResMlilyoams

cipeg 38.06{ 37.20] 41.51 46.00 20.60 20.48{ 3.40 1.31 1.62 1.93 3.24 2.64
Idipeq 11.47] 10.41] 12.13 13.33 6.25 6.10{ 29.32 1.00 1.00 1.00 29.32 25.18
lepic 12.61] 11.57] 12.54 13.58 3.52 3.48] 11.09 2.16 2.54 2.93 10.70 8.71
lunepic 19.76] 18.43] 20.52 22.70 4.04 3.90{ 7.34 1.00 1.00 1.00 7.34 6.57
g721encode 23.60{ 20.46] 22.68 24.96 13.00 11.07] 15.00 1.00 1.00 1.00 15.00 11.14
g721decode 23.16{ 19.89] 22.30 24.37 12.92 10.81] 15.00 1.00 1.00 1.00 15.00 11.15
lahostscript 12.42] 10.81] 12.30 13.86 5.83 5.64] 22.55 7.88 7.88 7.88 21.58 18.95
gsmdecode 22.04] 19.98] 20.76 21.20 11.29 9.24] 14.75 7.93 9.68 11.44 13.87 10.76
gsmencode 2510 23.54] 25.67 28.38 14.40 11.60] 38.66 7.87 8.40 8.93 37.65 29.32
mesamipmap 40.44] 36.56] 39.42 43.20 18.64 16.80] 12.33 1.00 1.00 1.00 12.33 10.39
mpeg2dec 13.37] 11.95] 13.48 14.95 7.35 7.06] 14.19 1.00 1.00 1.00 14.19 12.10
mpeg2enc 34.45[ 27.52] 28.14 27.31 10.79 9.91{ 11.12 2.97 3.95 4.93 10.14 7.33
pegwitdec 18.07] 17.12) 18.83 20.53 6.13 6.11] 10.84 1.97 1.97 1.97 10.84 7.73
pegwitenc 14.92] 13.87] 15.61 16.80 6.63 6.08] 10.01 1.61 1.61 1.61 10.01 8.10
rasta 15.71] 14.04] 15.64 17.29 7.13 6.94] 3.57 3.02 3.58 4.14 3.56 3.06
rawcaudio 12.98] 13.54] 12.55 13.06 6.52 6.52{ 20.00 20.00 25.00 30.00 12.00 8.83
rawdaudio 11.91] 10.99] 11.99 12.99 5.99 5.99| 10.00 6.00 8.00 10.00 10.00 7.33
Average 20.59| 18.70] 20.36 22.03 9.47 8.69] 14.66 4.04 4.72 5.40 13.93 11.14

(b) Scheduling Headroom for P(6)

Table 3.1: Scheduling headroom estimates for the probabilistic predicate-aware sched-
ulers

constrained and latency-constrained schedule lengths of the probabilistic predicate-
aware processor. The resource-constrained schedule length is computed ignoring all
data dependencies. The latency-constrained schedule length is the length of critical
path. The gap between these lower and upper bounds constitutes the headroom for
PPAS.

Table 3.1(a) shows an estimate of the probabilistic predicate-aware scheduler head-
room averaged over all the acyclic (columns 2-7) and cyclic (columns 8-13) ppa-
improvable regions of each benchmark and over all benchmarks for a 4-wide prob-

abilistic predicate-aware machine. Table 3.1(b) shows the corresponding data for
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a 6-wide machine. The last row of each table shows the average over all bench-
marks. The data is presented for each benchmark shown in column 1. Column 2
shows the length of the baseline acyclic schedule. Columns 3-5 show the critical
path length for cmpp latencies 1, 2 and 3, respectively. Columns 6 and 7 show the
resource-constrained schedule length for the baseline processor, and the probabilistic
predicate-aware processor, respectively. Since the resource-constrained schedule ig-
nores all data dependencies, cmpp latency has no effect here. Columns 8-13 show the
corresponding data for the cyclic regions; the resource-constrained schedule length is
defined by ResM1II, and latency-constrained schedule length is defined by RecMII
for cyclic regions. For the ppa-improvable acyclic regions we see from Table 3.1 that on
average the critical path length for cmpp latencies of 1, 2 and 3 cycles, respectively, is
21.26%(9.18%), 14.81% (1.12%) and 7.82% (-6.99%) shorter than the schedule length
on the baseline 4(6)-wide machine (with a cmpp latency of 1 cycle).

Thus, as the latency of the cmpp operation increases, the latency-constrained
lower bound closely approaches the length of the baseline schedule and eventually
exceeds it. As we go to a 6-wide machine, the situation becomes even worse since a
wider machine also decreases the length of the baseline scheduler reducing the gap
between the baseline and the bounds even more. For example, for a 6-wide machine
with cmpp latency 3, the latency-constrained lower bound is larger than the length
of the baseline schedule in all but the one case of mpeg2enc. It is apparent therefore
that, cmpp operations in acyclic regions often lie on the critical path, leaving little
headroom for PPALS. On the other hand, cmpp latency is not limiting in cyclic
regions as seen by the fact that ResMI1,,,m;s is generally much larger than RecMII1,
RecMII2, and even RecMII3 for both 4 and 6-wide machines. The only exceptions

are the rawcaudio and rawdaudio benchmarks for which RecM 11 comes close to and
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sometimes exceeds the ResMI1I,,,,s. These two benchmarks each have a dominating
loop with a recurrence cycle passing through all the cmpp operations.

We see that for mpeg2enc the baseline schedule length increases from 32.38 on
the 4-wide machine to 34.45 for 6-wide. This increase is caused by a long latency
operation anomaly, which is described in Section 2.5.2.2. In the case of mpeg2enc,
there exists a number of cases in one of the time-critical regions where a long latency
divide operation is followed by a subroutine call operation. For 4-wide machine, the
pre-pass scheduler places the divide operation after the subroutine call operation,
so that no edges are drawn between them during post-pass scheduling. For 6-wide
machine, it so happens, that the pre-pass scheduler places the divide operation before
the subroutine call operation, which causes a long latency edge to be drawn between
these operations during post-pass scheduling. A number of such long latency edges
makes the schedule latency-bound on the 6-wide machine, and thus causes its increase

in schedule length over the 4-wide machine.

3.5.2.2 ’Extend-all’ PPALS

Figure 3.19(a) shows the speedup over the 4-wide baseline processor that is
achieved on acyclic regions by ’extend-all’ PPALS on the three 4-wide probabilistic
predicate-aware processors with cmpp latencies of 1, 2 and 3 cycles. Figure 3.19(b)
shows the corresponding data for 6-wide processors. In both cases the conflict de-
tection and recovery latency (CDRL) is 1 cycle. As explained below, the results for
CDRL=0 cycles are virtually identical, and hence we do not report them.

As stated above, the schedule length of acyclic regions is constrained by the laten-
cies of the operations, with the cmpp operation generally being on the critical path.

Therefore, the performance of PPALS decreases with increased cmpp latency for both
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Figure 3.19: ’Extend-all’ PPALS speedup over BALS for acyclic regions only
(CDRL=1)
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processor models, resulting in very small speedup (5% and 3% average speedup, re-
spectively) for cmpp latencies of 2 and 3 cycles for 4-wide machines, and no speedup
for 6-wide machines with these same latencies.

For mpeg2enc we see that the 4-wide probabilistic predicate-aware machine per-
forms worse with cmpp latency 2 than with cmpp latency 3. This is caused, once
again, by a long latency operation anomaly.

Recall that as we go to a wider machine while keeping the latency of the predicate-
aware machine fixed, the latency-constrained lower bound remains the same; however,
the resource-constrained lower bound decreases, approaching (and even finally falling
below) the latency-constrained lower bound. Furthermore as resources are added,
the length of the baseline schedule, which suffers no increase in cmpp latency, also
decreases and it too would eventually become purely latency bound and fall below the
cmpp latency dependent latency-constrained lower bound. Resource increases thus
reduce the headroom for PPALS, which explains the degradation in PPALS speedup
as we go from a 4-wide to a 6-wide baseline machine for fixed cmpp latency.

To see how much extra performance PPALS can gain over DPALS by enabling
more aggressive combining, we next compare ’extend-all’ PPALS with ’extend-all’
DPALS. The left bar of Figure 3.20(a) shows the speedup over the 4-wide machine
that is achieved by ’extend-all’ DPALS on a 4-wide deterministic predicate-aware
machine with cmpp latency 3. The right bar of Figure 3.20(a) shows the speedup
over the 4-wide baseline machine that is achieved by ’extend-all’ PPALS on a 4-wide
probabilistic predicate-aware machine with cmpp latency 3 and a CDRL of 1 cycle.
Figure 3.20(b) shows the corresponding data for the 6-wide machines.

We see that for a 4-wide machine, ’extend-all’ PPALS achieves slightly better per-

formance than ’extend-all’ DPALS for 8 applications, and slightly worse performance
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Figure 3.20: ’Extend-all’ DPALS and PPALS over BALS speedup for acyclic regions
only (CDRL=1, cmpp latency=3)
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for 3 applications (mpeg2dec, mpeg2enc and rasta) resulting in an average speedup
of 1% over DPALS. The reason that PPALS offers such a modest gain over DPALS
is that, as Table 3.1 showed, for a cmpp latency of 3 there is very little scheduling
headroom for the probabilistic predicate-aware scheduler to explore. The reason for
PPALS performing worse in some of the cases than DPALS is that the latency adjust-
ment phase described in Section 2.4.1 and Section 3.4.1 will only extend the latency
of a cmpp operation to those consumers that can potentially be combined with some
other operations in the region. Since PPALS allows more flexible combining than
DPALS, it will extend the latency on more edges than DPALS. This causes regions
scheduled with PPALS to have longer critical paths than the same regions scheduled
with DPALS. In the case of these three benchmarks, the extra combining benefit
offered by PPALS does not compensate for this critical path increase.

Table 3.2(a) presents the schedule length achieved by ’extend-all’ PPALS on the
three 4-wide machines with cmpp latencies of 1, 2 and 3 cycles, respectively, and
a CDRL of 1 cycle. Table 3.2(b) shows the corresponding data for the three 6-
wide machines. Column 2 shows the baseline schedule length. Columns 3-5 show
the schedule lengths achieved by DPALS and PPALS for cmpp latency 1: column
3 shows the schedule length for DPALS, column 4 shows the static schedule length
achieved by PPALS ignoring the compiler estimated conflict delay due to combining,
and column 5 shows the compiler estimated expected schedule length achieved by
PPALS including the expected delay due to conflicts. The difference between column
5 and column 4 is the expected delay due to conflict. Column 6 shows the actual
dynamic schedule length achieved during program execution and column 7 shows the
relative error between the achieved dynamic schedule length and compiler estimated

schedule length. Note that for the last ("average’) row, we show the average of the
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cmpplat1 cmpplat2 mpplat3
Benchmark || SLpais || Slapais | Slppais s | Sopais o | Sbppais a| %err || SLapais | SLppais s | SLppats ¢ | Sbppais a| %err || SLapais | Slppais s | SLppats ¢ | SLppais a| %err
39.20 42.46

cipea 46.11 44.01 39.09 39.21] 0.03] 45.71 42.60 42.60 0.00] 46.11 46.10 46.10 46.10] 0.00
|dipeg 14.03 13.69 13.25 13.28] 13.25] -0.23] 1388 13.47 13.51 13.49] -0.15 13.87 13.59 13.62 13.60] -0.15
epic 13.55] 13.54 13.44 13.45 13.45] 0.00] 1354 13.43 13.44 13.44 0.00 13.50 13.44 13.45 13.45] 0.00
lunepic 20.11 20.05 19.63 19.83 19.83] 0.00 19.9% 20.11 20.11 20.11 0.00] 20.11 20.11 20.11 20.11] 0.00
g721encode 29.96 26.60 25.89 25.89 26.03] 0.54] 27.68 26.89 26.89 27.01 044| 2875 28.25 28.25 28.25] 0.00
g721decode 29.53 26.38 26.06 26.16 26.31] 0.57| 27.33 26.92 27.03 27.17, 0.52[ 2833 27.99 28.09 28.10] 0.04
ghostscript 15.14 13.68 13.53 13.56 13.58] 0.15] 14.32 14.19 14.20 14.21 0.07 14.90 14.83 14.85 14.85] 0.00
gsmdecode 23.52] 2261 22.17 22.17 22.18] 0.05] 23.03 22.79 22.79 22.79 0.00] 2352 2297 22.97 22.97| 0.00
gsmencode 30.73] 29.28 25.52 25.52 25.52] 0.00f 29.48 28.10 28.45 28.45 0.00] 30.36 30.05 30.05 30.05] 0.00
mesamipmap 50.49| 49.27 46.18] 46.18 46.98] 1.70] 49.27 47.11 47.11 47.91 1.67 50.22 49.88 49.88 49.89] 0.02
mpeg2dec 16.44 15.22 14.13 14.13 14.19] 0.07] 15.08] 15.20 15.22 15.22 0.00 15.56 15.6% 15.70 15.71] 0.06
mpeg2enc 32.38|| 31.58 27.87 28.03 28.07f 0.14] 29.91 30.71 30.85 30.87, 0.06 30.29 30.28 30.38 30.40{ 0.07
pegwitdec 18.72 18.68 18.35 18.35 18.35] 0.00] 18.64 18.46 18.46 18.46 0.00 18.67 18.50 18.50 18.50] 0.00
pegwitenc 16.57| 16.41 16.00 16.00 16.00f 0.00f 16.41 16.31 16.31 16.31 0.00 16.50 16.44 16.44 16.44] 0.00
rasta 18.71 18.61 18.41 18.42 18.42] 0.00] 18.64 18.58 18.58 18.58 0.00 18.61 18.68 18.68 18.68] 0.00
rawcaudio 17.46 15.47 15.47 15.47 15.47] 0.00] 1497 14.97 14.97 14.97, 0.00 15.47 15.47 15.47 15.47] 0.00
rawdaudio 12.91 12.91 12.90 12.90 12.90] 0.00] 1291 12.90 12.90 12.90 0.00 12.91 12.91 12.91 12.91] 0.00
Average 23.90) 22.82 21.64 21.68| 21.75] 0.20] 22.99 2251 22.55 22.62 0.17] 23.39 23.24 23.26 23.26] 0.02

(a) 4-wide machine

1 2 lat3
Benchmark || Sloais || SLapais | SLppais s | SLppais c | SLppais a| %err || SLapais | SLppais s | SLppais c | SLppais a| %err || SLapais | Slppais s | Skppais ¢ | Skppais a| %err
lcipeg 38.06] 38.06] 37.60] 37.60] 37.60] 0.00] 38.06] 3806] 38.06] 38.06] 0.00] 38.06 38.06 38.06] _ 38.06] 0.00
|dipeq 1147 1141] 1120 1131 1120 -018] 11.42[ 1140 1140 1140 o000 1146 11.43 11.43]  11.43[ 0.00
epic 12.61 1261 1250 1250 1250 000 1255 1255 1255 1255 000 1255 12.57 1257]  1257] 000
lunepic 1976 1976] 1976] 1076] 1976] o000 1976 1076] 1976] 1976] 0.00[ 1976 19.76 19.76] _19.76] 0.00
a721encode 2360 2282 2268] 2068] 2268] 000] 2346] 2325] 2325 2325] o0.00] 2339 2325  2325] 2325 0.00
a721decode 2316] 2209 2106 2202 22.04] 009 2296] 2303[ 23.09] 2309 0.00] 2296 2289 2296 22.95[ -0.04
ghostscript 1242 1191 1187 1188] 11.96] 067 1242 1241 1241 12.42] o0.08[ 1241 12.41 1241 12.42[ 0.08
lasmdecode 2204 2204 2147 21.47]  2147] o000 2162]  21.62[ 2162] 2162 000 2162 2204 2204  2204] 0.00
gsmencode 2510] 2508|2482 2482 2482 000 2498 2495] 2495] 2495] o000 2498 2509 2500 2500[ 0.00
mesamipmap || 4044 3947] 3848] 3848] 3851] o008 4041 4041] 4041] 4042] o002[ 4044 4044] 4044 4044 000
mpeg2dec 1337 13.03[ 1296 12096 1308] 092 1331 1331 1331 1331 o0.00[ 1336 13.36 1336 13.36] 0.00
mpeg2enc 34450 3435] 3426] 3428] 3426 -006] 3445 3445] 3445 3445 o000 3445 34.45 34.45] 3445 000
pegwitdec 18.07] 18.07] 1804 1804] 1804 o0.00[ 1807 1807 1807[ 1807 o0.00[ 18.07 18.07 18.07] 18.07[ 0.00
pegwitenc 1492 14.84] 1483[ 1483[ 14.83] 000 1492 1491 1491 1401] o0.00[ 1492 14.91 1491 14.91] 0.00
rasta 15.71 15.68] 1560 1568] 15.66] -0.13] 15.71 1571 1571 1571 o000 1571 15.71 15.71] _ 15.71] 0.00
rawcaudio 1298 1298] 1298 1298 1298 o00] 1298 12098 1298 1298 o0.00[ 12.98 12.98 12.98] 12,98 0.00
rawdaudio 11.91 11.91] 1191 1191 1101 o000 11.91 1191 1191 1191 o000 1191 11.91 11.91]  11.91] 000
Average 2059 2036] 20.16] 2018]  20.19] 0.12] 2053  2052] 2052] 2052] o0.01] 2053 2055]  2055]  20.55] 0.01

(b) 6-wide machine

Table 3.2: Schedule length achieved by BALS, ’extend-all’ DPALS and ’extend-all’
PPALS (CDRL=1)

absolute values of the relative errors, so as to avoid mutual cancellation of the negative
and positive errors. Columns 8-12 and 13-17 show the corresponding statistics for
cmpp latency 2 and 3, respectively.

Perhaps the most interesting observation about the PPALS data presented in this
table is that (i) the compiler estimated conflict is never more than 0.18% of the static
schedule time and (ii) that the absolute difference between the compiler estimated
time (including conflict delay) and the actual execution time is never more than 0.32%
of the compiler estimated time, for any application on any of the six machines. This
indicates that the compiler estimated time is very accurate. Furthermore the PPALS

schedule conflicts that do occur have almost negligible effect over all the acyclic
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regions. There are a couple of reasons for this behavior. First, is the restrictive
nature of the combining algorithm, which only allows operations to be combined if
the estimated penalty due to conflict for that timeslot does not exceed 1.0. Second, is
that relatively few operations get combined, since there is a very limited range of time
slots where a given operation can be scheduled without increasing the overall schedule
length (this is different for the cyclic scheduler which, as we have seen, allows much
more scheduling mobility for an operation). Third, is that many operations which are
scheduled closely to one another because of similar priorities are disjoint and hence
cause no penalty due to conflict when combined. Fourth, many of the predicated
operations have zero execution frequency which in the actual benchmark runs, which
results in zero penalty when they are combined with other operations. Finally, when
we increase cmpp latency or go to a wider machine, the number of regions that benefit
from PPALS decreases, and that causes the error to decrease even further.

In this and the following section, the PPALS results are only reported for a CDRL
of 1 cycle. The results shown are almost identical to the results for CDRL of 0
cycles, which is due to the very small number of conflicts that occur, due to the five

aforementioned reasons.

3.5.2.3 ’First-fit> PPALS

In this section we study the performance of 'first-fit’ PPALS which, unlike ’extend-
all’ PPALS, does not extend cmpp latency prior to scheduling, but only takes advan-
tage of combining opportunities as they arise.

As we said in Section 3.4.3.2 , if an operation is scheduled at a cycle that is
less than extendedlatency cycles away from its already scheduled cmpp producer,

this operation must reserve its resource unconditionally, and its execution frequency
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in such a schedule will be assigned as 1. On the other hand, if the operation is
scheduled at a cycle that is at least extendedlatency cycles away from its scheduled
cmpp producer, the operation’s predicate can be read early, and it can reserve its
resource conditionally. Obviously the delay due to combining with this operation will
be larger in this case than in the second case.

Figure 3.21(a) shows, for acyclic regions only, the speedup over the 4-wide base-
line processor that is achieved by ’first-fit” PPALS on the three 4-wide probabilistic
predicate-aware processors with cmpp latencies of 1, 2 and 3 cycles. Figure 3.21(b)
shows the corresponding data for the 6-wide processors. By comparing with Fig-
ure 3.19 we see that for cmpp latencies of 2 and 3 on the 4-wide machine, ’first-fit’
PPALS achieves 4% more speedup over the baseline than ’extend-all’ PPALS does.
Whereas for the 6-wide machine, 'first-fit’ PPALS gets only 2% and 1% more speedup
than ’extend-all’ PPALS for cmpp latencies 2 and 3, respectively. This improvement
comes from the fact that “first-fit’ PPALS does not extend the cmpp latencies prior
to scheduling, which makes the latency-constrained lower bound for the cases with
extended cmpp latencies of 2 and 3 be the same as for a cmpp latency of 1. This
bound may be very optimistic, but it will never grow beyond the baseline schedule
length, as happens with ’extend-all’ PPALS as cmpp latency increases to 2 and 3
cycles. Furthermore the priority scheduling and the ’first-fit’ strategy of ’first-fit’
PPALS limits the growth of the critical path in its schedules.

In the next set of results we compare the performance of ’first-fit’ PPALS with the
performance of ’first-fit’ DPALS and ’extend-all’ PPALS for 4- and 6-wide machines
with a cmpp latency of 3. The left bar of Figure 3.22(a) shows the speedup over a 4-
wide baseline machine that is achieved by ’extend-all’ PPALS on a 4-wide probabilistic

predicate-aware machine. The middle bar shows the speedup achieved by ’first-fit’
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Figure 3.21: "First-fit’ PPALS speedup over BALS for acyclic regions only (CDRL=1)
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Figure 3.22: "First-fit’ DPALS and PPALS speedup over BALS for acyclic regions only
(CDRL=1 for PPALS)
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DPALS on a 4-wide deterministic predicate-aware machine. The right bar shows
the speedup achieved by ’first-fit’ PPALS on a 4-wide probabilistic predicate-aware
machine with a CDRL of 1. Figure 3.22(b) shows the corresponding data for the
6-wide machines. As expected, ’first-fit’” PPALS outperforms both ’first-fit’ DPALS
and ’extend-all’ PPALS in all but one case of rawcaudio.

In rawcaudio, ’extend-all’ PPALS performs better than the other two schemes.
The situation here is similar to the mpeg2enc long latency operation anomaly dis-
cussed earlier, where a long latency operation scheduled before a subroutine call (as
happens in the case of 'first-fit’ DPALS and PPALS) causes a dependence edge be-
tween these two operations to produce a longer schedule than when this long latency
operation is scheduled after a subroutine call operation (as happens in the case of
‘extend-all’ PPALS) producing no such dependence edge.

We also notice that “first-fit” DPALS outperforms ’extend-all’ PPALS on average
since the ability of ’extend-all’ PPALS to combine more operations than ’first-fit’
DPALS generally does not compensate for its increased schedule length due to the
increased critical path length caused by its extended cmpp latency.

Also note that despite having very little scheduling headroom for the 6-wide ma-
chine, on 7 applications 'first-fit’ PPALS does achieves some speedup, from 1% for
rasta, cjpeg and djpeg to 4% for ghostscript. By contrast, ’extend-all’ PPALS achieves
a speedup for only two applications: 1% for g721decode and 2% for g721encode.

Table 3.3 augments Table 3.2 with schedule length data for ’first-fit’ DPALS
and “first-fit” PPALS with cmpp latencies of 1, 2 and 3 cycles. The baseline (BALS)

schedule length is repeated here for comparison.
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cmppcombth1 cmppcombth2 cmppcombth3
Benchmark || SLuais || SLapais | SLppais s | Skppais ¢ | SLppais a | %err || SLapats [ SLppas s | Sbppais ¢ [ SLppais o %err || SLapais | SLppais s| SLppais ¢ | Skppais o | %err

|cipeg 46.11)| 44.01 39.09] 39.20 39.21] 0.03[ 44.01 39.09 39.20 39.21] 0.03] 43.64] 39.97| 40.06 40.08] 0.05
|dipeg 14.03| 13.69 13.25] 13.28 13.25] -0.23] 13.69 13.25 13.28 13.25| -0.23| 13.86] 13.37 13.40 13.37] -0.22
|epic 13.55) 13.54 13.44 13.45 13.45] 0.00] 13.54 13.44 13.45 13.45] 0.00{ 13.54] 13.44 13.45 13.45] 0.00
lunepic 20.11}[ 20.05 19.63 19.83 19.83] 0.00] 20.05 19.63 19.83 19.83] 0.00{ 20.10] 19.68] 19.87 19.87) 0.00

g721encode 29.96| 26.60 25.89 25.89 26.03] 0.54] 26.60 25.89 25.89 26.03] 0.54] 27.03] 26.25 26.25 26.47] 0.83
g721decode 29.53| 26.38 26.06 26.16 26.31] 0.57] 26.38 26.06 26.16 26.31] 0.57] 26.65] 26.05 26.16 26.30] 0.53

ghostscript 15.14) 13.68 13.53 13.56 13.58] 0.15] 13.68 13.53 13.56 13.58] 0.15[ 14.11 14.00 14.03 14.11 0.57
gsmdecode 23.52 2261 22.17 2217 22.18| 0.05] 2261 2217 2217 22.18| 0.05] 22.64] 22.31 22.31 22.32] 0.04

gsmencode 30.73) 29.28 25.52 2552 2552] 0.00] 29.28 25.52 2552 2552] 0.00] 29.66] 26.28] 26.55 26.55] 0.00
mesamipmap 50.49|[ 49.27 46.18] 46.18 46.9ﬂ 1.70] 49.27 46.18 46.18 46.9ﬂ 1.70] 49.26] 48.02 48.02 48.02] 0.00

mpeg2dec 16.44) 15.22 14.13 14.18 14.19] 0.07] 15.22 14.13 14.18 14.19] 0.07] 15.33] 14.33 14.38 14.39] 0.07
mpeg2enc 32.38) 31.58 27.87 28.03 28.07] 0.14] 31.58 27.87 28.03 28.07] 0.14] 31.60] 30.33 30.43 3048 0.16
pegwitdec 18.72) 18.68 18.35 18.35 18.35] 0.00] 18.68 18.35 18.35 18.35] 0.00{ 18.68] 18.39 18.39 18.39] 0.00
pegwitenc 16.57) 16.41 16.00 16.00 16.00] 0.00] 16.41 16.00 16.00 16.00] 0.00{ 16.41 16.15 16.15 16.15] 0.00
rasta 18.71 18.61 18.41 18.42 18.42] 0.00f 18.61 18.41 18.42 18.42] 0.00{ 18.61 18.52] 18.52 18.52] 0.00
rawcaudio 17.46) 15.47 15.47 15.47 15.47] 0.00] 15.47 15.47 15.47 15.47) 0.00{ 15.97| 15.97 15.97 15.97) 0.00
rawdaudio 12.91 12.91 12.90 12.90 12.90] 0.00] 12.91 12.90 12.90 12.90] 0.00{ 12.91 12.90 12.90 12.90] _0.00
Average 23.90] 22.82 21.64 21.68 21.75] 0.20] 22.82 21.64 21.68 21.75] 0.20] 22.94] 22.12 2217 22.20] 0.15]

(a) 4-wide machine

cmppcombth1 cmppcombth2 cmppcombth3
Benchmark SLbais || Slapais | Slppais s | Slppais ¢ | SLppats o | %err || SLapats | SLppats s | SLppats | SLppats of %err || SLapats | SLppais s| SLppais o | Skppais a | %err
cipeg 38.06| 38.06 37.60 37.60 37.60] 0.00] 38.06 37.60] 37.60 37.60] 0.00] 38.06] 37.60, 37.60 37.60f 0.00
|dipeg 11.47|  11.41 11.29] 11.31 11.29] -0.18{ 11.41 11.32 11.34 11.32] -0.18[ 11.41 11.35] 11.36 11.35| -0.09
lepic 12.61)| 12.61 12.59] 12.59 12.59] 0.00{ 12.61 12.53 12.53 12.53] 0.00{ 12.61 12.59] 12.59 12.59] 0.00
lunepic 19.76| 19.76 19.76 19.76 19.76] 0.00| 19.76 19.76 19.76 19.76] 0.00] 19.76] 19.76 19.76 19.76] 0.00

g721encode 23.60| 22.82 22.68 22.68 22.68| 0.00{ 22.75 22.68 22.68 22.68| 0.00] 23.10] 22.68| 22.68 22.82] 0.61
g721decode 23.16|[ 22.09 21.96 22.02 22.04] 0.09] 22.03 22.03 22.09 22.09] 0.00] 22.36] 22.36| 22.43 22.44] 0.04
ghostscript 1242 11.91 11.87 11.88 11.96] 0.67 11.92 11.87 11.88 11.95| 0.59] 11.93] 11.89 11.90 11.98] 0.67
gsmdecode 22.04) 22.04 21.17 21.17 21.17{ 0.00] 22.04 21.20 21.20 21.20] 0.00] 22.04] 22.04 22.04 22.04] 0.00
gsmencode 2510} 25.08 24.82 24.82 24.82| 0.00{ 25.08 24.82 24.82 24.82| 0.00] 25.08] 25.06] 25.06 25.06] 0.00
mesamipmap 40.44) 39.47 38.48) 38.48 38.51] 0.08] 40.40 40.35 40.35 40.37] 0.05| 40.40] 40.36 40.36 40.36] 0.00

mpeg2dec 13.37|| 13.03 12.96 12.96 13.08] 0.92f 13.03 13.00 13.00 13.00f 0.00] 13.07f 1297 12.97 12.97] 0.00
mpeg2enc 34.45| 34.35 34.26 34.28 34.26| -0.06] 34.35 34.35 34.35 34.37| 0.06] 34.40] 34.35 34.37 34.39| 0.06
pegwitdec 18.07) 18.07 18.04 18.04 18.04] 0.00] 18.06 18.03 18.03 18.03) 0.00{ 18.06| 18.03 18.03 18.03] 0.00
pegwitenc 14.92| 14.84 14.83 14.83 14.83] 0.00f 14.84 14.84 14.84 14.84] 0.00] 14.92] 1491 14.91 14.91 0.00
rasta 15.71 15.68 15.60 15.68 15.66) -0.13] 15.71 15.60 15.66 15.63] -0.19 15.71 15.60 15.65 15.60] -0.32
rawcaudio 12.98) 12.98 12.98 12.98 12.98] 0.00] 12.98 12.98 12.98 12.98] 0.00{ 12.98] 12.98 12.98 12.98] 0.00
rawdaudio 11.91 11.91 11.91 11.91 11.91] 0.00f 11.91 11.91 11.91 11.91] 0.00{ 11.91 11.91 11.91 11.91 0.00
Average 20.59] 20.36 20.16 20.18 20.19] 0.12] 20.41 20.29 20.30 20.30] 0.06] 20.46] 20.38] 20.39 20.40] 0.11

(b) 6-wide machine

Table 3.3: Schedule length achieved by BALS, ’first-fit’ DPALS and ’first-fit’ PPALS
(CDRL=1)

3.5.2.4 PPAMS

In this section we present the performance results of PPAMS. As was said in Sec-
tion 3.4.4, PPAMS calls PPAS-DDGLatency-Adjust which extends the cmpp la-

tency to each operation whenever that extension may improve the performance.

Speedup on Cyclic Regions

Figure 3.23(a) shows the performance improvement achieved by PPAMS over
BAMS on cyclic regions only, for a 4-wide machine. The left, middle and right bars

correspond to cmpp latencies of 1, 2, and 3 cycles, respectively. In addition each
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(b) Speedup of Ppp,s(6,1/2/3,0/1) over Pygs.(6)

Figure 3.23: PPAMS over BAMS speedup for cyclic regions only (left bar has cmpp
latency=1, middle has 2, right has 3)
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bar contains two overlaid sub-bars: black which shows speedup with CDRL = 0,
and white which shows speedup with CDRL = 1. The sub-bar which corresponds
to larger speedup is always plotted first and is then overlaid with the sub-bar which
corresponds to the smaller speedup. This way only the higher part of the larger sub-
bar, which shows the additional performance gain over the shorter sub-bar will be
visible, and the shorter sub-bar will always be visible, unless both bars are the same
height. For example in Figure 3.23(a), the third bar of djpeg (corresponding to cmpp
latency 3) shows that PPAMS achieves a speedup of 7% with CDRL = 0 and 3%
for CDRL = 1, with the white portion corresponding to the 4% difference between
the two. If both sub-bars are the same height, the sub-bar corresponding to CDRL
=1 is always overlaid on the sub-bar corresponding to CDRL = 0, so that only the
black color is visible, as is the case, for example, with first cjpeg bar (corresponding
to cmpp latency 1).

For cyclic regions, as we have seen from Table 3.1, the PPAMS lower-bound is
determined by the resource-constrained schedule length (ResMI1I,,qms) of the prob-
abilistic predicate-aware processor. recurrence-constrained lower bound (RecMIT) is
not a limiting factor for either 4-wide or 6-wide machine models. As Table 3.1 shows,
RecMII, even for a cmpp latency of 3, is much smaller than ResMI1y,qy,;. Being

resource limited offers a substantial headroom for PPAMS improvement over BAMS

(ITpams—ResMIIppams)
IIbams

for all three cmpp latencies. This headroom, computed as 100 x ,
is 32% for the 4-wide machine, and 24% for the 6-wide machine. This headroom is
much larger than for PPALS, especially for the higher cmpp latencies, which is why
PPAMS achieves a substantially higher speedup than PPALS for all the probabilistic

predicate-aware machines.

The actual performance of PPAMS does vary with cmpp latency. For some of
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the benchmarks, the performance decreases as cmpp latency increases. For example,
for cjpeg performance decreases for both 4- and 6-wide machines as cmpp latency
increases from 1 to 2 and from 2 to 3 cycles. For such benchmarks the performance
degradation for increased cmpp latencies occurs because higher cmpp latency in-
creases the length of the loop epilogue (although the II remains the same), which
leads to longer total execution time. This effect is particularly visible for loops with
small trip count.

On the other hand, for some of the benchmarks, the performance anomalously
increases as cmpp latency increases. For example, for djpeg the speedup increases as
cmpp latency increases from 2 to 3 for the 4-wide machine with CDRL = 0. In this
case, the PPAS machine with the higher latency fails to find a schedule for the same
IT as the machine with the lower cmpp latency. Hence, the 1T is increased, resulting
in a smaller esc, and incidentally thereby achieving better performance when these
loops have a low trip count. For djpeg the PPAMS failure to find a valid schedule for
a given I happens due to rotating register limitations; as cmpp latency increases,
the length of the single iteration schedule increases, and consequently so does the
number of required rotating registers. When there are insufficient rotating registers
to support a schedule with the current /7, the current /7 is increased.

Finally, for some applications, such as rasta, the performance remains the same
for all three cmpp latencies. This happens because the dominant loops are long
trip count loops with a small RecMII of 1 for all three cmpp latencies. Therefore
RecMII is not a limiting factor, and the size of the epilogue does not impact the
overall performance since the loops spend the large majority of their execution time
in the steady-state.

As Figure 3.23 shows, the performance of PPAMS also varies with CDRL. In
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general, we expect PPAMS to have higher performance with CDRL = 0, which allows
a smaller delay due to conflicts and therefore more operation combining than with
CDRL = 1. This is true for most of the applications, but there are some exceptions.
For example, as Figure 3.23(a) shows, cjpeg achieves 2% less speedup for CDRL=0
than for CDRL=1 on a 4-wide machine with a cmpp latency of 3. This is caused by
the low trip count problem: the probabilistic predicate-aware machine with CDRL=0
achieves smaller 71, but consequently higher esc than the corresponding machine with
CDRL=1, which adversely affects the overall performance with CDRL=0 on the loops
with low trip counts.

We also see that for some of the applications, such as mesamipmap, the achieved
speedup is the same for both values of CDRL. This happens because these loops
contain a large number of well balanced if-then-else statements and thus achieve most
of their performance gain due to combining a large number of disjoint operations with
zero delay due to conflict, thereby eliminating the effect of CDRL.

Some of the applications, such as g721decode on a 4-wide probabilistic predicate-
aware machine and mpeg2dec on a 6-wide probabilistic predicate-aware machine, lose
performance with PPAMS. As Table 3.4 shows below, they do achieve better 1 with
PPAMS than with BAMS, but due to their low trip count and long epilogue, they
deliver less overall performance with PPAMS than with BAMS. As in Chapter 2 we
report this loss in performance. Some applications, such as rawcaudio on a 4-wide
machine, and both rawcaudio and rawdaudio on a 6-wide machine, do not achieve
any speedup. As Table 3.1 shows, these applications are RecM I limited for these
machines.

By examining Figure 3.23(a) and (b), we see that in most cases a 4-wide proba-

bilistic predicate-aware processor loses more performance due to higher CDRL than
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a 6-wide probabilistic predicate-aware processor. On average, a 4-wide PPAMS pro-
cessor with a conflict detection latency of 0 cycles performs 5% better, and a 6-wide
PPAMS processor performs 1% better, than the corresponding PPAMS processor
with a conflict detection latency of 1 cycle. Higher conflict detection latency has
more impact on the 4-wide PPAMS processor than on the 6-wide PPAMS processor
because the 6-wide machine has more resources than the 4-wide machine, and thus

has less resource sharing and fewer conflicts.

Comparison with DPAMS

Figure 3.24 shows the speedup achieved by DPAMS and PPAMS schemes on the
cyclic regions only, for cmpp latency 3. Figure 3.24(a) shows the speedup over the
baseline machine that is achieved by the 4-wide DPAMS machine (Pgp,s(4,3)) in the
left bar, the speedup achieved by P,,.s(4,3,1) in the middle bar, and the speedup
achieved by P,,45(4,3,0) in the right bar. Figure 3.24(b) shows the corresponding
data for the 6-wide machine.

On average the 4-wide PPAMS processor with a conflict detection latency of 0
cycles performs 8% better than the 4-wide DPAMS machine and 19% better than
the corresponding baseline machine; these speedups are 3% and 7%, respectively
for the corresponding 6-wide machines. Again we see that the performance gain of
PPAMS on a 6-wide machine is diminished due to the fact the 6-wide machine has
more resources than the 4-wide machine and thus benefits less from resource sharing.
As CDRL increases to 1, the performance gain of PPAMS over DPAMS decreases
becoming 5% for a 4-wide machine and only 2% for a 6-wide machine.

We see that for some benchmarks DPAMS performs better than PPAMS for both

CDRL=0 and CDRL=1. This occurs, for example, for djpeg and mpeg2dec on both
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Figure 3.24: DPAMS and PPAMS speedups over BAMS for cyclic regions only (cmpp
latency=3)
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Benchmark BRec BRes BII Besc [Brr DRec [DRes |DII Desc |Drr PRec |PRes |Plis Plic _|Plid %%error IPesc Prr

|cipeg 1.31 6.49 6.49| 2.00| 10.74f 1.93 5.89] 6.35] 2.44| 13.57| 1.93 4.69] 5.71] 5.71 5.72 0,1& 3.74] 14.91
|dipeg 1.00 58.64 58.64] 1.00| 28.38|| 1.00] 53.17f 53.66] 1.01] 29.89) 1.00] 42.69| 46.71| 48.66] 49.07 0.84] 2.50| 49.25
lepic 2.16 21.02 21.41] 1.77| 12.78|| 2.93] 19.10{ 19.48] 2.00{ 13.86) 2.93] 16.38] 16.48| 16.94] 16.89 0.30] 5.00] 14.77
|unepic 1.00 13.27, 13.27| 1.85] 19.31) 1.00] 12.84] 12.84] 2.70] 21.70| 1.00] 10.52] 10.74] 10.91] 11.42 4.67] 3.14| 27.23
g721encode 1.00 30.00 30.00] 1.00| 12.00f 1.00] 21.00f 23.50] 3.00f 21.50) 1.00f 20.24] 21.50] 21.53] 21.51 0.09] 4.00] 22.50
g721decode 1.00 30.00 30.00] 1.00| 12.00f 1.00] 21.00f 23.00] 4.00{ 24.00) 1.00f 20.26] 22.00| 22.01] 22.00 0.05] 5.00] 30.00
ghostscript 7.88 43.13] 44.10{ 1.02] 20.85| 7.20) 33.35] 34.33] 2.02) 23.79(| 7.88] 31.35] 31.41| 31.42| 31.42 0.00] 1.06] 26.82
gsmdecode 7.93 27.73 27.92| 1.10{ 13.86|| 10.40] 24.95] 2573] 1.96] 18.13| 11.44| 21.46] 22.49| 23.08] 23.06 0.09] 5.10] 35.56
gsmencode 7.87 74.39 74.85] 1.00| 16.56| 7.25| 46.76] 54.87] 1.92] 17.68| 8.93] 45.61] 53.36] 53.40] 53.40 0.00] 4.31] 21.13
mesamipmap 1.00 22.00 22.00] 1.67| 20.67|| 1.00] 16.33] 16.33] 2.67] 27.00/ 1.00] 15.92] 16.33| 16.33] 16.33 0.00] 2.00] 22.00
mpeg2dec 1.00 28.35 28.35| 1.51| 17.11|| 1.00] 25.85] 25.85] 1.85] 15.96) 1.00f 18.70] 20.96| 23.21] 23.78 2.46] 2.96] 31.10
mpeg2enc 2.97 20.27, 20.27] 1.00| 8.21f| 4.93] 17.31f 17.31 1.98] 10.19|[ 4.93] 12.36] 14.32| 14.58] 14.56 0.14] 9.86] 44.81
pegwitdec 1.97 20.67 20.67] 0.05| 13.97|| 1.45| 18.70] 18.70] 1.05] 14.03) 1.97] 12.46] 12.86] 15.58] 15.95 2.37] 4.95|] 29.59
pegwitenc 1.61 19.33 19.33| 0.96] 13.36| 1.57| 18.26] 18.26] 1.61] 16.18|| 1.61] 12.67] 13.39] 13.79] 14.57 5.66] 4.94] 26.81
rasta 3.02 6.80 6.81] 1.25| 7.42 4.14 6.53] 6.68] 1.84] 7.86| 4.14 4.85] 5.99] 6.02 5.99 0.50] 3.39| 12.79
rawcaudio 20.00 24.00 26.00] 1.00| 12.00f| 30.00] 22.00{ 32.00] 3.00{ 20.00Jl 30.00{ 17.13] 30.00] 30.00] 30.00 0.00] 1.00] 17.00
rawdaudio 6.00 20.00 20.00] 1.00| 13.00ff 10.00] 18.00{ 18.00] 3.00{ 18.00)l 10.00{ 14.21] 17.00] 17.00] 17.00 0.00] 2.00] 15.00
Average 4.04 27.42] 27.65| 1.19] 14.84| 5.16] 22.41] 23.94] 2.24] 18.43) 5.40| 18.91] 21.25| 21.78] 21.92 1.02] 3.82| 2596

(a) 4-wide machine

|Benchmark |§Rec BRes Bll Besc_[Brr DRec [DRes |DII Desc_|Drr PRec |PRes |PlIs Plic__|Plid %error _|Pesc_|Prr

Icibeg 1.31 3.24 340| 349| 1477 193] 3.05] 382] 458 18.74 1.93 264] 382 382 382 0.00] 4.58] 18.74
|dipeg 1.00 29.32 29.32| 1.01f 33.87|| 1.00] 26.84] 27.34] 1.51] 46.79) 1.00] 25.18] 25.85| 26.76] 27.11 1.31] 2.01] 44.31
|epic 2.16 10.70 11.09] 2.77] 15.40f 2.93[ 10.55| 10.55| 4.00| 16.78| 2.93 8.71] 9.39] 9.60] 9.39 2.19] 6.31] 16.01
lunepic 1.00 7.34 7.34] 2.29]| 23.07| 1.00{ 7.34] 7.34] 2.72| 23.84 1.00 6.57] 6.93] 6.95| 6.93 0.29] 3.14] 25.08
g721encode 1.00 15.00 15.00{ 2.00| 16.50] 1.00] 12.00] 13.00] 3.50] 23.50| 1.00] 11.14] 12.50] 12.50] 12.50 0.00] 4.50] 25.50
g721decode 1.00 15.00 15.00] 2.00| 16.50f 1.00{ 12.00} 13.00f 4.50| 26.00| 1.00} 11.15] 12.50| 12.56| 12.51 0.40] 5.00] 28.50
ghostscript 7.88 21.58) 22.55| 1.04] 21.84 7.20] 19.63] 19.65] 1.06] 20.95| 7.88| 18.95| 19.64| 19.64] 19.64 0.00] 1.07] 22.01
gsmdecode 7.93 13.87 14.75] 2.76| 20.96( 10.40 12.94] 14.30] 4.52| 26.93|| 11.44] 10.76| 12.64] 12.86| 12.83 0.23] 7.80] 46.89
gsmencode 7.87 37.65] 38.66[ 2.01| 18.22|| 7.25| 30.36] 32.92] 3.14] 37.16| 8.93] 29.32| 32.88] 32.89] 32.89 0.00] 3.82| 30.90
mesamipmap 1.00 12.33 12.33] 2.33| 23.33| 1.00{ 10.67] 10.67| 4.33| 34.00] 1.00} 10.39] 10.67] 10.67| 10.67 0.00] 3.67] 28.67
mpeg2dec 1.00 14.19 14.19| 2.88| 22.75)| 1.00{ 13.04] 13.04] 3.75| 29.86|[ 1.00] 12.10] 12.82] 12.89] 12.92 0.23] 4.38] 36.14
mpeg2enc 2.97 10.14 11.12] 2.00| 13.32| 4.93[ 9.15| 9.15| 6.91| 17.28|| 4.93 7.33] 8.16] 8.17] 8.16 0.12] 8.92| 27.33
pegwitdec 1.97 10.84 10.84| 1.05| 15.03| 1.45[ 9.84] 9.84] 1.22| 19.30|f 1.97 7.73] 7.89] 8.09] 8.11 0.25] 6.03] 29.86
pegwitenc 1.61 10.01 10.01] 259| 23.94f| 157 9.62| 9.62] 3.30] 22.20/ 1.61 8.10] 841 848] 861 1.53] 5.08| 28.79
rasta 3.02 3.56) 3.57| 326| 11.63|| 4.14| 3.56] 4.69| 2.88| 10.99| 4.14 3.06] 469 469 469 0.00] 2.88] 10.71
rawcaudio 20.00 12.00 20.00{ 1.00| 13.00 30.00] 11.00] 30.00] 1.00] 12.00f 30.00 8.83] 30.00{ 30.00] 30.00 0.00] 1.00] 12.00
rawdaudio 6.00 10.00 10.00] 2.00] 16.00f 10.00{ 9.00] 11.00{ 3.00] 17.00|l 10.00 7.33] 10.00{ 10.00] 10.00 0.00] _3.00] 15.00
Average 4.04 13.93 14.66| 2.15| 18.83] 5.16] 12.39] 14.11] 3.29] 23.73| 5.40] 11.14] 13.46| 13.56] 13.57 0.39] 4.30] 26.26

(b) 6-wide machine

Table 3.4: Schedule length achieved by BAMS, DPAMS and PPAMS for cmpplat=3
and CDRL=1

the 4- and 6-wide machines. As Table 3.4 below shows, PPAMS does achieve smaller
II, but has a longer epilogue than DPAMS in all these cases which, due to the low

trip count of the loops, results in PPAMS getting lower performance than DPAMS.

Other Scheduling Measurements of PPAMS

Table 3.4(a) shows various scheduling measurements for Pyse(4), Papas(4, 3) and
Pypas(4,3, 1) machines. These measurements were collected over all ppa-improvable
regions. Columns 2, 7 and 12 show the RecM 1 for the three schedulers. As expected,
for some applications (epic, gsmdecode, gsmencode, mpeg2enc, rasta, rawcaudio and
rawdaudio) RecMII increases for both DPAMS and PPAMS. Also note that RecM

is slightly smaller for DPAMS than for PPAMS. This increase is due to the latency
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extension step which extends latency on a larger number of edges for PPAMS than
for DPAMS since PPAMS has more operations that can benefit from combining than
DPAMS. Therefore, whenever some of the edges whose latencies were extended by
PPAMS but not by DPAMS are on the critical path, PPAMS has a higher RecM 11
than DPAMS.

Columns 3,8 and 13 show the value of ResMII for the three schedulers, respec-
tively. As explained in Section 2.4.5, the baseline scheduler increments the resource
usage by one regardless of the operation’s guarding predicate and its execution fre-
quency. DPAMS increments the resource usage count by one per group of disjoint
operations. Many ppa-improvable loops have a large number of if-then-else state-
ments; DPAMS reduces their ResMII on average by 22% relative to the baseline.
PPAMS further decreases their ResMII by an average of 18.5% with respect to
DPAMS by incrementing the resource usage count only by the operation’s (fractional)
execution frequency. Note that for some of the benchmarks, such as gsmencode and
mesamipmap, both DPAMS and PPAMS result in similar ResMII. This is due to
the fact that these applications contain a number of dominating loops that consist
primarily of a large number of well balanced if-then-else statements that provide
ample disjoint operations for combining.

Columns 4, 9, and 14 show the achieved II for the three schedulers. For PPAMS
column 14 shows the static 11 which does not account for the delay due to conflicts.
PPAMS reduces the IT by 12.6% with respect to DPAMS, since it allows more flexible
operation combining than DPAMS. As the example in Section 3.2 demonstrated,
PPAMS can combine both disjoint and non-disjoint operations from the same or
different loop iterations, whereas DPAMS can only combine disjoint operations from

the same loop iteration.
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This flexibility in combining does result in an additional delay due to conflict
(I1¢fiDetay)- Column 15 shows the compiler estimate of the expected initiation inter-
val (Ilegpectea) Which does account for Icfiperay. Based on the formula Il pectea =
Ilgatic + e fipetay, @ given Ilggpecieq can be achieved by allowing more sharing with
tighter operation scheduling, which decreases Il but increases Ilcfipeiay, Or by
allowing less sharing which increases I, but decreases I1cfipeay- For example, by
comparing columns 14 and 15 we can see that for pegwitdec, PPAMS chooses the first
approach and achieves Iy, of 12.86 with a large I1cfipeiqy of (15.58 - 12.86)=2.72.
For unepic, PPAMS chooses the second approach and achieves Il of 10.74 with
a small 11 fipeay of (10.91-10.74)=0.17.

Columns 16 and 17 show the achieved runtime initiation interval (IIgynamic),
and the relative error between Iljynemic and Ilegpecred computed as (Ilgynamic —
Ilspected) /I Laynamic- Note that for the last ("Average’) row, we show the average
of the absolute values of the relative errors to avoid mutual cancellation of the neg-
ative and positive errors. We see that for most of the applications the error is quite
small, less than 3%. In unepic and pegwitenc on the 4-wide machine, the errors
are 4.67% and 5.66%, respectively. This larger error occurs because some of the
predicates that map to the same resource violate the independence assumption that
the compiler made during scheduling. These predicates turns out to be positively
correlated for semantic reasons within the conditional tests which the compiler does
not attempt to analyze; these correlations result in more runtime conflict than was
originally estimated by the compiler.

Columns 5, 10 and 18 show the size of the epilogue (in terms of the stage count)
of the modulo scheduled loops for the three schedulers. We can see that on average

DPAMS increases the baseline schedule epilogue by a factor of 1.9, and PPAMS

153



more than triples the baseline schedule epilogue. The reason for this increase in the
epilogue size is twofold: first, as cmpp latency increases, the SRT schedule length
increases, and second, both DPAMS and PPAMS intentionally stretch the schedule
by moving operations further away from their producers so as to allow more aggressive
combining.

Finally, columns 6, 11 and 19 show the average number of rotating registers [10]
required by each of the three schemes. Rotating registers are used to allocate the
variables with multiple lifetimes which occur when the variable is live across several
loop iterations [44]. The farther away the variable consumer is scheduled from its
producer, the more rotating registers the producer will require. Hence, the increase
in the required number of rotating registers that we see with DPAMS and PPAMS
occurs for the same two reasons that cause the increase in the size of the epilogue
for these two schemes. These increases in register requirements are quite reasonable
by today’s standards. More experimental studies and insights into rotating register
requirements for BAMS, DPAMS and PPAMS are provided in Section 4.4.1.

Table 3.4(b) shows the corresponding data for Ppase(6), Papas (6, 3) and Pppes(6,3,1)
machines for which conclusions similar to those for the three 4-wide machines can be
drawn. However, as mentioned above, the 6-wide predicate-aware machine with 4
integer units has more resources and therefore achieves less benefit from operation
sharing than the equivalent 4-wide machine with 2 integer units. DPAMS and PPAMS

consequently achieve less speedup over the baseline for the 6-wide machines.

3.5.2.5 Overall Speedup

The full application results presented in this subsection assume that the ppa-

improvable acyclic and cyclic regions are scheduled with "first-fit’ PPALS and PPAMS,
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respectively. When deterministic scheduling is performed on dpa-improvable regions
(for comparison with probabilistic), "first-fit’ DPALS and DPAMS are used. As we
said earlier, the rest of the regions are scheduled using BALS and BAMS baseline
scheduling algorithms.

Figure 3.25(a) shows the overall speedup achieved by 4-wide PPAS processor over
the corresponding 4-wide baseline processor for each application. The left, middle and
right bars correspond to cmpp latency 1, 2, and 3 cycles. The white and black bars
for CDRL=0 and 1, respectively, are overlaid as in Figure 3.23. Figure 3.25(b)
shows the corresponding data for the 6-wide processor.

The average speedups achieved over all applications are 16%(15%), 14%(14%)
and 14%(11%) for 4-wide machines with CDRL of 0(1) and cmpp latencies 1,2 and
3, respectively. The corresponding speedups for the 6-wide machines are 8%(7%),
5%(5%) and 5%(4%). Some applications have much higher speedup; for all three
cmpp latencies; gsmdecode and mpeg2enc enjoy more than 35% speedup for the 4-
wide machines and more than 18% speedup for the 6-wide machines. Each of these
benchmarks spends more than 90% of its execution time in the modulo scheduled
loops, which achieve very high speedup with PPAMS (see Figure 3.23). For all the
applications on a 6-wide machine, most of the overall performance improvement comes
from PPAMS; PPALS achieves very little speedup.

Figure 3.26(a) shows the overall speedup over a 4-wide baseline processor achieved
by a 4-wide deterministic predicate-aware processor (left bar), as well as two 4-wide
probabilistic predicate-aware processors with CDRL=0 (middle bar) and CDRL=1
(right bar), respectively. All three predicate-aware machines assume cmpp latency of
3 cycles. Figure 3.26(b) shows the corresponding data for the 6-wide processor.

As expected, in most cases, PPAS outperforms DPAS, resulting in an average
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Figure 3.25: Overall speedup of PPAS over baseline for cmpplat=1, 2 and 3
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6.5% gain for the 4-wide machine with CDRL=0, and 2% gain for the 6-wide machine.
When CDRL is increased to 1, the overall performance gain of PPAS over DPAS drops
to 4% for the 4-wide machine and 1% for the 6-wide machine. We have seen that larger
CDRL has negligible impact on acyclic performance. We have also seen that most of
the cyclic regions are more sensitive to the value of CDRL; the expected I, and the
actual PPAMS speedup over BAMS decreases as CDRL increases (see Figure 3.23(a)).
Thus the overall decreas in speedup for CDRL=1 is due to these cyclic regions.

For some of the benchmarks, DPAS achieves higher performance than PPAS. For
example, for mpeg2dec, on a 4-wide machine, DPAS achieves 3% more speedup than
PPAS on a 4-wide machine with CDRL=1. This happens because the mpeg2dec
application is dominated by loops with a short trip count. In this case, as Table 3.4
shows, PPAMS achieves a smaller 11, but results in a longer epilogue than DPAMS
which, due to the low trip of the loops, results in the better performance of DPAMS.

The results presented so far have been collected using the training input set for
each benchmark. Figure 3.27(a) compares the speedups achieved by a 4-wide PPAS
processor over the corresponding 4-wide baseline processor for both the training and
reference input sets. A cmpp latency of 3 cycles and CDRL=1 are assumed. The left,
middle and right bars correspond, respectively, to the speedup due to acyclic regions
only (scheduled with ’first-fit’ PPALS), cyclic regions only (scheduled with PPAMS),
and the overall application. Each bar is composed of the overlaid white and black
sub-bars for training and reference input sets, respectively. Figure 3.27(b) shows the
corresponding data for the 6-wide processor.

We see that the PPAS processor achieves better speedup on the training input,
which was used for gathering profiling information for the scheduler, than on the

reference input. However, as the left bar shows, ’first-fit” PPALS loses very little
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Figure 3.27: Speedup of PPAS over baseline that correspond to training and reference
input sets (left bar corresponds to acyclic regions speedup, middle bar to
cyclic, and right bar to overall)
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speedup when run on the training input. This is due to the fact that, as explained
in Section 3.5.2.2; acyclic regions scheduled with PPALS have a very small delay due
to conflicts. Using a different input set, does not increase this delay significantly.
However, we do observe some speedup degradation for 5 applications on a 4-wide
machine. Out of these 5 applications, mpeg2dec exhibits the largest loss in speedup,
down to 1.09 from 1.14. 5%. On average, however, in comparison to the training
input, PPALS, when run on the reference input, exibits reduction in speedup from
1.07 to 1.06 on the 4-wide and no loss in speedup on the 6-wide machine.

PPAMS, on the other hand, loses more of its speedup than PPALS does when run
on the reference input, rather than the training input. This is true for both machine
models. However the most substantial speedup loss is due to two benchmarks: djpeg
and mpeg2dec. For example, for djpeg when PPAMS is run on the reference input,
rather than the training input, its speedup is reduced from 1.3 to 0.79 on the 4-wide
machine and from 0.97 to 0.76 on the 6-wide machine. This significant loss of speedup
for these two benchmarks is due to the fact that the reference input results in a large
number of positively correlated predicates which were not correlated in the training
input. These correlations result in more runtime conflict for the reference input in
these two benchmarks. For the other 15 benchmarks, PPAMS loses very little of its
speedup relative to the training input, when run on the reference input.

Over the entire application suite, PPAS’s speedup, when run on the reference
rather than the training input, is reduced down to 1.06 from 1.11 on the 4-wide ma-
chine and to 1.03 from 1.04 on the 6-wide machine. However, if djpeg and mpeg2dec
were omitted when computing the average results, then PPAS would only lose speedup
down to 1.10 from 1.11 on the 4-wide machine, and would maintain its speedup on a

6-wide machine when the reference input is used.
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Figure 3.28: Overall speedups of the 6-wide baseline (left bar) and the 4-wide PPAS
with cmpplat=3 and CDRL=1 (right bar), relative to the 4-wide baseline

Finally, the Figure 3.28 compares the overall speedup over a 4-wide baseline pro-
cessor that is achieved by a 6-wide baseline processor (left bars) and by a 4-wide
probabilistic predicate-aware processor with a cmpp latency of 3 cycles and CDRL =
1 (right bars).

We see that the wider baseline machine with more resources and no resource shar-
ing achieves an average of 25% higher performance than the narrower predicate-aware
machine resource with sharing capability, but fewer resources. This result was ex-
pected for two reasons. First, a wider processor generally achieves some improvement
in performance for every type of code region (typically less for acyclic regions which
are latency bound, and more for cyclic regions which are resource, rather than la-
tency bound), in contrast to a predicate-aware processor that can only improve the
performance of a ppa-improvable code region. Second, within a given ppa-improvable
region, there are operations for which there exist no other operations with which they

can share a resource on the narrower PPAS processor. Such operations might still be
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scheduled in parallel (resulting in a shorter schedule) on the wider baseline machine,
but might not be scheduled in parallel on the narrower baseline machine due to its
tighter resource constraints.

Note that it is possible for a narrower PPAS processor to outperform a baseline
processor that is twice as wide. This will happen if sufficiently often 3 or more
operations get assigned to share the same resource on a PPAS processor. For example,
3 floating-point operations that share a single floating-point unit on a 4-wide PPAS
processor will execute in 1 cycle; however, it will take 2 cycles to execute these 3
floating-point operations on a 6-wide baseline processor with 2 floating-point units.
However, none of the applications in our experiments achieve such an overall speedup,
since the number of operations that get combined to share the same resource in the

same cycle very rarely exceeds 2 operations.

3.5.2.6 Pipeline Utilization

A key hardware feature for supporting PPAS (and DPAS) is the ability to read
predicates early (during the predicate-read and dispatch stage) and discard operations
guarded under False. Discarding operations early in the pipeline prevents them from
superfluously reserving the resources that are used later in the pipeline.

Table 3.5 quantifies the utilization of individual pipeline stage resources per pred-
icated operation. For a given benchmark (row) and pipeline resource (column), the
corresponding table entry shows the percentage of dynamic operations in the bench-
mark that utilize this pipeline resource. A given pipeline resource is utilized by a
given operation only if the operation is not nullified at some earlier stage due to a
False predicate.

Table 3.5(a) shows the resource requirements for the 4-wide baseline processor.
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Benchmark | FETCH | DISPATCH| DECODE | REGISTER|EXECUTE| EXECUTE | EXECUTE| EXECUTE| WRITE
READ INT FP MEMORY | BRANCH BACK
cipeg 100 100 100 100 68.1 0 26.29 5.61 33.52
dipeg 100 100 100 100 71.98 0 25.64 2.38 82.75
epic 100 100 100 100 63.21 14.44 11.89 10.46 96.19
unepic 100 100 100 100 58.26 6.97 28.82 5.96 62.01
g721encode 100 100 100 100 79.71 0 17.31 2.98 66.34
g721decode 100 100 100 100 80.53 0 16.77 2.69 70.95
ghostscript 100 100 100 100 64.59 0.7 26.48 8.22 64.53
gsmdecode 100 100 100 100 87.68 0 9.94 2.37 78.09
gsmencode 100 100 100 100 84.87 0 14.37 0.76 50.14
mesamipmap 100 100 100 100 43.33 15.21 35.97 5.5 81.96
mpeg2dec 100 100 100 100 66.23 0 27.24 6.53 68.25
mpeg2enc 100 100 100 100 90.2 0.43 6.14 3.23 64.16
pegwitdec 100 100 100 100 81.65 0 15.36 2.99 76.91
pegwitenc 100 100 100 100 77.29 0 19.91 2.8 52.92
rasta 100 100 100 100 58.84 9.93 21.62 9.6 89.56
rawcaudio 100 100 100 100 90.53 0 7.56 1.9 73.13
rawdaudio 100 100 100 100 88.59 0 9.11 2.3 74.88
Average 100 100 100 100 73.86 2.8 18.85 4.49 69.78
(a) Resource requirements for the baseline processor, P pase (4)
Benchmark | FETCH | DECODE | PRED. READ | REGISTER | EXECUTE| EXECUTE | EXECUTE| EXECUTE| WRITE
& DISPATCH READ INT FP MEMORY | BRANCH BACK
cipeg 100 100 100 53.93 39.81 0 11.71 2.41 33.52
|dipeg 100 100 100 83.12 59.01 0 21.78 2.33 82.75
epic 100 100 100 98.39 62.41 14.18 11.49 10.31 96.19
unepic 100 100 100 68.78 43.01 2.55 17.68 5.54 62.01
g721encode 100 100 100 74.46 58.07 0 13.63 2.75 66.34
g721decode 100 100 100 77.68 61.55 0 13.56 2.56 70.95
ghostscript 100 100 100 77.98 51.25 0.4 20.45 5.87 64.53
lgsmdecode 100 100 100 78.66 69.5 0 6.9 2.26 78.09
lgsmencode 100 100 100 50.56 43.46 0 6.41 0.69 50.14
mesamipmap 100 100 100 83.11 34.77 13.51 29.35 547 81.96
mpeg2dec 100 100 100 77.45 49.76 0 23.1 4.59 68.25
mpeg2enc 100 100 100 65.21 56.2 0.43 5.84 2.75 64.16
pegwitdec 100 100 100 78.26 61.28 0 14.21 2.77 76.91
pegwitenc 100 100 100 53.87 40.59 0 10.59 2.7 52.92
rasta 100 100 100 93.16 55.04 9.45 19.75 8.92 89.56
rawcaudio 100 100 100 73.15 64.64 0 6.62 1.89 73.13
rawdaudio 100 100 100 74.88 64.61 0 7.97 2.3 74.88
Average 100 100 100 74.27 53.82 2.38 14.18 3.89 69.78

(b) Resource requirements for the probabilistic predicate-aware processor, P ppas(4,3,1)

Table 3.5: Pipeline utilization statistics per predicated operation for baseline and
probabilistic predicate-aware processors (using ’first-fit’ PPALS and
PPAMS)
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Since in the baseline processor the operations guarded under False predicates are
only nullified in the execution stage of the pipeline, all pipeline stages up to and
including execution stage are required by all operations regardless of the value of
their predicates. Note that the execution stage is broken down into four individual
function unit resources: integer, floating-point, memory and branch; the sum of the
requirements over the four function units is equal to 100%. Recall that Figure 3.3
shows that 30% of all dynamic operations have their predicates evaluate to False.
This is consistent with Table 3.5(a) which shows that the write back stage of the
pipeline is effectively required by the remaining 70% of the operations.

Table 3.5(b) shows resource requirements for the 4-wide probabilistic predicate-
aware processor with a cmpp latency of 3 cycles and CDRL=1, using ’first-fit’ PPALS
and PPAMS scheduling. Operations whose predicates are read and found to be
False in the predicate read and dispatch pipeline stage will be nullified in this stage
(see Section 3.3). However, recall that the first three stages (fetch, decode, and
predicate read and dispatch) are must-use stages that are required by all operations.
The register read and execute stages (that come after predicate read and dispatch) are
required by only 74% of the operations. The remaining 26% of the operations therefore
must have been nullified during the predicate read and dispatch pipeline stage. Note
that not all 30% of the operations guarded under False predicates get nullified in
the predicate read and dispatch stage; the remaining 4% of the operations guarded
under False are not nullified until the execute stage, as in the baseline machine.
Consequently both machines show that 69.8% of the operations require the write-
back stage.

The 4% of all operations that have Flase predicates, but do not get nullified

during the predicate read and dispatch stage could not be nullified early because
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their predicates were not available for early read during this stage. This occurs when
an operation is scheduled less than extendedlatency cycles after its cmpp (less than
3 cycles after in our case). Recall that if operation’s predicate is not available, the
operation must reserve all of its resources (up to and including the execute stage of
the pipeline) unconditionally, which is what happens for this 4% of all operations.
Overall, in addition to preventing 30% of all dynamic operations from superfluously
reserving the write back stage, PPAS is able to effectively prevent 26% of all dynamic
operations from superfluously reserving the register read and execute stages of the

pipeline.

3.6 Related Work

In this section we discuss some hardware and compiler approaches to predica-
tion that are most relevant to the predicate-aware scheduling (PAS) described in the

previous two chapters.

3.6.1 Hardware Support for Predication

Predication is a widely used technique. A number of past and present VLIW /EPIC
machines, both embedded and general-purpose, have hardware support for predica-
tion.

Cydra 5 has two modes of execution. In the first mode it can read predicates
in the decode stage and nullify the operations guarded under False. In the second
mode Cydra 5 performs eager execution of nearly all operations (except branches and
memory writes) in which an operation is executed prior to resolving its predicate [10,

46]. When predicates are read in the later execution stage of the pipeline, Cydra
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5 eliminates all side effects of the operation so as to allow simply disregarding the
operation if it should never have executed, i.e. no recovery action is required despite
its speculative execution.

To the best of our knowledge Cydra 5, is the only machine which is similar to our
predicate-aware architecture in that it allows predicates to be read and operations
guarded under False to be discarded early. Although existing machines do vary as to
which stage in the pipeline reads predicate values and when operations are nullified,
no architecture that we are aware of allows disjoint operations to reserve the same
resource in the same clock cycle, as in our predicate-aware technique.

The Texas Instruments TMS320C6000 [56] accesses its predicate register file (PRF)
early in the execution stage, before accessing the register file (GPR). Ideally, this could
provide an opportunity to select among several disjoint operations, and let only those
operations that are guarded under a True predicate proceed with execution. Never-
theless, this is not done. A predicate-aware T ‘C6x would require disjoint operations
to be scheduled at least two cycles later than their corresponding cmpp operations
(vs. three, as assumed in our processor model, see Section 2.3). This reduction is
possible since the TI ‘C6x combines register (and predicates) read and execute in the
same pipeline stage, which we felt would jeopardize clock speed in our architecture.

Intel’s Itanium [26, 48] processor accesses its PRF in the execution stage of the
pipeline. Itanium also accesses the PRF in the register read pipeline stage in par-
allel with general registers. This simultaneous access is done in order to nullify an
operation that is in the PRF stage and is waiting on the result from a long latency
operation that is currently being executed: if the read predicate is False, the con-
suming operation is squashed and execution can continue. However, the impact of

this particular optimization on overall performance is small [48]. Since the PRF
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is accessed in parallel with the general registers in the register read stage, distinct
GPR register ports must still be reserved by all simultaneously scheduled predicated

operations in the Itanium processor, regardless of whether they will be nullified.

3.6.2 Compiler Support for Predication

A general dicussion of compiler support and the prior techniques on which we
depend is presented in Section 2.4.2. We know of no predicate-aware techniques for
compiling acyclic regions. This section therefore addresses only compiler support
for cyclic regions. Predication is used before modulo scheduling to convert loop
bodies with internal control flow into a single basic block which can later be modulo
scheduled. Predicate-aware scheduling improves the performance of modulo scheduled
loops with internal control flow by reducing the additional resource requirements
introduced by the predicated operations. A number of other compiler approaches
have been proposed to achieve efficient software pipelined schedules of loops with
control flow. These approaches can be classified into two broad categories: fixed 17
approaches and variable IT approaches. We next discuss each of these approaches

and compare them with predicate-aware modulo scheduling (PAMS).

Fixed-11 Approaches

Hierarchical reduction is a technique that converts code with control flow into
straight-line code by collapsing each conditional construct into a reduced pseudo op-
eration [31,32]. It is a hierarchical technique since nested conditional constructs
are reduced by collapsing from the innermost to outermost. A reduced operation is
formed by first list-scheduling both paths of the conditional construct. As in DPAMS,

the resource usage of a reduced operation is determined by the union, rather than
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the sum, of the resource usages of both paths after list scheduling. The dependencies
between operations within the conditional construct and those outside are replaced
by dependencies between the reduced operations and the outside operations. After
hierarchical reduction, the reduced operations can be modulo scheduled along with
the other operations of the loops. Hierarchical reduction assumes no special hardware
support. Thus, the conditional constructs are regenerated after modulo scheduling,
and all operations that have been scheduled with the reduced operation are duplicated
to both paths of the conditional construct. While hierarchical reduction allows a loop
with conditional constructs to be modulo scheduled and in general, as in PAMS, re-
duces the resource requirements of the modulo scheduled loop, it places some artificial
scheduling constraints on the loop by list scheduling the operations of the conditional
construct. The list schedule causes the reduced operations to have a complex resource
usage which is more likely to conflict with already scheduled operations during mod-
ulo scheduling. In addition, if a reduced operation spans more than one II, it may
actually conflict with itself in which case no schedule for that IT can be found. Fi-
nally, regenerating the conditional construct and duplicating operations on all paths
can result in significant code growth that can be exponential in the worst case. In-
crease in the code size may lead to more cache misses and degraded performance. In
addition, reverse if-conversion reintroduces the branches into the loop kernel that can
potentially result in branch mispredictions and also lower performance.

As discussed at length in this and previous chapters, conventional modulo schedul-
ing with if-conversion [41] uses predicates to convert the loop body into a single basic
block, which is then scheduled using a traditional modulo scheduling algorithm. The
main advantage of modulo scheduling with if-conversion over hierarchical reduction is

that operation placement is more flexible since these operations are not list scheduled
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prior to modulo scheduling. However, its main drawback is that by forcing operations
to reserve resources unconditionally, it sums the resource requirements over all paths,
leading to resource pressure problems and schedule length increase as described in
the previous two sections. PAMS reduces the resource constraints in predicated code
by allowing several predicated operations to conditionally reserve and share the same
resource in the same cycle.

Enhanced Modulo Scheduling [59] initially modulo schedules predicated code in
which disjoint operations are allowed to share resources. This is similar to DPAMS,
as well as to hierarchical reduction, in that this sharing enables the resource require-
ments of operations from disjoint paths to be the union rather than the sum of the
requirements of each individual operation. However, this scheme assumes no hardware
support for predication. Therefore in the next step, the control flow is regenerated
from the intermediate schedule to obtain the final pipelined schedule. The interme-
diate schedule is then discarded; the idea of executing the shared-resource schedule
with predicate-aware hardware is not explored in that work. Reverse if-conversion, as
in hierarchical reduction, can cause performance degradation due to increased code
size and branch mispredictions.

As opposed to hierarchical reduction and enhanced modulo scheduling, predicate-
aware modulo scheduling takes advantage of hardware support for predication and
therefore avoids performance degradation due to these two factors. On the other hand,
as in hierarchical reduction and enhanced modulo scheduling, predicate-aware mod-
ulo scheduling reduces the resource constraints by allowing resource sharing among
several predicated operations. Note that DPAMS, as in the other two techniques,
only allows provably disjoint operations to share a resource. PPAMS further reduces

resource requirements, compared to DPAMS, hierarchical reduction and enhanced
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modulo scheduling, by allowing arbitrary predicated operations to share the same

resource, but does so only when the expected resource conflict penalty is acceptable.

3.6.2.1 Variable-II Approaches

The APP (All Path Pipelining) approach [54] pipelines each path separately using
a software pipelining technique for straightline loops and then merges together the
pipelined kernels of those paths. Since each of these kernels is scheduled based on the
constraints of a single path only, a variable I'T can result. Since all path pipelining
pipelines each path separately, the pipeline schedule of each path is limited by the
resource requirements only of this path only. Therefore, the best case performance
of all path pipelining is achieved when only the control path with the least resource
requirements executes repeatedly and dominates the execution of the entire loop.

In contrast, the best case performance of DPAMS is bound by the resource re-
quirements of the busiest control path (and the instruction width of the machine)
regardless of which path executes. In all path pipelining, although each path can
be pipelined tightly, the transitions between paths, which are likely to occur during
actual execution on a realistic input set, are loosely pipelined, leading to poor per-
formance if these transitions are frequent. The overall /1 can vary depending on the
execution frequency of each path and the frequency of transitions among the paths.
In PPAMS the overall 17 also varies with conflict delays that depend on the activation
frequencies of the predicates; however, PPAMS controls this variability by including
the expected conflict penalty in its objective function while scheduling.

Modulo Scheduling with Multiple Initiation Intervals (MSMII) [60] schedules if-
converted code so that control paths with higher execution frequencies have shorter

IIs than paths with lower frequencies. MSMII creates a partitioned loop kernel with
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several predicated loop-back branches (potentially one per iteration path). Path pri-
orities are assigned based upon dynamic profiling of the loop, and operations are then
placed in the kernel so that the highest priority paths use an initiation interval close
to the minimum /7 for that path, and the lower priority paths are then scheduled in
turn as well as possible using only the resource slots still available to them. Predi-
cated operations are used to execute the correct operations and the correct loop-back
branch based upon which path is actually executed dynamically.

There are two main drawbacks of the MSMII approach. First, both hardware sup-
port and dynamic profile information (as in the case of PPAMS) about the program’s
execution are required for the algorithm to be effective. Second, the overall 11 may
increase because the operation scheduling is now more restricted than in single 17
(traditional) modulo scheduling: the particular operation can only be scheduled in
the partition that corresponds to its control path, or any of the earlier partitions, but
not in any of the later partitions.

For MSII, the best performance is achieved when the highest priority path also
happens to be the path with the least resource requirements, and this path executes re-
peatedly and dominates during the execution of the entire loop. In contrast, DPAMS
achieves the same performance regardless of which path executes. Furthermore, the
best case performance of DPAMS is bound only by the resource requirements of the

busiest control path and the instruction width of the machine.

3.7 Summary

In this chapter, we have proposed and evaluated a generalization to the deter-

ministic predicate-aware scheduling (DPAS) technique described in Chapter 2, called
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probabilistic predicate-aware scheduling (PPAS). PPAS can achieve better sched-
ules on predicated code regions than DPAS by further reducing wasted resources in
VLIW/EPIC processors with predicated execution. In contrast to DPAS, which can
only combine disjoint predicated operations to share the same resource in the same
runtime cycle, PPAS enables the compiler to combine two or more arbitrary predi-
cated operations to share the same processor resource. Unlike DPAS, where in any
cycle the predicate of at most one of several combined disjoint operations is True,
assigning several arbitrary predicated operations to the same resource in PPAS will
result in runtime resource conflicts, whenever two or more predicates of a set of com-
bined operations evaluate to True in same cycle. PPAS performs its assignment in a
probabilistic manner using a combination of predicate profile information and predi-
cate analysis aimed at maximizing the benefits of combining in view of the expected
degree of conflict.

Both acyclic and cyclic probabilistic predicate-aware modulo schedulers have been
implemented and evaluated on a suite of Mediabench applications. For a cmpp latency
of 3 cycles and CDRL=0, when 'first-fit’ PPALS is used on acyclic regions and PPAMS
is used on cyclic regions, probabilistic predicate-aware scheduling achieves a 14%
speedup for a 4-wide predicate-aware machine, and 5% for a 6-wide predicate-aware
machine. For CDRL=1, the corresponding speedups are reduced to 11% and 4%.

Finally, note that in our experiments 30% of all dynamic operations had False
predicates. The baseline machine reserves execution resources unconditionally for all
of them. The ’extend-all’ versions of PPALS and PPAMS eliminate these dynamic
operations prior to the register access and execute stages. They achieve this early
elimination by extending the cmpp latency for almost every predicated operation, thus

enabling the probabilistic predicate-aware machine to read an operation’s predicate
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early during the predicate read and dispatch pipeline stage and immediately discard
operations guarded under False; however, by extending almost all cmpp latencies,
‘extend-all’ PPALS can lengthen critical paths by postponing the schedule slots of all
predicated operations.

By employing ’first-fit’ PPALS, each operation is scheduled into an early schedule
slot whenever possible to avoid unnecessarily lengthening the critical paths of acyclic
regions, but if it ends up being scheduled sufficiently later than its cmpp operation,
its predicate is read early and if it is False, the operation is nullified prior to the
register read and execute stages. The 30% of all dynamic operations that have False
predicates break down further into 10% belonging to acyclic regions, and the other
20% belonging to cyclic regions. By using ’first-fit’, rather then ’extend-all’ PPALS,
for list scheduling the acyclic regions, PPAS allows 26% of all operations with False
predicates (6% from acyclic regions scheduled with ’first-fit’ PPALS + 20% from
cyclic regions scheduled with PPAMS) to in fact be scheduled late enough to be
nullified before execution. Only 4% of all operations (which belong to acyclic regions

scheduled with “first-fit’ PPALS) are nullified after execution.
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CHAPTER 4

A STORAGE MECHANISM FOR EFFICIENT

SOFTWARE PIPELINING

4.1 Introduction

In the last two chapters we described predicate-aware scheduling which improves
performance of predicated code on machines with limited resources, such as function
units and register ports, by allowing several predicated operations to share the same
resource in the same cycle. In this chapter we describe Register Queues - a novel
technique to improve the performance of software pipelined loops on a machine with
a limited number of architected registers, by allowing several simultaneously live
values to share same architected register.

Many code transformations performed in optimizing compilers trade off an in-
crease in register pressure for some desirable effect (lower cycle count, larger basic
block size, etc.). Perhaps this is most clearly shown in the software pipelining
[7,8,22,32,42,43] of a loop, which interleaves instructions from multiple iterations
of the original loop into a restructured loop kernel. This restructuring improves

pipeline throughput by enabling more instructions to be scheduled between a value
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being defined by a high latency operation (e.g., multiplication or memory load) and
its subsequent use. Software pipelining thus decreases the time between successive
loop iterations by spreading the def-use chains in time. This rescheduling increases
the number of simultaneously live instances of loop variables from different iterations
of the original loop body. To accommodate these variables, each of the simultaneously
live instances needs its own register. Furthermore, each instance must be uniquely
identified to permit matching a use of a variable to the correct definition; there must
be some mechanism to differentiate among live instances of a variable defined in
previous iterations and the definition in the current iteration.

Two common schemes that support this form of register naming are modulo
variable expansion (MVE) [32], and the rotating register file (RR) [44,46]. MVE
is a software-only approach which gives each simultaneously live variable instance
its own name, unrolling the loop body as necessary to insure that any later uses
can directly specify the correct instance (more on this later). MVE both increases
the architected register requirements and expands the loop body to accommodate
the register naming constraints of the software pipelined loops. In contrast, RR is
a hardware-managed register renaming scheme that eliminates the code expansion
problem by dynamically renaming the register specifier for each instance of a loop
variable. This renaming is achieved by adding an additional level of indirection to the
register specification to incorporate the loop iteration count; this makes it possible
to explicitly access a variable instance that was defined n iterations ago. However,
since the rotating register file contains architected registers, RR still requires a large
number of architected registers to permit generating efficient schedules.

Each of these techniques satisfy the register requirements for a variable by assign-

ing the instances defined in successive loop iterations to distinct architected registers
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in some round-robin fashion. The number of architected registers required for a
software pipelined (SP) loop therefore grows linearly with increased functional unit
latencies [37], i.e., a longer latency operation within the loop will lead to a greater
number of interleaved instances of the original loop in the SP loop kernel, and there-
fore more live instances of the loop variables. Therefore, a shortage of architected
registers either limits the number of interleaved loop iterations or introduces spill
code, each of which degrades performance.

As pipelines get deeper and wider, longer latencies (in particular memory la-
tencies) and higher concurrency used to hide these latencies lead to more overlap
between lifetimes, which leads to increased register pressure. DPAMS and PPAMS
software pipelining scheduling algorithms exacerbate this problem by intentionally
moving variable definitions farther away from their uses to allow more operations to
share the resource (and therefore achieve higher concurrency), which also leads to
more overlap between lifetimes and increased register pressure.

Therefore, efficient highly concurrent software pipeline schedules that account for
realistic memory latencies are difficult, and often impossible, to achieve with MVE
or RR for architectures with small or moderate sized register files. One solution is
to dramatically increase the number of architected registers available. This may be
achieved when a new instruction set architecture is proposed (e.g., the IA-64 or EPIC
instruction set [25] which supports 128 integer and 128 floating point registers). In
this work, we propose an alternative register addressing mechanism which can be
integrated into existing instruction set architectures with minimal modification while
alleviating the register pressure and register naming issues that are inherent in SP.

In this work we demonstrate that by introducing Register Queues (RQs) and

rg-connect instructions, the architected register space is no longer a limiting factor
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in achieving efficient software pipelined loop schedules. The design of these register
queues is derived from the interprocessor queues that support asynchronous commu-
nication in decoupled architectures[53, 61]. Software pipelining using queues has also
been studied in VLIW/EPIC architectures [15, 16, 34] and decoupled processors [58],
but not in general purpose superscalar designs. In particular, [16] proposes the use
of a queue register file (QRF) to support the execution of software pipelined loops
in VLIW machines. This extends prior work on VLIW processors [28] by making
the queues architecturally visible; earlier work scheduled values in pipeline registers,
also organized as queues, for a specific VLIW implementation. By making the queues
architecturally visible, portability between VLIW implementations is provided. Our
work proposes the register queue mechanism for conventional superscalar processors,
as well as software/hardware techniques to ease the integration of RQs into existing in-
struction set architectures and machine implementations with out-of-order pipelines.

In the context of this research, register queues can most clearly be viewed as a
combination of the rotating register file ([6, 46]) and register connection [30] concepts.
This combination enables a decoupling of the total register space for SP into a small
set of architected registers and a large set of physical registers that are organized as
circular buffers and accessed indirectly. By using register queues, the architected reg-
ister requirements of a software pipelined loop are independent of the latencies of the
scheduled instructions. Integrating RQs into an existing architecture is also straight-
forward. We will show that the inclusion of a single new instruction, rg-connect, is
all that is necessary to add RQs to any instruction set architecture while maintain-
ing full backward compatibility. Experimental results show that the RQs method
significantly reduces both the architected register and the code size requirements of

software pipelined loops.
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Figure 4.1: Software pipeline example. This sample program adds elements of a
floating-point array and stores the sum in a scalar. Shown are multiple
iterations of the loop with an initiation interval of 2 cycles (I = 2).

The remainder of this chapter is organized as follows: Section 4.2 provides a brief
introduction to software pipelining and describes previous work in both software
pipelining and register file organization. Section 4.3 describes the concept of register
queues and the architectural modifications required to support this approach. Sec-
tion 4.4 presents our experimental evidence of the performance advantage of register
queues over existing schemes including the application of register queues to both
deterministic and probabilistic predicate-aware scheduling techniques. We offer con-

clusions in Section 4.5.

4.2 Prior Work

As a simple example of SP, consider Figure 4.1 which shows the intermediate level
code of one iteration of a loop that accumulates the elements of a floating point array

into a scalar (loop control instructions have been eliminated for clarity). For this
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example, we assume a two-wide issue machine with a latency of 3 for the load opera-
tion, 2 for floating-point addition, and 1 for integer addition. The scheduling process
is governed by two constraints: resource constraints determined by the resource
usage requirements of the computation, and precedence constraints derived from
the latency calculations around elementary circuits when they exist in the dependence
graph for the loop body due to a loop-carried dependence. With an issue width of
2 and a loop body consisting of 3 instructions, we do not have the resources (issue
width in this case) to start a new loop iteration more often than once every 2 cycles.
The interval between starting new instances of a loop is termed the initiation interval
or II of the loop (in this case we must make I7 > 2). Furthermore this loop contains a
loop-carried dependence between successive instances of the floating-point add which
has a latency of 2; for this reason as well, we must make IT > 2.

Figure 4.1 shows a software pipelined code sequence, for Il = 2. Instructions at
time steps 1-4 form the prologue of the software pipelined loop, time steps 5-6 are
the steady-state segment (or kernel of the loop), and 7-10 form the loop epilogue.
The prologue and epilogue are executed once and the steady-state kernel is executed
repeatedly (n-2 times to execute n iterations of the original loop).

The example in Figure 4.1 demonstrates a problem with register names in software
pipelined schedules. The fload instruction from iteration 7 + 1 starts executing before
the fadd instruction from iteration i uses the value created by the fload of iteration
i. This creates two simultaneously live instances of the register f2. One way to
overcome the register overwrite problem (WAR hazard) is to increase the initiation
interval to 4 to allow the fadd operation from the ith iteration to complete before the
fload of iteration i+1 is issued. However, this would halve the loop throughput to one

iteration every four cycles. We now describe several alternative solutions that have
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been proposed to address this register naming problem.

Modulo variable expansion (MVE) [32] is a compiler transformation (requiring no
hardware support) which schedules a software pipelined loop. The purpose of MVE
is to manage the naming problem by making sure that instances of a variable whose
lifetimes overlap are allocated to distinct architected registers. So, if the lifetime of a
value spans three iterations of the pipelined loop and its lifetime overlaps the instances
of that variable in the next two iterations, three registers will be allocated in the loop
kernel for that variable. In general, at least [%1 registers are required for each variable
in the loop, where [ is the variable’s lifetime in cycles. Since successive definitions
of a variable must be assigned to different registers (since they are simultaneously
live), the kernel has to be unrolled, thus lengthening the steady state loop body. The
kernel of the loop must therefore be expanded by a factor of at least [;] to account
for the different register specifiers required for successive definitions of the variable.
The actual degree of unrolling is, however, determined by the requirements for all the
variables, given the minimum number of registers required for each variable.

When expanding the loop kernel, two techniques are examined. One technique
(which we will call MVE1) minimizes register pressure at the expense of increasing the
degree of loop unrolling that is necessary. Each variable v; is allocated its minimum
number of registers, ¢;, and the degree of unrolling, u,,,.1, is given by the least
common multiple (lcm) of the g;. The other schedule (which we will call MVE2)
favors minimizing the number of times that the loop is unrolled, at the expense of
more register pressure. This minimum degree of unrolling, Uye2, is the max g;,
which, of course, is never more than lem(g;) required by MVEL. However, rather
than requiring exactly ¢; registers for each variable as in MVE1, MVE2 requires ¢; for

a variable if and only if 4,2 mod ¢; = 0, but otherwise requires that the number of
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registers allocated to store the instances of a variable increase from ¢; to the smallest
divisor of ..o that is greater than g;.

Several additional techniques have been proposed to minimize register require-
ments in SP loops. In [23], Huff proposes a heuristic based on a bidirectional slack-
scheduling method that schedules operations early or late depending on their number
of stretchable input and output flow dependences. Integer programming has been used
in [13, 21] to lower register requirements by optimizing according to several potentially
conflicting constraints and objectives, such as resource constraints, scheduling oper-
ations along critical dependence cycles, maximizing the throughput, and minimizing
the schedule length of the critical path. Stage scheduling [12] breaks the schedule
into two steps. In the first step, a modulo scheduler generates a schedule with high
throughput and a short schedule length. In the second step, a stage scheduler reduces
the register requirements of a modulo schedule by reassigning some operations to dif-
ferent stages. All of these schemes aim at reducing the number of architected registers
in the software pipelined loops. The best of these schemes can reduce register pres-
sure by as much as 25% in the configurations studied. However, since all live values
must be allocated to architected registers, these schemes are unable to decouple the
architected register requirements from the physical requirements. In this work, we
concentrate on modulo scheduling, while recognizing that our results can be applied
to other scheduling algorithms as well.

Rau [46] addressed the naming problem in software pipelined loops by employing a
new method of addressing a processor register file in the Cydra-5 minisupercomputer
[6]. The Rotating Register File (RR) is a register file that supports compiler managed
hardware renaming by adding the register address (specified in the instruction) to the

contents of an Iteration Control Pointer (ICP) (modulo the number of registers in the
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RR). This register specifier is then used to index into the architected register space.
A special loop control operation decrements the ICP each time a new iteration starts,
giving each loop iteration a distinct set of physical registers from those used by the
previous iteration (thus a value referenced as r5 in iteration i will be addressed as r6
in i4+1). Since register access includes an additional indirection (i.e. adding the ICP
to the specifier), unrolling is unnecessary and the loop kernel is not expanded from its
original form. RR can therefore eliminate the code expansion problem from SP, but
it still requires a large number of architected registers because all of the physically
addressable registers are part of the architected rotating register file [44].

The problem of increasing a limited architected register space without dramat-
ically changing an existing instruction set has also been explored. The Register
Connection (RC) [30] method tolerates high demand for the architected registers by
adding a set of extended registers to the core register set, and incorporating a set of
instructions to remap architected register specifiers into the extended set of physical
registers. RC architectures use these instructions to dynamically connect architected
registers to extended registers. Accesses to an architected register are automatically
directed to its most recently connected physical register of the extended register file.
A register mapping table with one entry per architected register is used to map each
architected register to its own core physical register (by default) or to any register
in the extended register file (as setup by a connect instruction). The indirection of
RC is similar to that found in register renaming tables [29] used in many superscalar
architectures, except that the mapping is performed under compiler control which
enables more live values to reside in the extended register file than can be addressed
at any point in time by the operand specifiers of the current instruction. This RC

work did not target software pipelined loops; however, we show that by decoupling the
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Figure 4.2: Microarchitectural extensions to support RQs for a machine with 32 ar-
chitected registers, n queues of length 4, and 256 physical registers.

architected register set from a much larger physical register file, the RC method can
greatly reduce the architected register requirements of these loops. Although using
RC to perform SP in the context of modulo variable expansion significantly reduces
architected register requirements, RC (like MVE) still requires loop unrolling to solve
the register naming problem. Furthermore, RC adds some connect instructions to

the loop kernel, prologue and epilogue.

4.3 Register Queues

We now propose an alternative scheme called Register Queues (RQs). RQs in-
corporate both a hardware-managed register renaming feature similar to RR and the
register decoupling of RC to ameliorate both the code size and the architected regis-
ter problems from SP. When scheduling for an SP loop, variables with multiple live

instances will be placed in a queue; all other variables in the loop will be assigned to
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conventional registers. The register file in an RQs design consists of three parts as

shown in Figure 4.2:

e a set of register queues: Each queue has a (Qtail pointer, analogous to the
ICP in the RR, and a set of contiguous registers which share a common name-
space with the physical register file, but are logically (and probably physically)
separate. In Figure 4.2 the registers that constitute register queue 1 are physical
registers prO through pr3; physical registers pry through pr; make up register
queue 2, etc. These registers are analogous to the registers in the RR, and
use the same modulo arithmetic to index into the queue. They differ from
RR registers in that registers in the queue must be explicitly mapped to an
architected register before being accessed. Like the RR registers, the registers
in the queues become part of the state of the processor and must be saved

during context switch.

e a physical register file: The physical register file contains the remaining set
of physical registers not allocated to a register queue. This set of registers is
equivalent to the physical register file found on most superscalar processors. In

Figure 4.2 the physical register file contains registers pry, through pross.

e an architected register map table: This table maps each architected register
either to a physical register (using standard register renaming logic) or to a
register queue (using an rg-connect instruction). Each entry in the map table
contains a particular physical register index (pri) and a read offset (ro). The
index specifies that either some free physical register or a particular register
queue is to be mapped to the architected register. The read offset, used only

for register queue mappings, contains an offset into the queue specifying which
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register in the queue is mapped to the architected register.

A single rg-connect instruction is added to the ISA to manage the RQs: rg-connect
maps, remaps or unmaps an architected register to one of the register queues. The

semantics of the rg-connect instructions are:

e rg-connect $rq, $ar, imm: maps an architected register $ar to register queue
$rq ($rq = 1,2,...,n) by writing the queue number into the pri field of the map
table. Furthermore, the read offset (ro) in the queue is specified by the imme-
diate field imm. Subsequent reads of architected register $ar will now map to
the immth entry from the Qtail of register queue $rq. Note that the semantics
for a read are different than for real queues; instead of destructively reading
from the head of the queue, an architected register is mapped to some location
in the queue and reads occur from that location in a nondestructive manner.
This greatly increases the flexibility of using register queues (though it makes

the term queue somewhat of a misnomer).

e rg-connect $0,8ar, 0: remaps architected register $ar to a free register from
the physical register file. By numbering the register queues from 1 to n, we
leave the $rq = 0 operand in the rg-connect instruction free to indicate that the

architected register $ar should be disconnected from its register queue.

A read access to an architected register that is mapped to a register queue causes

the following events to take place:

1. Use the register specifier in the operand field of the machine instruction to index
into the Map Table and extract the register queue identifier (the pri field of the

register map table entry) and an offset into the queue (the ro field).
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2. Index into the queue specified by pri at the specified read offset. To compute
the offset, the Qtail is added to ro, modulo the number of registers in the queue.
The physical register specifier is the index bits in the pri field with the least
significant 2 bits replaced by the computed offset. Note that in this example,
the circuit used to perform the mapping is a 2-bit adder — not a 7-bit adder as

used in the Cydra-5 RR.

3. Read the contents of that physical register or pass that physical register iden-
tifier to later pipeline stages if the results must be forwarded from an earlier

instruction that has yet to retire.
A write into the register queue involves the following sequence of steps:

1. Use the register specifier in the operand field of the machine instruction to index
into the map table and extract a register queue identifier (the pri field). This
selects the register queue; the read offset is not needed since a write value is

always appended to the tail of the queue.

2. Decrement the Qtail pointer for the queue. This is analogous to decrementing
the ICP in the RR. Note that in RQs the update of Qtail automatically occurs
on each write to the queue, whereas in the RR the ICP is updated using a spe-
cial branch instruction. Both solutions effectively manage the register naming

problem.

3. Pass the physical register identifier of this new Qtail position in the queue (along
with the instruction) to the appropriate reservation station. Note that at this
point all register identifiers found in the reservation station are standard physical
register specifiers, leaving the reservation station and operand forwarding logic

unchanged.
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It should now be apparent that the offset (ro) field of the map table entry is used
only for reads from queues; it should be 0 to reference the most recently defined
variable instance, 1 to reference the previous instance, etc. Furthermore, since there
is only one ro field for each architected register it is not possible to read two different
queue offsets using a single architected register except by using an intervening connect
instruction, and at most one connect instruction can be issued in one cycle for the
same architected register. Finally, if a read and a write are issued in the same cycle
to the same architected register which is mapped to a queue, which physical register
is accessed by that read is unaffected by that write. Furthermore, if the read and the
write are to the same physical register, the value in that register prior to that write

will be read.

4.3.1 SP Scheduling Using Register Queues

Managing the dynamic mapping of variable instances as a queue enables imple-
menting efficient software pipeline schedules with little change in code size or ar-
chitected register requirements. Each register queue, like a rotating register in RR,
provides a set of registers to contain instances of a variable for several successive iter-
ations. RR uses a contiguous set of RR architected registers to enable unconstrained
access to any physical register. By contrast, RQs assigns each variable that is read
one or more iterations after its definition in a software pipelined loop to a distinct
register queue that holds all live instances of that variable. ' Architected registers
with unique operand specifiers are then connected to the particular locations in the

queue that contain the live instances that are to be read. If a value is read three

ISeveral variants of this scheme are discussed below. In particular, Section 4.3.2 discusses how
to use two register queues to accommodate a variable when one queue cannot accommodate all of
its simultaneously live instances.
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iterations after its definition, i.e., after 2 other intervening writes to the same vari-
able, its architected register is mapped to the third most recent definition by using
an rg-connect instruction to set the offset, ro, for that architected register to 2. In
general, for a particular use of a variable, ro is set to the number of intervening writes
that occur to that variable (or in general to that register queue to cover the case when
multiple variables share the same queue) between the definition of interest and the
use of that defined value.

The two more recent definitions are (at the time of this read) associated with
positions of that queue that now have offsets of 0 and 1; no architected registers need
ever be mapped to these queue locations if they will not be referenced until a later
iteration. This mapping mechanism eliminates the need for unrolling the software
pipelined loop kernel since architected registers are only mapped to offset positions in
the queue that are actually read; writes to variables assigned to queues are always to
the decremented Qtail. This scheme reduces the pressure on the register operand bits
of the instruction set architecture since the number of architected registers, which
must have unique operand bit patterns, is determined by the number of registers at
any one time that are actually connected to queues at various read offsets. Since at
most one register is needed for each active (queues, read offset) pair, the total register
requirements are much less than the total of all simultaneously live instances of all
variables.

The functionality of RQs can be demonstrated by re-examining the loop fragment
from Figure 4.1. Figure 4.3 (a) shows the code fragment after SP is applied — including
the prologue, kernel and epilogue of the loop. The prologue code includes instructions
1 through 5. Instruction 1 creates a mapping between architected register f2 and

register queue qI at read position 1. Writes to f2 will now decrement ¢1’s Qtail and
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Line Assembly Code Cyc lteration A lteration B Iteration C lteration D Iteration E
1|rg—connect g1, 2, 1 1| rg—conq1,f2,1
2|iadd r1,rl, #4 2| iadd r1, r1, #4
3|fload 2, 0(rl) 3| fload 2, 0(r1)
4(iadd r1,rl, #4 4 iadd r1, r1, #4
5|fload 2, 0(rl) 5 fload 2, 0(r1)
6| fadd f6, 6, f2 jadd r1, r1, #4
6|fadd 6, f6, f2 ! foadi2 S0 _
7liadd r1,r1 #4 8 fadd f6, f6, f2 jadd r1, r1, #4
8|fload f2, 0(r1) % ifoadizNGEl_
10 fadd f6, 6, 2 iadd r1, rl, #4
11 fload 2, 0(r1)
9|fadd f6, f6, 2 12 fadd f6, 6, f2
10|rg—connect q1,f2,0| 13 rg—con q1,f2,0
11|fadd f6, 6, f2 14 fadd f6, 6, 2
12|rg-connect 0, f2,0 15 rg—con 0,f2,0
(a) Scheduled Code (b) SP execution of 5 original loop iterations
Cyc Instruction queue 1 before instruction queue 1 after instruction Value read
3 fload 2, 0(r1) ol -|-|-1|- Bl -] -] - 2, -
5 fload 2, 0(r1) Bl - |- |- 2, 2] - | - 2, |12 -
6 faddf6,16,12 ] - | - |12 | 7] - | - | | 2,
7 fload 2, 0(r1) |2— - - | f2, | |1— - | f5 |2, |2 N
8 faddf6,16,12 (1] - | |2 |2 Tl - | | | 2,
9 fload 2, 0(r1) |1— - |15 |2, |2 W f2, |25 |2, | f2 -
10 fadd f6, 6, f2 |0— f, |25 |12, | 2 W f2, |25 |12, | f2 f23
11  fload f2, 0(r1) |O_ fo, |25 |12, | 2 |3— f2, |25 |2, | f2 -
12 fadd f6, 6, f2 |3— f, |25 |2, | T2 |3— f2, |25 |2, | f2 f2,
14 fadd f6, 6, f2 |3— f, |25 |2, | f2s |3— f, |25 |12, | T2 f25

(c) Reads and writes of register (f2) in sample execution

Figure 4.3: Software pipeline schedule for the sample code (see Figure 1) using RQs
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overwrite the register pointed to by the new value of Qtail. Once the read offset is
set to 1, subsequent reads of f2 will retrieve the contents of ¢ register (Qtail+1) mod
queue size. The remaining instructions in the prologue load the first two memory
values and increment the pointer (rl) twice.

Instructions 6-8 in Figure 4.3 (a) represent the loop kernel. The read from register
f2 in instruction 6 returns the second most recent write to ¢I (i.e. (Qtail + 1) mod
queue size). The variable in f6 has only one live instance at any time and does not
require a queue. Instruction 7 increments the pointer (rl). Instruction 8 writes the
next load value into register f2, decrements Qtail for register queue g1, and puts the
loaded value into the register pointed to by the new Qtail. This loop kernel iterates
until the last load operation is performed, leaving uses of the final two memory data
for the epilogue.

Instructions 9-12 form the epilogue of the SP loop schedule. Instruction 9 uses the
second to last memory value in the same manner as the loop kernel access. However,
the last value loaded will remain in the tail of the queue since no further writes to the
queue are performed. To use this value, we need to remap f2 to reference the offset
0 position in gI. This is performed with another rg-connect instruction (instruction
10). Instruction 11 can then read from f2 and access the final load value from the
Qtail position. Finally, architected register f2 is remapped to a free register in the
physical register file, completing the SP schedule.

Figure 4.3 (b) shows how the SP schedule interleaves instructions from different
loop iterations. The prologue instructions are issued on cycles (time) 1-5; these
instructions include the rg-connect and iadds and floads for the first two iterations
of the original (unscheduled) loop (we will refer to the original loop iterations by

uppercase letters — A and B in this case). The kernel of the loop is shaded and in
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this example executes three times (cycles 6-7, 8-9, 10-11); the first iteration of the
SP loop kernel executes the fadd instruction from the original loop iteration A along
with the ¢add and fload from iteration C. The second time through the kernel will
execute instructions from original loop iterations B and D at cycles 8-9; the third
time through the kernel executes instructions from iterations C and E at cycles 10-
11. Finally, the epilogue of the SP schedule is executed at times 12-15 performing the
remaining fadd instructions (for iterations D and E).

Figure 4.3 (c) shows how data is accessed in register queue ¢! for the sample
code. Queue reads do not change the state of the register queue; fload instructions
at times 3,5,7,9 and 11 are shown to decrement the Qtail and write the new data in
the queue. At cycle time 6, the first iadd instruction reads the first value written
to qI. It retrieves the value f2; by adding the current Qtail (2) to the read offset
(which was set to 1 by the initial rg-connect instruction), and accesses ¢I at position
3 (the rightmost, shaded position in ¢f in Figure 4.3 (c)). The remaining reads are
as shown in Figure 4.3 (c) and operate similarly. Recall that the rg-connect at cycle
13 has changed the read offset to 0 just before the final read at cycle 14, and that
this connect instruction was necessitated by the lack of a store to the queue between
the read at 12 and the read at 14. Note that a dummy write to the queue could have
been used at cycle 13 instead of the rg-connect instruction, as it would achieve the
desired effect by increasing the Qtail, rather than the offset.

In this example, only a single variable is allocated to a queue and it contains two
live instances. In general, there may be many variables with multiple simultaneously
live instances. One simple connect strategy employs a single unique register queue for
each such variable to hold all live instances of that variable. This mechanism works

well in reducing the architected register pressure of SP schedules, but may require a
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large number of register queues (one for each variable containing multiple instances).
Furthermore, with fixed length queues, many of the registers in the queue may not be
required (if there are fewer live instances of a variable than registers in a particular
queue), whereas some variables with many live instances may not be accommodated
by a single queue.

Fortunately, since the read offset values may be changed, the RQs access capabili-
ties for a single queue are flexible enough to hold instances of more than one variable.
Thus, we can assign all instances of several variables to the same queue, connecting
read offsets accordingly. It is only necessary to determine the read offset for each
use, given the sequence of writes for all the variable instances mapped to the queue.
This is simple when writes for each variable are unconditionally performed; it is then
simply a matter of counting the definitions that occur between the definition and
use of a particular instance. It becomes more challenging when writes to a variable
are conditionally executed (e.g., instructions in an if-then-else statement). In this
case, we must carefully determine the possible read offsets or assign the conditionally
defined variable to a queue that is not shared. Alternately, a dummy write on the
alternate path can be inserted to insure that a value will be written to the queue
regardless of the execution path.

A second queue register allocation issue arises when the variables assigned to a
particular queue contain more live instances than the number of registers in the queue.
In this case, we can either increase the initiation interval of the SP schedule (so as to
reduce the number of instances), or we can concatenate two or more physical queues
into a larger logical queue by copying the head of the first queue to the tail of the
second queue. FEach copy costs one extra instruction in the loop body to perform

the copy, and one additional architected register to read the oldest value in the first
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queue (offset 3) as the source field of the copy instruction (any register mapped to
the following queue can be used as the destination of the copy since all writes append
to the queue tail regardless of the read offset). This mechanism is discussed further
in Section 4.3.2.

Finally, it is possible to run out of architected registers, even when using RQs.
In this case, we can avoid spilling values to memory by reconnecting architected
registers inside the loop body. Indeed, it is possible to use a single architected register
throughout the SP schedule by reconnecting prior to each definition or use of a variable
that is allocated to a register queue. This strategy would lead to a large number of
connect instructions in the loop body (one for each read and write), but it would
correctly implement the register requirements of a software pipelined loop. This

mechanism is discussed further in Section 4.3.3.

4.3.2 Managing Queue Overflow

If a variable assigned to a particular queue has more live instances than the number
of registers in the queues, we can concatenate two or more queues by copying the head
of the first queue to the tail of the second queue before it is overwritten by a new
data instance. Suppose, for example, that the load latency of the machine executing
the loop fragment in Figure 4.1 is increased to 11 cycles. To maintain an initiation
interval of 2, the time between a definition (fload) and its use (fadd) would span six
iterations of the SP kernel, resulting in 6 (rather than just 2) simultaneously live
instances of the variable, which exceeds the queue size (4 elements).

In scheduling this loop, the prologue code would expand to 14 instructions (1-14)
spanning 6 iterations of the original loop (A-F), as shown in Figure 4.4 (a). The

first connect instruction (at position [A,1] in the figure) creates a mapping between
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Cyc Iteration A lteration B Iteration C Iteration D lIteration E Iteration F Iteration G

1 | rg-conqlf2,3
2 | rg-con g2,f4,1
3 | iaddrl,rl, #4
4 | fload f2, 0(r1)
5 iadd r1, r1, #4
6 fload f2, 0(r1)
7 jadd r1, rl, #4
8 fload 2, 0(r1)
9 iadd r1, rl, #4
10 fload 2, 0(r1)
11 | fmove f2, f4 jadd r1, r1, #4
12 fload 2, 0(r1)
13 fmove f2, f4 iadd r1, rl, #4
14 fload f2, 0(r1)
15 | fadd f6, f6, f4 fmove f2, f4 iadd ri, rl, #4
16 fload 2, 0(r1)
17 fadd 6, 6, f4
18 rg—con q2,f4,0)
19 fadd f6, 6, f4
20
21 fadd f6, 6, f2
22 rg—con q2,f2,2
23 fadd f6, f6, f2
24 rg—con q1,2,1
25 fadd f6, 6, f2
26 rg—con q1,f2,0
27 fadd 6, 6, f2
(a) SP schedule
Cyc Instruction queue 1 after instruction queue 2 after instruction
4 floadf2,00) 31 - | - | - |2 ‘ a-]-1-1- ‘
6 floadf2,00) ;] - | - |12 |f ‘ -] -1-1- ‘
8 floadf2,000) {| - | [f2 [f2 ‘ d-1-1-]- ‘
10 floadf2,000) o1 |12 |2 |12 d-1-1-]- ‘
11 fmove f2, f4 o1t [ |12 |12 -] -] - ‘
12 floadf2,000) 51t |f5 [f2 |12 ‘ -] -] - ‘
13 fmove f2, 4 a1 |12 [ [ 12 ‘ - | - | [
14 floadf2,000) ] |12 |2 |12 ‘ o1 -] - [ |

(b) contents of queuel and queue 2

Figure 4.4: Software pipeline schedule with queue overflow (fload latency = 11).
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architected register f2 and register queue ¢I with a read offset of 3. Writes to f2
enqueue data at the tail of the queue, while reads from f2 access the oldest element
in the queue. Since the queue size is insufficient to store six items, a second queue
must be allocated to live instances of this variable; the second connect instruction
(at [A,2]) maps architected register f/ to ¢2 to provide the remaining queue storage
for this variable. After 4 loads to ¢, the fmove pseudo-instructions at [A,11], [B,13],
and [C,15] copy the oldest data from ¢0 to the tail of ¢gI. Once the oldest element
in q0 is copied to ¢1, it is safe to overwrite it by executing another fload instruction;
another fmowe is then required sometime before the next fload.

The queue management performed in the prologue of this SP scheduled loop is
shown in Figure 4.4 (b). The first four elements are written into ¢! by the fload
instructions (at [A,4], [B,6], [C,8] and [D,10]). The first element is then copied to
q2 (at [A,11]) freeing that storage for the next write to ¢ (at [E,12]). This process
is repeated to move the second element written to ¢ (at [B,13]) and allow the final
write to ¢I in the prologue (at [F,14]).

A fourth instruction (at [C,15]) is added to the loop kernel to continue moving
head elements from the head ofg! to the tail of ¢2. The kernel is otherwise unchanged
from the schedule in Figure 4.3 except that the fadd instruction now employs archi-
tected register f/ and reads from ¢2. Assuming that this kernel is executed once (i.e.
that 7 iterations of the original loop are required), the epilogue starts at cycle time
17. To perform more than 7 iterations of the original loop, cycles 15 and 16 are
simply repeated once per additional iteration. Note that architected register f/ and
hence queue ¢2 is both read and written at cycle 15. Following common design for
multiported register files, we assume that the read uses the old value of Qtail while

the write uses the decremented value as its index, but does not write into the Qtaul
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register until after the read access is completed (for the opposite sequence the offset,
ro for the read, would simply have to be set to 2 rather than 1). Thus at cycle 15,
[A,15] reads f2; from position (241) of ¢2, while [C,15] writes f23 into position (2-1)
of ¢2. The fload at cycle 16 then simply overwrites f23 in position (2-1) of ¢f with
f27.

Queue accesses in the epilogue differ from earlier references. Since the epilogue
code will not enqueue new data into ¢! (i.e. there are no fload instructions in the
epilogue) fmove instructions are no longer required; instead, r¢-connect instructions
are added to change the read offset to access the correct entry in the queues. No-
tice that the first two fadds in the epilogue reference ¢2 (through f4) and the final
four references access ¢ (through f2). Two final rq-connect instructions (not shown
in Figure 4.4 (a)) could be added if necessary to reconnect f2 and f4 to free registers

(as done by instruction 12 of Figure 4.3 (a)).

4.3.3 Further Reducing Architected Register Pressure

In the event that too few architected registers are available to support the SP
schedule, it is possible to reconnect architected registers inside the loop body. Fig-
ure 4.5 illustrates this approach by re-examining a modified version of the loop frag-
ment from Figure 4.1. For demonstration purposes we added a new instruction (fadd
/8, f6, f2) requiring an additional read of the queue mapped to f2 with a different
offset. 2 Normally, each different read location in the queue would be mapped to a
different architected register so as to eliminate reconnecting; however, in this exam-

ple, we assume that only a single architected register is free for use by this variable.

2We also change the latency for fadd to 1 for this example in order to simplify the discussion of
the resulting schedule.
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Line  Assembly Code Cyc Iteration A Iteration B Iteration C Iteration D
. 1| rg-con q1,f2,1
1 liadd rl,rl, #4 2[Gadd i, #4
2 |fload f2, 0(r1) 3| fload 2, 0(r1)
3 |fadd fs, f6, £2 4 iadd r1,r1, #4
5 fload f2, 0(r1)
4 |fadd f8, f5, f2 6| fadd fe, 6, 2 iadd 1, r1, #4
7 fload 2, 0(r1)
8 rg-con q1,f2,2 iadd r1, r1, #4
fadd f8, f6, f2
9 rg-con q1,2,1 fload 2, 0(r1)
fadd fe, f6, f2
rqcon q1,f2,2
10 fadd f8, 6, f2
rg-con q1,f2,1
n fadd fo, f6, f2
12 fadd 8, f6, f2
rg-con q1,f2,0
13 fadd fe, 6, f2
14 fadd f8, f6, f2
() Original loop body
before SP scheduling (b) SP schedule
Cyc Instruction queue 1 before instruction queue 1 after instruction ~ Value read
3 fload f2,0(r1) W - - - - E - - - | f2 )
5 fload f2,0(r1) E - - - | f2 E - T2, | f2 .
6 faddfefof2 5] - 2, |f2 o] | | |® f2,
7 fload f2,0(r1) E . T2, | f2 W S f25 | f2, | -
rg-con q1,f2,2 B i
8 faddfs,f6, 5 [1] 2, |2, |2 ] 2, | f2, |f2 f2,
rq-con q1,f2,1 -2 |2, |f2 f2; | f2, | f2
9 faddfe, 6,2 1| 3 |2 M L [ [ ™ 2,
Y
ob floadf2,00m) [1] | f2, | f2 % 2, |25 |2, | f2

(c) Contents of queue 1

Figure 4.5: Software pipeline schedule with architected register pressure (fadd latency

~1).
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The modified source code is shown in Figure 4.5 (a) and the resulting SP scheduled
loop is shown in Figure 4.5 (b).

In the modified loop body there are two reads from register f2 with different read
offsets. If we had an additional architected register, it would simply be connected to
the second read position in the same queue. Instead, we keep reconnecting register f2
inside the loop body to alternate between the two desired read positions. Prologue
instruction [A,1] ( Figure 4.5 (b)) maps architected register f2 to register queue ¢ with
read offset 1. The fload instructions enqueue data in ¢I. The first fadd instruction
(at [A,6]) accesses ¢ with read offset1 (to access the value loaded at [A,3] despite the
intervening fload at [B,5]). The second fadd instruction (at [A,8]) accesses the same
data in ¢ with read offset 2 (since there has been another intervening fload at [C,7]).
The following iterations connect similarly.

The loop kernel requires six instructions: the original four instructions and two
additional rg-connect instructions. In the first cycle of the loop kernel (cycle 8), f2is
mapped to ¢ with a read offset of 2 to enable access to the value required for the fadd
/8, f6, f2 instruction in [A,8]. The second cycle of the loop kernel (cycle 9) remaps f2
to access g1 with a read offset of 1, in order to access the value required for the fadd
16, f6, f2 instruction in [B,9]. The fload instruction writes a new element, as before,
into the queue and updates the Qtail.

Keeping the initiation interval at 2 cycles requires careful management of the
queue resources; for example, in cycle 9 we are changing the mapping of register f2,
reading the queue specified by f2, and writing a new element into the queue specified

by f2. The ordering of these operations is as follows:

e the read from f2 uses the queue mapping (¢1) and the read offset (1) forwarded

from the rg-connect instruction that is issued in the same cycle (instead of
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reading the current ro field from the map table) and adds that forwarded offset
to the Qtail value (1) that was available at the start of the cycle, and thereby

accessing element f2,.

e the write to f2 also uses the queue mapping forwarded from the rg-connect
instruction issued in the same cycle, decrements the Qtail value (to 0) and

writes f24 into g1 at position 0.

Figure 4.5 (c) shows the queue requests that occur in the prologue and the first
iteration of the loop kernel. Writes to the queue occur in cycles 3,5,7 and 9. Reads
occur on cycles 6 and 9 for the fadd f6,f6,f2 instruction (using read offset 1) and
on cycle 8 for the fadd f8,f6,f2 instruction (using read offset 2). The ninth cycle is
separated into two parts to illustrate the details of the queue access: cycle 9a shows
the queue read performed by fadd f6, f6, f2 using an offset of 1 from the current Qtail
of 1, returning element f2,; cycle 9b shows the second phase of that cycle in which
the fload alters the queue state, in particular f24 is written into ¢ and its Qtasl is
decremented. Remapping f2 continues as appropriate for the accesses by the fadd
instructions in the epilog, as in the previous examples, without any intervening fload

instructions.

4.4 Performance Evaluation

Our experimental study consists of two parts. In the first part we demonstrate
the capability of the RQs approach by comparing the register space and kernel code
requirements for various load latencies in the RR method and both MVE methods
(labeled MVE1 and MVE2) and comparing the results to those with the RQs scheme.

In the second part, we demonstrate the capability of the RQs approach by comparing
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the register space requirements of the RQs and RR schemes when either determin-
istic or probabilistic predicate aware modulo scheduling is used with various cmpp
latencies.

In both experiments we use an iterative modulo scheduler (IMS) [41] which pro-
duces a near optimal steady-state throughput for machines with realistic machine
models. However, note that we have not implemented a register queue allocation
algorithm within the IMS scheduler. The register queues requirements for a given
loop in both studies are estimated by counting the number of register definitions in
the loop body. When the loop contains predicated operations, which is always the
case for loops scheduled with DPAMS and PPAMS, it often happens that a regis-
ter consumer depends on several distinct producers that are guarded under different
predicates. All these producers define the same destination register that is associated
with a single queue. Since predicates only become known at runtime, it is not possible
for a compiler to correctly insert an rq-connect instruction to connect the consumer
of this register with a fixed position in the queue that will always correspond to the
correct value written by the correct producer. The read offset into the queue will vary
at runtime depending on which producer’s predicate is True in a given loop iteration.
This is a well-known naming problem in predicated code which, in order to match a
register consumer with the correct producer, requires that the predicates of all the
possibly correct producers be known; obviously, no such predicate values are available
at compile time. We have not addressed this problem in this dissertation. Instead,
we assume that each producer of the same register that is guarded under a distinct
predicate will go into a distinct queue. This assumption will result in overestimating
the number of queues required to perform software pipelining using RQs in those

cases where there are several producers of the same register that are guarded under
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distinct predicates.

4.4.1 Register Queues Study for Various Load Latencies

As we described in Section 4.2, MVE1 minimizes register pressure at the expense
of increasing the degree of loop unrolling, whereas MVE2 minimizes degree of loop
unrolling at the expense of using more registers. For each technique we vary the load
latency from 1 cycle to 45 cycles to assess how the resource requirements might vary
across a wide variety of machine models.

The benchmark loops studied in this series of experiments were obtained from
the Perfect Club Suite, SPEC, and the Livermore Kernels. These loop kernels were
provided by B.R. Rau from HP Labs. Loops were compiled by the Cydra 5 For-
tran77 compiler performing load-store elimination, recurrence back-substitution, and
IF-conversion. The input to our scheduler consists of the intermediate representation;
SP is then performed, generating a new intermediate representation with support for
RQs. Of the 1327 loops extracted from these applications, 983 were selected for this
study; the remaining 344 loops did not perform memory references.

In these experiments we used two target machine models. One machine model
has limited resources (similar to the 6-wide machine baseline machine introduced
in Section 2.5.1), while the other has no resource constraints. The code sizes (static
instruction count) of the 983 loops studied (before SP was performed) are shown
in Figure 4.6(a). A majority of the loops ranged from 5 to 20 instructions, with the
largest loops exceeding 150 instructions.

Figure 4.6 (b) shows the initiation intervals (after software pipelining) for the
loops, assuming a load latency of 13 cycles and no resource dependencies. The vast

majority of the loops have IT between 2 and 15 cycles, with a few loops requiring up
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Figure 4.6: Loop statistics

to 200 cycles.

4.4.2 Software Pipelining Using MVE, RR and RQs

The results of the experiments in this section show the effects on architected
and physical register requirements, as well as the code expansion of the loop due to
software pipelining. Software pipelining was performed using both methods of MVE
(minimizing register requirements (MVE1) and minimizing unrolling (MVE2)) with
no hardware support. SP was also performed targeting each of the two machine
configurations with hardware support: RR, and RQs. These results are presented
in Figure 4.7 and Figure 4.8 for the two machine models with unlimited and limited
resources, respectively.

Figure 4.7 (a) and Figure 4.8 (a) show the architected register requirements
after performing software pipelining on each loop (averaged over all loops). The
graphs show the increase in register requirements and code expansion of the loop

kernel as memory latency is increased from 1 to 45 cycles. The two models differ
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Figure 4.7: A study of RR, MVE and RQs schemes for machine model 2 (with limited
resources).

significantly in the number of registers required to achieve the best (minimum I7))
software pipelining. For the three schemes other than RQs, the unlimited resource
model (which has no resource constraints and therefore a small II) typically requires
2 to 3 times as many registers as the more realistic machine model. However, the
trends seen in both models are similar. In the RR and MVE1 schemes, the numbers of
architected registers are identical, growing at a linear rate with load latency (middle
curve). The architected register requirements for MVE2 increase more rapidly, since

extra registers are added to reduce the code expansion; this growth rate is also fairly
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Figure 4.8: A study of RR, MVE and RQs schemes for machine model 1 (with unlim-
ited resources).
linear.

Architected register requirements for the RQs scheme remain constant as long
as all live instances of each variable can fit in one register queue. The increased
latency affects the RQs schedule only by increasing the offsets specified in the rq-
connect instructions in the loop prologue; as more instances of a variable are needed
to support higher latencies the offset is increased to account for the change in the
location of the instance that is read. The number of architected registers in the RQs

scheme is bounded by the number of consumers (instructions in the loop body that
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read from the queue) and is not affected by the latency of the instructions.

Figure 4.7 (b) and Figure 4.8 (b) show the code expansion caused by SP as mem-
ory latency increases. Code size remains unaffected by memory latency for both RR
and RQs due to the hardware support for renaming the instances of a variable. The
code size drastically increases in the MVE schemes because of the additional unrolling
required to handle the explicit, distinct naming of the additional live instances of the
variables defined by load instructions as latency increases. MVE1 is not shown on
these graphs because of its tremendous code expansion; for a load latency of 13 on
the machine with limited resources, the kernel code size in MVE1 averages 149,256
instructions.

Figure 4.7 (c¢) and Figure 4.8 (c) show the code expansion of the prologue code
as latency increases. Each bar shows the number of instructions moved from early
iterations of the original loop to initialize the software pipeline, as well as extra
instructions required in the RQs model to connect architected registers to register
queues (the darker shaded portion at the top of each bar). The additional overhead
in the prologue to initialize the register mappings required in the RQs scheme is seen
to be minimal. Figure 4.7 (d) and Figure 4.8 (d) show similar code requirements for
the loop epilogue. Here the overhead for the RQs scheme is higher, which is caused by
the necessity to remap architected registers to read the final instances in the queue,
after no more writes to the queue are performed to preserve a constant queue read
offset.

Figure 4.9 shows the number of variables with multiple simultaneously live in-
stances over all loops for the machine with unlimited resources. The vertical axis
shows how many loops have a specified number of variables with multiple live in-

stances. For instance, the leftmost column (at 2 on the horizontal axis) shows that
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Figure 4.9: Histogram of the number of multi-instance variables in a loop.

130 loops have exactly 2 variables with multiple live instances. Almost all of the loops
have fewer than 16 variables with multiple live instances. Since the register queues
are allocated only to those variables with multiple live instances, the register queue
allocation problem need only address those (few) variables.

Figure 4.10 shows the number of simultaneously live instances for each of the
variables identified in Figure 4.9 for the machine model with unlimited resources.
Over half of the variables require only 2 instances, resulting in little physical register
pressure in the queue. The number of live instances becomes even less as resources
are more limited. This result also makes finding a very close to optimal bin-packing
solution to register queue mapping quite easy. The largest number of live instances
found was 13. Unlike the number of variables with multiple instances ( Figure 4.9),
the number of instances for each of those variables will increase in proportion to the
memory latency.

Figure 4.11 shows the rate of increase in the number of instances (averaged over
all variables in all loops) as load latency increases. The growth is linear, ranging

from 2.5 with low latency (since we count only variables with multiple instances, 2
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is an absolute minimum) to 6.5 when memory latency is 45 (for the machine model
with limited resources), or 4.5 to 17 (for the machine with unlimited resources). This
number is very large when allocating the small number of physical registers found
on most machines, making SP intractable. However, since these are only physical

register requirements in the RQs model, RQs makes it much more feasible to perform

SP.

4.4.3 Scheduling Multiple-use Lifetimes for FIFO Queues With

and Without Destructive Reads

The implementation of register queues presented in this work might more descrip-
tively be called circular register buffers. Unlike FIFO queues, reads can access any
element in the buffer and reads are nondestructive. We chose this design to enable
more flexible access to live variable instances. In this section we examine the effects
of this flexible access mechanism on the SP schedules by comparing it with conven-
tional FIFO organizations which read from the head of the queue. We examine two
FIFO designs, one which utilizes a destructive read and a second which employs both
destructive and nondestructive reads of the queue.

The first experiment performed to evaluate the effectiveness of our more flexible
queue access mechanism was to characterize the usage of all variables that are allo-
cated to a queue in the benchmark loops. For each write to a queue, the number of
reads of that element are counted. If there is a single read, then a FIFO organization
with destructive reads is sufficient to access the element; destroying the data is al-
lowed since it will not be re-accessed and the data will be located at the head of the
queue when accessed provided that the queue does not hold instances of some other

variable. However, writes of a variable that is read multiple times make destructive
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reads unattractive since a destructive read of the first read access eliminates the data,
preventing further reads. In this event, additional code must be inserted to recon-
struct the data or to retain it in some other storage (e.g. a general purpose register)
to support multiple reads.

Figure 4.12 shows how many variables have multiple readers. The horizontal axis
shows the number of readers for a variable and the vertical axis shows what percent
of all the variables allocated to register queues have a given number of readers. Note
that 55% of the variables written to a register queue are read only once; these read
references require no access method more sophisticated than a FIFO queue structure.
The remaining 45% of the variables written to queues require at least 2 reads, making
destructive reads problematic.

At least one FIFO queue design [58] proposed allowing both destructive and non-
destructive reads from the head of a queue to provide more flexible access to queue
elements. This approach increases the number of variables that can be allocated to
a queue without the overhead of moving them to a conventional register prior to us-

ing the data; however, it is still too restrictive for some variables in an SP pipelined
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code. About one third of the variables with multiple reads require reads of the same
instance in different iterations of the SP kernel. This means that the first read will
very likely not occur when the element is at the head of the queue, since it must
remain in the queue until the last read. In this event, a FIFO queue structure would
require that multiple queues be allocated for such a variable: one queue to store the
data from the write to the first read, a second to store the data between successive
reads in different SP kernel iterations, and possibly additional queues if reads occur
in three or more different iterations.

To determine the instruction overhead required within the SP kernel if FIFO
queues were used, we rescheduled each of the loops that had at least one variable
that was written to a queue and read two or more times. The loop kernel instruction
count was increased by 60% for those loops when only destructive FIFO accesses were
provided. This overhead included register queue to general purpose register moves
and re-queuing instructions when reads occurred in different loop iterations. The
overhead was reduced to 19% when nondestructive reads from the head of the queue
were also allowed. This overhead consisted of register queue to register queue moves
for variables with reads in different SP kernel iterations. For this reason we feel that
allowing nondestructive reads from any queue position is a much preferred solution;
it offers a much more flexible solution for queue sharing, etc. as discussed at the end

of Section 4.3.

4.4.4 Use of Register Queues in Predicate-aware Machines

In this section we demonstrate the capability of the RQs approach by running
some experiments to compare the register space requirements of the RQs and RR

schemes on machines that employ deterministic or probabilistic predicate aware mod-
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ulo scheduling (DPAMS or PPAMS) with various cmpp latencies. Both scheduling
schemes attempt to reduce the initiation interval of the loops relative to baseline
modulo scheduling (BAMS) by allowing some predicated operations to share the
same resource in the same cycle. To maximize the degree of sharing, the predicated
operations are often moved further away from their consumers. This can create a
large number of simultaneously live instances of loop variables from different itera-
tions of the original loop body, each of which needs its own physical register. As we
have seen in Section 3.5.2.4 ( Table 3.4(a)), compared to BAMS on a 4-wide machine
with cmpplat=3, DPAMS and PPAMS increase the rotating register requirements of
the modulo scheduled loops by 30% and 50%, respectively.

For this study, we use a total of 122 if-converted loops extracted from the seventeen
MediaBench [33] applications used in Chapter 2 and Chapter 3. We use 4- and 6-wide
baseline, deterministic predicate-aware (see Section 2.5), and probabilistic predicate-
aware processor models (see Section 3.5). In addition, we assume that register queues
are deep enough to accommodate all simultaneously live variable instances.

We first study the number of static registers required. The static registers result
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from live-in static values, which are defined outside of the loop and never defined
within it. All these values must be allocated to architected registers to avoid spilling
within the loop body. Figure 4.13 shows the cumulative histogram of the number of
static registers in the loops. The point (x, y) on the curve indicates that y% of all loops
contain at most x static registers. We see that 80% of all the loops require at most 6
architected registers to accommodate their static values. The average number of static
registers required is 3.8; the maximum is 19. The architected register requirement
studies presented in the rest of this section include these static registers.

Figure 4.14(a) shows the histogram of the architected register requirements for
the BAMS, DPAMS and PPAMS schemes on the 4-wide machines. Both predicate-
aware machines have a cmpp latency of 3 cycles, and the probabilistic predicate-aware
machine has a conflict detection and recovery latency (CDRL) of 1 cycle. The point
(x,y) on the curve indicates that y% of the loops require x or fewer architected registers
to achieve the same II as on the machine with an infinite number of architected
registers. The bottom three curves show the histogram of the architected register
requirements with the RR scheme for BAMS, DPAMS and PPAMS. The top curve
shows the architected register requirements for all three schedulers when RQs is used.
Figure 4.14(b) shows the corresponding data for the 6-wide machines.

Note that the architected register requirements with the RQs scheme are identical
for all three schedulers and thus are represented just one curve. As we said earlier,
the number of architected registers in the RQs scheme is bounded by the number
of consumers and is not affected by how far the consumer is from the producer in
a single iteration schedule; thus it is unaffected by which of the three schedulers is
used.

When the RR scheme is used with a fixed number of architected registers, DPAMS
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can schedule fewer loops than BAMS, and PPAMS can schedule fewer loops than
DPAMS. For example, for a 4-wide machine with 32 architected registers, BAMS can
schedule 94% of all loops with the RR scheme, whereas DPAMS and PPAMS with
RR can schedule only 87% and 72% of all loops, respectively. As expected, PPAMS
requires largest number of architected registers with RR, since it aggressively moves
operations from different iterations to minimize the expected schedule length (see Sec-
tion 3.4.4). Since DPAMS can only combine operations from the same iteration, it is
less aggressive than PPAMS, and hence requires fewer architected registers with the
RR scheme. Note that for the same 4-wide machine with 32 architected registers, we
can schedule 99% of the loops with all three schedulers by using the RQs scheme.

As we go to a 6-wide machine with the RR scheme, the required number of archi-
tected registers increases. For example, with 32 architected registers, the RR scheme
permits BAMS, DPAMS and PPAMS, respectively, to schedule only 80%, 68% and
63% of the loops on the 6-wide machine compared to 94%, 88% and 72% of the loops
that same scheduler can schedule on the 4-wide machine. This reduction is due to
the fact that the machine with more resources allows higher throughput which is
achieved by increasing the number of overlapped iterations and lengthening def-use
chains. This, in turn, increases the number of simultaneously live instances of loop
variables. However, when using the RQs scheme, the number of architected registers
required on 4- and 6-wide machines remains the same.

Figure 4.15 shows the effect of cmpp latency by comparing RQs and RR re-
quirements for DPAMS and PPAMS with cmpp latencies of 1, 3 and 5 cycles. The
bottom three curves of Figure 4.15(a) show the histogram of the architected regis-
ter requirements for the DPAMS scheduler with RR on three 4-wide deterministic

predicate-aware machines with cmpp latencies of 1,3 and 5, respectively. The top
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Figure 4.15: Architected register requirements (RQs vs. RR) for DPAMS and PPAMS
with cmpp latencies 1, 3 and 5 (CDRL=1 for PPAMS)

curve of this figure shows the architected register requirements for DPAMS when
RQs is used. Figure 4.15(b) shows the corresponding data for the 6-wide deter-
ministic predicate-aware machines. Figure 4.15(c) and (d) show data corresponding
to Figure 4.15(a) and (b) for the PPAMS scheduler on the 4- and 6-wide probabilistic
predicate-aware machines with CDRL=1.

We see that as we increase cmpp latency, the DPAMS and PPAMS schedulers
require more architected registers with the RR scheme, whereas the register require-
ments with RQs remain constant for all three latencies. This increase in the number

of registers with RR is expected since increasing cmpp latency moves consumers fur-
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ther away from their cmpp producers. However, the number of architected registers

with the RQs scheme is unaffected by this distance.

4.5 Summary

Existing software pipelining implementations have limited effectiveness due to
their high architected register requirements, particularly as operation latencies grow.
In this chapter, we have introduced the RQs technique which almost completely
eliminates architected register pressure and code size increases from software pipeline
schedules by combining a modification to the microarchitecture of a processor with a
minor extension of its ISA and a modified register allocation algorithm in the compiler.

RQs achieves this goal by combining the features of RR (to enable instances of
a variable defined in earlier iterations to be accessed efficiently) with the features of
RC (to decouple architected registers from the physical registers holding live variable
instances). By including the dynamic register name mechanisms found in RR, we
can achieve a software pipelined loop without unrolling the kernel, and by adding
the register decoupling capabilities of RC we can allocate multiple instances of a loop
variable without increasing architected register pressure. This enables RQs to sched-
ule loops for expected memory latencies when a cache miss occurs; the alternative is
to assume that all memory accesses will hit in the L1 cache and stall the processor
when a miss occurs which leads to non-optimal schedules, particularly when cache
miss rates are high.

Our experiments on the loops from a large benchmark suite showed that RQs
provides a significant reduction in the number of architected registers and code size

requirements (compared to RR and MVE). Furthermore, with RQs, memory latency
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increases have little effect on either code size or architected register requirements.
RQs thus enables more aggressive implementation of software pipelining. Finally,
by allowing reads to occur nondestructively and from any location in the queue,
RQs significantly reduces the instruction overhead required to access values stored in
conventional FIFO queues.

RQs can be incorporated into existing instruction set architectures with the addi-
tion of a single new instruction and a modification of the register renaming microar-
chitecture. Furthermore, the complexity of the implementation approximates that of
RR, requiring a single level of indirection and modulo arithmetic of small (4 or 5 bit)
offsets to address the physical registers in the queue (for queues of length 16 or 32).
The physical register requirements of RQs can also be scaled by reducing the number
of registers in a queue and/or by restricting the number of queues. The results show
that a small number of modest size queues is sufficient to support software pipelining,
even as instruction latencies increase.

We have also demonstrated the potential benefits of RQs in the context of the
DPAS and PPAS modulo scheduling schemes. We have seen that using rotating
registers, on the 4-wide predicate-aware machine with a cmpp latency of 3 cycles and
32 architected registers, we could only schedule 87% of the loops from the seventeen
Mediabench applications with DPAMS, and only 72% with PPAMS without register
spilling or increased II. For the corresponding 6-wide machine DPAMS and PPAMS
can only schedule 68% and 63% of these loops, respectively. On the other hand, by
using RQs with 32 architected registers, we can schedule 99% of the loops no increased
11 and no register spilling by using either DPAMS or PPAMS on either 4- or 6-wide

predicate-aware machines with a cmpp latency of 1, 3 or 5 cycles.

217



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Summary

To expose higher levels of instruction level parallelism, the VLIW/EPIC compil-
ers uses aggressive optimization techniques, such as predication and software pipelin-
ing, which exploit the increased instruction level parallelism provided among several
successive basic blocks. To take full advantage of the parallelism offered by these
optimizations requires increasing the number of function units and other processor
resources. Increasing function units to meet the computation demands of the opti-
mized code regions, leads in turn to increases in large centralized on-chip structures,
such as the register file and bypass interconnect. These larger structures are, how-
ever, difficult to design without compromising clock speed, and increasing the design
complexity and power consumption of the processor. As such they make the promised
higher performance levels difficult to deliver in practice.

This dissertation is concerned with processor performance in the context of pred-
icated execution and software pipelining, two of the most common and effective tech-

niques for increasing instruction level parallelism. In particular, we address the issue
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of how to improve the processor performance without increasing the processor’s crit-
ical resources. To this end, we propose three schemes, together with necessary and
recommended adaptations of the processor pipeline that enable predication and soft-
ware pipelining to achieve higher performance by means of more efficient utilization
of the existing processor resources.

In Chapter 2, we describe deterministic predicate-aware scheduling (DPAS) which
allows several disjoint predicated operations to share the same resource in the same
cycle, thus increasing the resource utilization and decreasing the schedule length in
predicated code regions where resources are a bottleneck. The processor pipeline
modifications allow predicated operations that share a resource to read their pred-
icates early and thereupon discard operations guarded under False predicates. The
main consequence of this modification is that in order to combine several operations
to share the same resource, they must be scheduled a sufficient distance (no less
than extendedlatency cycles) away from their corresponding cmpp operations. The
distance of extendedlatency cycles between an operation and its cmpp is sufficient to
ensure that when the operation’s predicate is read early in the pipeline (during the
predicate read and dispatch stage), the corresponding cmpp operation has already
completed execution and the predicate is available.

We have proposed and evaluated three deterministic predicate-aware scheduling
algorithms: two deterministic predicate-aware list scheduling algorithms (‘extend-all’
DPALS and ’best-fit’ DPALS) to scheduling acyclic regions, and one deterministic
predicate-aware modulo scheduling algorithm (DPAMS) to schedule cyclic regions.

"Extend-all”’ DPALS aggressively extends the cmpp latency for each predicated
operation in the region to extendedlatency cycles whenever that may potentially

improve the performance. Over all predicated regions, ’extend-all’ DPALS on 4-wide
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deterministic predicate-aware machine with the realistic extended cmpp latency of 3
cycles achieves a 2% speedup over the 4-wide baseline machine. On a 6-wide machine
with the same cmpp latency, ’extend-all’ DPALS achieves no speedup. Such a modest
performance gain is due to the fact the acyclic regions are latency-bound: increasing
cmpp latency increases the critical path length and reduces the benefits of DPALS.

In contrast to ’extend-all’, ’first-fit’ DPALS does not extend cmpp latency. In-
stead, an operation can be placed close to its cmpp. However, it is prohibited
from sharing the resource with any other operation if it is scheduled closer than
extendedlatency cycles to its cmpp. ’First-fit” DPALS on the 4-wide deterministic
predicate-aware machine with a cmpp latency of 3 cycles achieves a 4% speedup over
the 4-wide baseline machine, and a 1% speedup over the 6-wide baseline machine.
By not extending cmpp latency, ’first-fit” DPALS has a better chance of avoiding
increasing a region’s critical path length, and thereby generally outperforms ’extend-
all’ DPALS. Of course as the cmpp latency grows, less early reading is possible and
less resource sharing will occur in ’first-fit’ DPALS, and hence it too will achieve less
performance gain relative to baseline scheduler.

DPAMS, as in ’extend-all’ DPALS, aggressively extends cmpp latency for each
predicated operation in the region whenever that may potentially improve the per-
formance. DPAMS on the 4-wide deterministic predicate-aware machine with a 3
cycle cmpp latency achieves a 10% speedup over the 4-wide baseline machine. This
substantial speedup for DPAMS, compared to DPALS, is due to the fact that cyclic re-
gion schedules are generally constrained by resources rather than by latencies: DPAS
directly targets this resource constraint problem. As we go to a 6-wide machine, the
DPAMS speedup with a empp latency of 3 cycles is reduced to 4%. Note that both

DPALS and DPAMS achieve less speedup on a 6-wide than on a 4-wide machine. This
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is due to the fact that a 6-wide machine has more resources than a 4-wide machine
and thus resource sharing is less helpful and less is done.

When ‘first-fit’” DPALS is used on acyclic regions and DPAMS is used on cyclic
regions, DPAS achieves a 7% speedup over the entire MediaBench application suite
on a 4-wide deterministic predicate-aware machine with a cmpp latency of 3, and 3%
for the corresponding 6-wide machine with the same latency. For the 6-wide machine,
the performance benefits of DPAS come almost entirely from DPAMS.

Although DPAS is effective for a number of regions, its application is limited only
to the regions that contain at least two disjoint operations. Probabilistic predicate-
aware scheduling (PPAS), however, can assign arbitrary predicated operations to
share the same resource in the same runtime cycle. Contrary to DPAS, PPAS does
allow more than one predicate to be True in the same cycle, thus resulting in runtime
conflicts. Assignment is performed in a probabilistic manner using a combination of
predicate profile information and predicate analysis aimed at maximizing the benefits
of sharing in view of the expected degree of conflict. The processor pipeline is further
modified to detect and recover from such conflicts.

The delay experienced due to conflict is determined by two factors: (i) an application-
specific factor, which depends on the frequency with which more than one resource
sharing predicated operation has its predicate evaluate to True, and (ii) the machine-
dependent conflict detection and recovery latency (CDRL), which depends on whether
the first conflicting operation can be dispatched in the conflict cycle itself (CDRL=0)
or whether the conflict cycle is lost and the first conflicting operation is not dispatched
until the cycle following the conflict cycle (CDRL=1).

As in DPAS, we have proposed and evaluated three probabilistic predicate-aware

scheduling algorithms: two probabilistic predicate-aware list scheduling algorithms
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(’extend-all’ PPALS and ’first-fit’ PPALS) and one probabilistic predicate-aware mod-
ulo scheduling algorithm (PPAMS).

Over all predicated regions, 'extend-all’ PPALS on a 4-wide probabilistic predicate-
aware machine with cmpp latency of 3 cycles achieves a 3% speedup over the 4-wide
baseline machine. On a 6-wide machine with the same cmpp latency, ’extend-all’
PPALS achieves no speedup. ’Extend-all’ PPALS achieves less than a 1% speedup
over ’extend-all’ DPALS because the gains from the more aggressive operation shar-
ing offered by ’extend-all’ PPALS are reduced by the effect of the increased critical
path length due to the 3 cycle cmpp latency.

However, 'first-fit’ PPALS, for a 4-wide probabilistic predicate-aware machine with
a cmpp latency of 3 cycles, achieves a speedup of 7% over the 4-wide baseline machine.
On a 6-wide machine with the same cmpp latency, 'first-fit’ PPALS achieves a 1%
speedup. The 3% speedup that ’first-fit’ PPALS gains over ’first-fit’ DPALS on a 4-
wide machine is due to the increase in sharing opportunities that PPALS can explore
across arbitrary predicated operations while it simultaneously limits the increase in
the critical path length, in contrast with ’extend-all’ PPALS whose critical path is
increased by the latency extension of every cmpp operation on the critical path before
scheduling even begins. Furthermore, the PPALS speedup is not very sensitive to
CDRL latency and is virtually identical for both CDRL values (0 and 1 cycle).

PPAMS on the 4-wide probabilistic predicate-aware machine with a cmpp latency
of 3 cycles achieves substantial speedups of 19% for CDRL=0 and 15% for CDRL=1
over the corresponding 4-wide baseline machine. In general, PPAMS can explore
many more sharing opportunities than PPALS; in addition to being able to combine
arbitrary operations from a single iteration, it can also combine operations from across

different loop iterations. This enables PPAMS to achieve a substantial performance
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gain over DPAMS for the same machine with the same cmpp latency. However,
PPAMS does lose some performance as CDRL latency increases; due to its more
aggressive combining, PPAMS is much more sensitive to the value of CDRL than
PPALS. For a CDRL of 1 cycle, PPAMS’s performance drops by 3%, relative to a
CDRL of 0 cycles on a 4-wide machine. On a 6-wide machine, with a cmpp latency
of 3 cycles, PPAMS achieves 7% and 6% speedup with a CDRL of 0 and 1 cycles,
respectively. As we have said, the speedup is more modest on a 6-wide machine due
to the fact that a 6-wide machine has more resources than a 4-wide machine and its
schedules thus do less resource sharing. Because less resource sharing also means fewer
resource conflicts on a 6-wide machine, increasing its CDRL up to 1 cycle degrades
the performance by only 1%, versus 3.5% for a 4-wide machine.

When ’first-fit’ PPALS is used on acyclic regions and PPAMS is used on cyclic
regions, PPAS achieves a 14% speedup over our entire MediaBench application suite,
on a 4-wide deterministic predicate-aware machine with cmpp latency of 3 cycles
and CDRL=0, and 5% for the corresponding 6-wide machine. For CDRL=1, the
corresponding speedups are reduced to 11% and 4%.

Given the performance results for both DPAS and PPAS, we believe that it is
advantageous to build a PPAS machine, rather than a DPAS machine. The PPAS
clearly achieves higher speedup over the baseline than DPAS. On the other hand, the
PPAS machine is not substantially more complex to design than the corresponding
DPAS machine. Also, as our results indicate, ’first-fit’ PPALS is clearly preferable
to ’extend-all’ PPALS, as 'first-fit’ PPALS achieves higher speedup over the baseline
than ’extend-all’ PPALS for almost all applications.

Finally, to deal effectively with the architected register pressure problem in software-

pipelined loops, we have developed a hardware/software mechanism called Register
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Queues (RQs). Our experimental results for a benchmark suite of 983 loops from
the Perfect Club, SPEC-89, and the Livermore Fortran Kernels show that by decou-
pling the architected register space from the physical registers, RQs achieves efficient
software-pipeline schedules for high operation latencies with almost no increase in
architected registers and code size.

We have also found that both DPAMS and PPAMS significantly increase the
register requirements of predicated cyclic regions. Therefore, we applied the RQs
scheme in conjunction with DPAMS and PPAMS to the predicated cyclic regions
that were extracted from the MediaBench applications. If we used rotating registers
with 32 architected registers, we could only schedule 87% of these loops with DPAMS
and 72% with PPAMS on the 4-wide predicate-aware machine with a cmpp latency
of 3 cycles. For the corresponding 6-wide machine, the rotating registers scheme can
only schedule 68% with DPAMS and 63% with PPAMS. However, by using RQs with
only 32 architected registers, both DPAMS and PPAMS schemes can schedule 99%
of these loops on both 4- and 6-wide predicate-aware machines with a cmpp latency

of 3 cycles.

5.2 Future Directions

The work presented in this dissertation can be extended in numerous directions.
First, both DPAMS and PPAMS extend the cmpp latency of modulo scheduled loops
prior to scheduling. As we have seen in Section 2.5 and Section 3.5, for some
benchmarks (such as rawcaudio and rawdaudio) increasing the cmpp latency may
cause RecM 11 to exceed the baseline initiation interval. In such cases, the predicate-

aware modulo scheduler was not applied since no speedup would be gained despite
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the fact that many predicated operations in these loops can still share resources.

The performance of these loops can still be improved with either DPAMS or
PPAMS by modifying predicate-aware modulo scheduling to increase the latency of
only those cmpp operations that are not in a critical recurrence cycle. One approach is
to decide dynamically during scheduling whether an operation’s cmpp latency should
be extended. The main drawback of such a dynamic scheme is that the decision
is local, and does not take into account the cumulative effect on RecMII by other
operations.

Another approach would be to perform the pre-pass cmpp latency extension so
that cmpp latency is only extended for a subset of operations. The goal here is to
perform a global analysis and choose the best selection of operations so that increasing
their cmpp latency maximizes the total combining opportunity for these operations,
but causes a minimum increase in RecMII. One possible metric to assess a total
combining opportunity for a set of predicated operations is the cumulative delay
due to conflict, which is the sum of individual delays due to conflicts resulting from
combining each predicated operation in the set with every other operation in the
same set. The combining is only legal if the data dependences between the combined
operations are satisfied. Hence the combining opportunity can be computed as the
inverse of this cumulative delay.

Furthermore, to accomplish the actual operation selection, one possibility is to use
a 0-1 knapsack formulation. A 0-1 knapsack formulation packs a knapsack of a certain
capacity with items, each having some weight and some benefit, so that the capacity
of the knapsack is not violated and the maximum total benefit is maximized. In this
case, the knapsack’s capacity would be some value of RecMII that must be less than

the initiation interval of the baseline schedule (to assure that some performance gain
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over baseline is possible). The total weight of the set of selected operations is the
value of RecMII when each operation’s cmpp latency is increased. The total benefit
of the set of selected operations is their total combining opportunity.

In our experiments, the predicate-aware modulo scheduler (PPAMS) achieves very
fast convergence to the dynamic expected initiation interval, I I.zpecteqs. However, given
the hindsight obtained from these experiments, an even faster search algorithm for
ITeypectea can be proposed.

Our current algorithm in Figure 3.17(a) of Section 3.4.4.2 chooses Ilegpected a8
the midpoint between 11}, and Il;,,. However, given that the optimum Il.;pecteq
tends to be 10% or less better than baseline /1, we might better choose the I zpecteq
value to be somewhere around 0.95 x Ilng + 0.05 x I}, (i.e. at the 95% point
of the gap, rather than half way between I, and Il;,). Whenever a schedule is
found we can drop down another 5% of the gap between IIj,, and Il and try
again, until no schedule is found. Once no schedule is found, we then set I1;,, to the
current I'lezpected, Set I1pign to the Iloppecreq Of the last schedule found, and begin a
binary search of the gap between the new I1;,,, and I1};g, as in our current algorithm;
however, whenever a schedule is found for I1,zpecteq, We gain a little bit more efficiency
by setting ITp;gp to the cost of the solution found rather than to the current value of
Il zpectea, which eliminates the possibility of finding the same schedule twice (or even
a slightly worse schedule) later in the search.

Furthermore, in the I14;. loop of the search algorithm in ppams_FindSchedule
( Figure 3.17(b)), we iterate Il from the lowest value up to the highest, as in the
algorithm shown, but once the very best solution is found by the given algorithm,
instead of simply accepting that solution, we try to refine it as follows. At that final

value of I1.zpected, We iterate through all possible values of 1/44i.. If multiple solutions
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with various values of Il ;. are found within the final gap, we choose the solution
within this final small gap that has the highest value of I1,;.. This solution is chosen
because it will have the smallest expected conflict penalty, and thus is expected to
achieve the most stable behavior of any schedule with that Il.gpecteq-

Finally, if no solution at all is found, then we run the baseline algorithm and find
the best baseline solution - but then rather than simply accepting that solution, we
make one more try by setting I, to the baseline bound, and I, to the cost of
the baseline solution found. If this gap is not negligibly small, we do a binary search
for the best PPAMS solution in this range. This final search might discover one or
more PPAMS solutions somewhere within this previously unexplored gap. Note that
this gap was generally quite small in our experiments, as the baseline solutions found
were in fact quite close to their bounds.

Another direction is to develop an epilogue-conscious predicate-aware modulo
scheduler. Currently, no attempt has been made to control the length of a single
iteration schedule during the predicate-aware scheduling of a cyclic region: the op-
erations are moved as far as necessary (as long as resource and data constraints are
satisfied) if they can be combined to share the same resource. This aggressive com-
bining often results in highly improved predicate-aware initiation interval, but a long
loop epilogue. As we have seen, long epilogues can be a problem for loops with a
short trip count, and can significantly degrade the overall performance of DPAS and
PPAS relative to the baseline schedule. An epilogue-conscious predicate-aware mod-
ulo scheduler would try to maximize the degree of operation combining subject to
controlling the size of the loop epilogue.

Our work on predicate-aware scheduling can also be extended to deal with data

dependences in a probabilistic manner. In a data dependence graph, outgoing edges
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from operations with relatively low execution frequency could be removed, thus result-
ing in a graph with fewer latency constraints and hence, hopefully, more instruction
level parallelism and higher performance. The scheduler would ignore these removed
edges when scheduling operations, thereby effectively assuming that the predicates of
the operations with removed outbound edges will always evaluate to False. Of course,
whenever the predicate of one of these operations does evaluate to True at runtime,
a recovery process would be required to correctly execute the original code.

The central idea of this dissertation is to achieve higher performance by using
existing resources more efficiently. The converse question is: ”what is the minimum
number of resources required to achieve a given level of performance?” For exam-
ple, given a machine with a large number of resources, can we eliminate some or,
hopefully, most of these resources and achieve the same (or similar) performance as
the original machine? To illustrate, consider a machine with N arithmetic units and
general purpose register files designed with 2 x N register read ports. This typical
configuration is used due to the conservative assumption that in the worst case each
of the NV operations will require 2 source operands from the register file. In general,
however, design for worst case behavior is not the best design, since this behavior may
rarely occur in practice. However, register ports are a critical factor in determining
cycle delay, as well as the area and power requirements of the register file [47]. We
observe that (i) many operations, such as loads, stores and operations with imme-
diates, have fewer than two source operands, (ii) when two consumers of the same
register are scheduled in the same cycle, they can share a port, and perhaps most
significantly, (iii) many operands are read from the bypass network. Given these three
observations, we believe that by using an intelligent scheduling algorithm that can

capitalize on these observations, the number of read ports in the register file could be
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reduced considerably without noticeable performance loss.
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