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Abstract—We analyse gather-scatter performance bottle-
necks in molecular dynamics codes and the challenges that
they pose for obtaining benefits from SIMD execution. This
analysis informs a number of novel code-level and algorithmic
improvements to Sandia’s miniMD benchmark, which we
demonstrate using three SIMD widths (128-, 256- and 512-
bit). The applicability of these optimisations to wider SIMD
is discussed, and we show that the conventional approach of
exposing more parallelism through redundant computation is
not necessarily best.

In single precision, our optimised implementation is up
to 5x faster than the original scalar code running on
Intel R�Xeon R�processors with 256-bit SIMD, and adding a
single Intel R�Xeon Phi

TM
coprocessor provides up to an ad-

ditional 2x performance increase. These results demonstrate:
(i) the importance of effective SIMD utilisation for molecular
dynamics codes on current and future hardware; and (ii)
the considerable performance increase afforded by the use of
Intel R�Xeon Phi

TM
coprocessors for highly parallel workloads.

Keywords-scientific computing; accelerator architectures;
parallel programming; performance analysis; high perfor-
mance computing

I. INTRODUCTION

Many modern processors are capable of exploiting data-level
parallelism through the use of Single-Instruction-Multiple-
Data (SIMD) execution. SIMD execution is a power-efficient
way of boosting peak performance, and SIMD widths have
been following an upward trend: the 128-bit Streaming
SIMD Extensions (SSE) of x86 architectures have been aug-
mented by 256-bit Advanced Vector Extensions (AVX); the
new Intel R�Many Integrated Core (MIC) architecture sup-
ports 512-bit SIMD; and GPUs typically execute “threads”
in groups of 32 or 64 (1024- or 2048-bit SIMD, for single
precision floating point). For the high-performance comput-
ing (HPC) industry, effective utilisation of SIMD on current
hardware – and preparing for potentially wider SIMD in the
future – is crucial.

However, mapping scientific codes to SIMD can be chal-
lenging. For example, molecular dynamics (MD) simula-
tions are highly parallel but have key memory accesses to
non-contiguous elements via gather and scatter operations,
which can lead to poor performance. We use the SIMD

instruction sets of Intel R�Xeon R�processors and Intel R�Xeon
Phi

TM
coprocessors to explore the acceleration of MD codes

through SIMD execution, with a focus on improving gather-
scatter behaviour. We also provide full application runtimes
for simulations executing on both architectures, to demon-
strate the full impact of our optimisations.

The contributions of this paper are:

• We present an analysis of the gather-scatter bottlenecks
in the short-range force calculation and neighbour list
build functions of Sandia’s miniMD benchmark [1], [2].
Together, these account for approximately 90% of its
execution time.

• We describe, evaluate, and compare the performance of
several SIMD implementations of these two functions
using three SIMD widths (128-, 256- and 512-bit). We
show that an Intel R�Xeon R�E5-2660 is 3.4x and 2.8x
faster with 256-bit SIMD than with scalar execution, for
force compute and neighbour list build, respectively. A
Knights Corner Intel R�Xeon Phi

TM
coprocessor is 5.2x

and 3.8x faster with 512-bit SIMD than with scalar
execution.

• We discuss the applicability of our findings to wider
SIMD, and explore the issue of achieving high utili-
sation of SIMD units. We show that the conventional
approach of exposing more parallelism through redun-
dant computation is not necessarily best.

• We outline design choices that enable the utilisation of
servers comprising both Intel R�Xeon R�processors and
Intel R�Xeon Phi

TM
coprocessors for MD simulations,

namely: a spatial decomposition across CPU and MIC
hardware; the use of Newton’s third law (N3) between
different threads, sockets and nodes in a system; and
re-ordering atoms to facilitate the hiding of PCIe com-
munication behind useful work.

• We demonstrate a methodology of sharing code be-
tween traditional CPU and MIC architectures, and
hence a suitable development path for the acceleration
of legacy HPC codes.

• We achieve up to a 5x speed-up over the origi-
nal miniMD implementation running on the same
Intel R�Xeon R�processor, highlighting the necessity
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of performance tuning for traditional CPU ar-
chitectures. We show that a single Intel R�Xeon
Phi

TM
coprocessor matches the performance of two oct-

core Intel R�Xeon R�processors, and we achieve up to
93% efficiency when combining processor and copro-
cessor.

• Finally, we present an in-depth analysis of the
performance of our optimised code running
on Intel R�Xeon R�processors and Intel R�Xeon
Phi

TM
coprocessors, including weak- and strong-

scaling studies (within a node). These results provide
insight into the speed-ups shown and give direction
for future work.

The remainder of this paper is organised as follows: Sec-
tion II provides a survey of related work; Section III offers
a brief introduction to miniMD and the SIMD instruction
sets of the hardware we use; Section IV explores the use
of SIMD in MD simulations; Section V details a number of
additional, non-SIMD improvements to miniMD, targeted
at multi-threaded shared memory architectures; Section VI
presents an extensive performance evaluation of the code;
and finally Section VII concludes the work.

II. RELATED WORK

The acceleration of MD simulations is the subject of much
research, and many popular MD codes have already been
rewritten to target SSE or the SIMD instruction sets of
GPUs and other coprocessors [3]–[9]. Our work differs
from these in that we draw a distinction between SIMD
and threading – a line that is blurred by the CUDA and
OpenCL programming models – and evaluate our proposed
optimisations for multiple SIMD widths. We believe that
these optimisations are applicable to other SIMD instruction
sets, and should be of benefit to MD codes optimised for
other hardware.

Other research has focused on improving the algorithmic
complexity of MD. One common aim is to reduce the
number of distance comparisons made during the com-
putation of short-range forces; extensions to both Verlet’s
original method [10] of maintaining a list of interacting atom
pairs [11]–[13] and the so-called “link-cell” method [14]–
[16] have been proposed, along with new approaches [17]–
[20] that make use of domain-specific knowledge to improve
the search for near-neighbours. Improvements to communi-
cation complexity have also been investigated [21].

More hardware-focused optimisations have been consid-
ered, including: the potential of scheduling MD across
heterogeneous systems featuring some mix of CPU and GPU
cores [5], [22]; sorting atoms according to their position in
space, to improve cache behaviour [4], [23]; and the use of
novel hardware purpose-built for MD simulations [24], [25].

The use of single or “mixed precision” is common in
GPU implementations [5], [6], as double precision is known
to be at least 2x slower than single precision across GPU

architectures. In [1], the authors allude to a performance
study of miniMD in single precision on CPUs and note that
there was “no appreciable performance enhancement.” We
verify that there is no significant performance benefit from
using single precision in scalar code, since the application
is not memory bound. However, as shown in this work,
the use of single precision in SIMD can lead to significant
performance improvements on CPUs.

III. BACKGROUND

A. miniMD
miniMD is a simplified version of the popular LAMMPS
package [26], [27], intended for use in optimisation studies
such as this one; due to its simplicity, it is possible to
explore potential optimisations much more rapidly. Despite
supporting only the Lennard-Jones (LJ) inter-atomic po-
tential, miniMD’s performance and scaling behaviour is
representative of much larger and more complex codes.

Simulation parameters such as the number of atoms
(N ), density (⇢), potential cut-off (Rc), skin distance (Rs),
frequency of neighbour list rebuilds (Nrebuild) and initial
temperature (T ) are defined in a simple input file.

B. SIMD on Intel R�Hardware
The instructions included in SSE (and its extensions, SSE2,
SSE3 and SSE4) operate on 128 bits worth of integer or
floating-point data (e.g. four 32-bit integer/single precision
values, or two double precision values). In addition to
mathematical operations, SSE provides instruction support
for common “horizontal” operations such as permuting (or
shuffling) the contents of a SIMD register. There is no
instruction support for gathers or scatters, and loading scalar
values into a SIMD register is expensive if they are not
contiguous in memory.

The introduction of AVX increased the SIMD width from
128 to 256 bits (for floating-point), and the number of
operands in each instruction from two (destructive source)
to three (non-destructive source). 256-bit AVX instructions
typically treat the lower and upper 128 bits of a SIMD reg-
ister as independent, and this makes loading non-contiguous
values into SIMD registers more expensive; two 128-bit
values must be built and combined to form a 256-bit register.
Intel R�has announced AVX2, which includes support for
gathers to help alleviate this cost and also adds 256-bit
integer support. In this paper, we use AVX for both our 128-
and 256-bit experiments, to better isolate the effects of SIMD
width – any performance difference between 256-bit AVX
and SSE will arise from a combination of increased SIMD
width and reduced register pressure due to three-operand
instructions.

The Knights Corner instructions (KCi) introduced in the
first generation Intel R�Xeon Phi

TM
coprocessor have a SIMD

width of 512 bits, and include a number of instructions that
do not have SSE or AVX equivalents. Gather and scatter



Table I
SYSTEM CONFIGURATION.

Intel R�Xeon R�E5-2660 KNCa

Sockets⇥Cores⇥Threads 2⇥ 8⇥ 2 1⇥ 60⇥ 4
Clock (GHz) 2.2 1.3

Single Precision GFLOP/s 563 2496
L1 / L2 / L3 Cache (KB) 32 / 256 / 20,480 32 / 512 / -

DRAM 128 GB 4 GB GDDR
STREAM [28] Bandwidth 76 GB/s 150 GB/s

PCIe Bandwidth 6 GB/s
Compiler Version Intel R�v13.0.030

MPI Version Intel R�v4.0.3

aEvaluation card only and not necessarily reflective of production
card specifications.

instructions allow for the contents of SIMD registers to
be loaded/stored from/to non-contiguous memory locations,
and all SIMD instructions support conditional execution
on individual elements based on the contents of a 16-bit
mask. These additions greatly help with the vectorisation of
scientific HPC codes – the memory-related instructions make
it easier to populate SIMD registers, while masking makes
it significantly cheaper to handle control divergence (i.e.
different SIMD elements needing to take different directions
at a branch).

C. Experimental Setup

The system configuration for the server used in our experi-
ments is given in Table I. We use a Knights Corner (KNC)
Intel R�Xeon Phi

TM
coprocessor, which has 60 x86 cores and

hyper-threading support for four hardware threads per core.
For area and power efficiency, KNC cores are less aggressive
(i.e. have lower single-threaded instruction throughput) than
Intel R�Xeon R�processor cores and run at a lower frequency.
Hyper-threading helps to hide memory latency and multi-
cycle instruction latency.

KNC is on a card that connects to the system via
PCI-Express (PCIe) and which holds dedicated memory
(GDDR). Communication between the CPU and KNC is
therefore done explicitly through message passing, and com-
munication between KNC and the node’s network controller
passes through the CPU. However, unlike many other copro-
cessors, KNC runs a full operating system. It also supports
a shared memory model across all threads, and includes
hardware cache coherence. Thus, in addition to common
programming models for coprocessors (e.g. OpenCL), KNC
supports more traditional multiprocessor programming mod-
els such as Pthreads and OpenMP.

The CPU and KNC binaries were compiled using the

Intel R�compiler1 with the following flags: -O3 -xHost
-restrict -ipo -fno-alias. In all experiments
(except where noted), we use all of the available cores on
the CPU and/or KNC, and each core runs the maximum
number of hyper-threads supported (two per CPU core and
four per KNC core). All experiments use a single node, but
we aim to faithfully represent multi-node execution costs;
messages that would be sent/received via MPI in a multi-
node run are packed/unpacked appropriately, with the CPU
effectively communicating with itself. The sending/receiving
of messages for the KNC card is handled by the host CPU,
with data forwarded on over PCIe.

Since we are interested primarily in the effects of SIMD,
especially wide SIMD, all experiments use single precision.
Although the use of “fast math” flags and instructions can
boost performance, their cumulative effect on long-running
simulations should ideally be examined by domain experts.
Any performance numbers we report result from using exact
floating-point math, and are on average 10–15% worse than
when approximate reciprocals are employed.

To ensure that we start from a strong baseline implemen-
tation, we apply some previously proposed optimisations to
miniMD before beginning our SIMD analysis. A number of
these optimisations are already present in some form within
LAMMPS: the aggregation of an atom’s forces takes place
in registers; atoms are sorted according to their position in
space; and alignment is ensured via the insertion of padding
into the array-of-structs (AoS) layout used to store atom
data. We also adopt the neighbour list build algorithm pro-
posed in [11], which is not currently present in LAMMPS.

IV. SIMD OPTIMISATIONS

Our SIMD analysis focuses on the two most expensive
components of miniMD: the short-range force calculation
and neighbour list build, which typically account for approx-
imately 80% and 10% of execution time, respectively. We
consider the SIMD acceleration of both components, since
any performance improvement to either will make the other
relatively more expensive. Further, the contribution of the
neighbour list build to execution time is dependent upon the
frequency of rebuilds, an input parameter that may be higher
for other simulations.

For both components, we begin by examining whether
the code is suitable for auto-vectorisation, and what speed-
ups this delivers. We show that gathers and scatters, SIMD

1Intel’s compilers may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on micropro-
cessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered
by this notice. Notice revision #20110804.



1: for all atoms i do
2: for all neighbours k do
3: j = neighbour list[k]
4: delx = xi - pos[j+0]
5: dely = yi - pos[j+1]
6: delz = zi - pos[j+2]
7: rsq = (delx ⇥ delx) + (dely ⇥ dely) + (delz ⇥ delz)
8: if (rsq  Rc) then
9: sr2 = 1.0 / rsq

10: sr6 = sr2 ⇥ sr2 ⇥ sr2
11: f = sr6 ⇥ (sr6 - 0.5) ⇥ sr2
12: fxi += f ⇥ delx
13: fyi += f ⇥ dely
14: fzi += f ⇥ delz
15: force[j+0] -= f ⇥ delx
16: force[j+1] -= f ⇥ dely
17: force[j+2] -= f ⇥ delz
18: end if
19: end for
20: end for

Figure 1. Short-range force calculation.

memory accesses to non-contiguous elements, are key to
achieving SIMD benefit for both components, and consider
hand-vectorisation (with intrinsics) to improve gather-scatter
behaviour.

A. Short-Range Force Calculation
The short-range force calculation loop (Figure 1) evaluates
the force between all atoms separated by less than some
“cut-off” distance Rc. To avoid evaluating the distance be-
tween all pairs of atoms at each time step, the force compute
makes use of a pre-computed list of near neighbours for each
atom.

1) Vectorisation: A common approach to the vectorisa-
tion of nested loops is to target the inner-most, which in
this case is the loop over an atom’s neighbours. Kim et al.
demonstrate that the force compute loop from GROMACS
can be auto-vectorised [29]; similarly, we find that the
Intel R�C++ compiler is able to auto-vectorise miniMD’s loop
with a little assistance. In particular, we must add a com-
piler directive (#pragma ivdep) to resolve the possible
dependence in force array updates, since the compiler does
not know that each of an atom’s neighbours is unique.

The auto-vectorised code can be made more efficient by
moving the force updates outside of the branch; otherwise,
the compiler cannot know that the memory accesses involved
are safe for iterations that fail the if-check. We also pad the
number of neighbours to the nearest multiple of the SIMD
width (W ) using “dummy” neighbours – atoms placed
at infinity that always fail the cut-off check – to handle
situations where the number of neighbours is not divisible
by W . Although the compiler still generates code to handle
this case, it does not get executed at run-time.

After vectorisation across inner loop iterations, each of the
arithmetic operations on Lines 4–17 operates at 100% SIMD
efficiency (e.g. delx is computed for W neighbours in one
instruction: {xi, xi, xi, xi}�{xj0, xj1, xj2, xj3}). However,

Table II
CLOCK-CYCLES PER NEIGHBOUR AND SPEED-UP VERSUS SCALAR

FOR FORCE COMPUTE GATHER-SCATTER APPROACHES.

Approach CPU KNC
128-bit SIMD 256-bit SIMD 512-bit SIMD

Scalar L/S 12.97 (2.02x) 11.48 (2.28x) 23.75 (2.59x)
Scalar G/S N/A N/A 15.82 (3.89x)
Vector L/S + Shuffles 10.89 (2.40x) 8.02 (3.26x) 12.94 (4.75x)
Vector L/S + Dot Product 10.34 (2.53x) 7.64 (3.43x) 11.78 (5.22x)

the branch on Line 8 and the memory accesses on Lines 4–6
and 15–17 may introduce significant inefficiency.

The branch is handled via blending/masking; Lines 9–
11 are executed for all neighbours, but the f value for
neighbours that fail the cut-off is set to 0. The amount
of inefficiency this causes depends upon the fraction of
neighbours that fail the cut-off check, which is tied to
neighbour list build frequency (a more frequent build gives
a more accurate list). More fundamental to this loop, the
memory accesses on Lines 4–6 (neighbour positions) and
15–17 (neighbour forces) are to potentially non-contiguous
memory locations. Each of Lines 4–6 becomes a gather
operation that reads W positions from the position array
in AoS format, and packs them into a single SIMD register;
this is known as AoS-to-SoA conversion, because we hold
the position data as a struct-of-arrays (SoA) in registers.
Each of Lines 15–17 becomes a gather operation, a subtract
(the result of the multiplications can be re-used from Lines
12–14), and a scatter operation that writes the packed results
back to memory (SoA-to-AoS conversion).

The auto-vectorised code is faster than the scalar code; on
the CPU with AVX, it is 1.7x faster; on KNC with KCi, it is
1.3x faster. As discussed, we expect to see smaller speed-ups
than W due to SIMD inefficiencies, but these results show
that the inefficiency is quite high. One cause is the cut-off
branch; in the default neighbour list, approximately 25% of
neighbours do not fall within the cut-off, and padding the
list to a multiple of W increases this inefficiency by 5–10%.

The primary culprit, however, is the gather and scatter
operations, which implicitly transpose between AoS and
SoA. If the gathers and scatters were as cheap as vector loads
and stores, then we would see a significant speed-up – 7.04x
(out of a maximum 8x) on the CPU using 256-bit SIMD. The
remaining inefficiency is relatively small and, since it comes
from the branch, is a trade-off with neighbour list build cost.
The overhead of the gather and scatter operations lies not
in the cost of memory accesses (as might be expected), but
rather in instruction count; we next explore alternative SIMD
approaches for handling these data transformations.

2) Gather-Scatter Overhead: Table II compares the num-
ber of clock cycles per neighbour (and speed-up over a scalar
implementation on the same hardware) for a hand-vectorised
loop with four different gather-scatter approaches.

Using scalar loads and stores (Scalar L/S) to popu-
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Figure 2. Combining a dot-product and transpose in 128-bit SIMD.

late SIMD registers (i.e. mimicking the compiler’s auto-
vectorisation) is at least 2x faster than scalar for all three
SIMD widths. Using the dedicated gather and scatter instruc-
tions (Scalar G/S) on KNC is 1.5x faster still, demonstrating
the utility of these new instructions. Our hand-vectorised
implementations of this approach are significantly faster than
the compiler’s auto-vectorised code, since the compiler does
not have domain knowledge and thus cannot make certain
assumptions (e.g. all inputs being valid and not NaN).

Although considerably faster than scalar execution, using
scalar gathers and scatters in this way is expensive: each
scalar load or store requires an instruction, as does each
insertion/extraction of a scalar to/from a SIMD register.
Using the dedicated gather/scatter instructions on KNC
reduces the required number of instructions, but not as
much as we might hope. Each gather/scatter instruction
accesses only a single cache line, reading/writing all required
elements on that line. A single gather/scatter operation
accesses W elements that may be spread across as many as
W cache lines – to perform a full gather/scatter operation,
we must place the instruction in a loop to ensure all elements
are handled. Since we gather/scatter from/to AoS, the W
elements accessed will definitely not be on the same cache
line and each gather/scatter operation will therefore require
several iterations of this loop.

We can decrease the instruction counts for these
gather/scatter operations by taking advantage of the data
being stored in AoS format: we can load/store an entire
atom ({x, y, z, 0}) using one 128-bit instruction, and can
replace the scalar insertion/extraction code with an in-
register transpose. This approach (Vector L/S + Shuffles)
improves performance by 1.2–1.4x.

Combining the calculation of rsq with the AoS-to-SoA
transpose, as shown in Figure 2 (Vector L/S + Dot Product),
leads to a small improvement in performance (5–10%). For
128-bit and 256-bit SIMD, this is achieved with a dot-
product instruction; for 512-bit SIMD, it relies on KNC’s
ability to perform certain permutations (swizzles) of a SIMD
operand for free during arithmetic operations. This approach
may not be faster than a simple transpose on other archi-

Table III
STATIC INSTRUCTIONS FOR FORCE COMPUTE.

Scalar 128-bit 256-bit 512-bit
# Neighbours/Iteration 1 4 8 16

Load Neighbour IDs 1 4 8 16
Gather j Positions 0 4 8 16

Compute delx, dely, delz 3 4 4 4
Compute rsq 5 7 7 16

Compare rsq to Rc 2 2 2 1
Compute f ⇥ del* 9 14 14 7

Update i Forces 3 4 4 4
Gather/Scatter j Forces 6 8 16 32

Update j Forces 3 4 4 4
Other Instructions 6 3 3 52

Total Instructions/Neighbour 38.0 13.5 8.75 9.5

tectures, which may lack support for dot-products or fast
horizontal adds, but demonstrates that arithmetic should be
combined with data movement wherever possible.

Table III presents a breakdown of the number of static
instructions in the inner-most loop for our best approach.
These instruction counts include arithmetic and unique data
accesses, but ignore instructions introduced by the compiler
due to hardware constraints (e.g. a finite number of registers)
– these instructions are listed as Other Instructions. In
general, arithmetic-dominated operations scale well, and the
number of instructions is comparable across SIMD widths.
Even following our optimisations, the number of instructions
for gathers and scatters scales poorly with SIMD width;
ignoring “Other Instructions”, gathers and scatters account
for 31%, 48% and 64% of the remaining instructions for
128-, 256- and 512-bit SIMD respectively. KNC has a high
number of “Other Instructions” due primarily to register
pressure on the general-purpose and mask registers; this may
not manifest for another instruction set with the same or
higher SIMD width.

To estimate the performance loss (in cycles) due to the
high instruction overhead for gathers and scatters, we use
256-bit AVX to evaluate the performance of two “ideal”
cases, where all of an atom’s neighbours are contiguous in
memory. With data still stored in AoS format, and thus still
needing transposition, performance improves by 1.4x; with
data stored in SoA, performance improves by 2x. This result
demonstrates that there is still potential to improve gather-
scatter behaviour further.

B. Neighbour List Build
miniMD uses a “link-cell” approach to reduce the size of the
set of potential neighbours examined during the neighbour
list build. Atoms are placed into subvolumes of space called
“bins”, using a spatial hash. For each atom, the set of
potential neighbours can then be defined as those atoms that
fall into a “stencil” of surrounding bins pre-computed at the
start of the simulation.

The majority of the neighbour list build’s execution time is
spent in a loop (Figure 3) that runs after this binning process.



1: for all atoms i do
2: numneigh[i] = 0
3: for all potential neighbours k do
4: j = potential neighbour[k]
5: delx = xi - pos[j+0]
6: dely = yi - pos[j+1]
7: delz = zi - pos[j+2]
8: rsq = (delx ⇥ delx) + (dely ⇥ dely) + (delz ⇥ delz)
9: if (rsq  Rc +Rs) then

10: neighbour[i][numneigh[i]] = j
11: numneigh[i]++
12: end if
13: end for
14: end for

Figure 3. Neighbour list build.

0 0 1 1 0 1 0 1

j0 j1 j2 j3 j4 j5 j6 j7
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Cut-off Mask

Indices

Packed Indices

Figure 4. Using a packed store to append to the neighbour list.

For each atom, this loop iterates through the set of potential
neighbours, storing in the neighbour list those which are
closer than Rc + Rs. Rs is a “skin distance”, chosen such
that no atom can move by more than Rs between neighbour
list builds.

1) Vectorisation: As before, our vectorisation targets the
inner-most loop over neighbours. The core behaviour of
this loop is very similar to that of the force compute – it
computes the distance between two atoms and compares that
distance to some cut-off. However, the loop does not auto-
vectorise due to a loop dependence on Lines 10 and 11;
the memory location to which each neighbour index should
be written depends upon the number of previous neighbours
that pass the cut-off check.

An efficient way to vectorise appending to a list in this
manner is to use a packed store, the basic operation of which
is demonstrated in Figure 4. For a SIMD register packed
with rsq values, the result of a comparison with Rc +Rs is
a W -bit mask, and a packed store writes a subset of indices
(from another SIMD register) to contiguous memory based
upon this mask. KCi includes a packed store instruction,
which we can emulate in other SIMD instruction sets; for
both 128-bit and 256-bit AVX, we achieve it with a mask
look-up, a single shuffle and a vector store. We determine
the number of neighbours appended to the list by counting
the number of bits set in the comparison mask.

The rest of the loop is vectorised in much the same way
as the force compute loop: Lines 5–7 gather the positions

Table IV
STATIC INSTRUCTIONS FOR NEIGHBOUR LIST BUILD.

Scalar 128-bit 256-bit 512-bit
# Neighbours/Iteration 1 4 8 16

Load Positions & Compute rsq 8 8 8 6
Compare rsq to Rc +Rs 2 1 1 1

Load Neighbour IDs 1 1 2 1
Append to Neighbour List 2 8 17 5

Other Instructions 3 5 5 15
Total Instructions/Neighbour 16.00 5.75 4.13 1.75

of W neighbours, and the arithmetic operations on Lines 5–
8 operate at 100% SIMD efficiency. The complete contents
of the branch are handled by the packed store operation,
and so no blending/masking is required. The loop does not
update an atom’s neighbours, and so there are no scatters –
thus, besides the packed store, the major source of SIMD
inefficiency is the gather of positions.

2) Gather-Scatter Overhead: As shown previously, this
gather can be accelerated significantly by implementing an
AoS-to-SoA transpose in intrinsics. For the force compute,
each atom gathers a distinct set of neighbours, and therefore
there is no opportunity to re-use any transposed data. This
is not true of the neighbour list build, since all atoms within
the same bin loop over the same stencil, and gather the same
set of positions each time.

Surrounding the outer loop over atoms with a new loop
over bins enables us to gather (and transpose) the set of po-
tential neighbours once and then re-use it for several atoms.
For the architectures considered here, this is beneficial for
two reasons: first, the cost of the AoS-to-SoA transpose is
amortised over several atoms; and second, the transposed set
of neighbours exhibits better cache behaviour. We believe
our approach to be applicable to GPU architectures also,
since the transposed set could be stored in local memory.

The choice of bin size is an important trade-off: with
large bins, the gathered SoA stencil receives more re-use but
will contain more atoms; with small bins, the SoA stencil
receives less re-use but also contains fewer atoms. The best
choice depends on whether the cost of gathering atoms is
more than that of extra distance calculations – the CPU
favours smaller bins, whereas KNC favours larger. Besides
this simple parameter change, the algorithm is the same
across both architectures and consistently 2–3x faster than
the conventional approach.

Table IV presents a breakdown of the number of static
instructions in the inner-most loop for our optimised ap-
proach. As before, “Other Instructions” accounts for those
introduced by the compiler due to hardware constraints.
Since the data transpose happens outside of the key loop,
the number of instructions to load positions and compute
rsq remains constant across SIMD widths, except for 512-
bit SIMD on KNC; KNC has fewer instructions here because
it has fused multiply-add instructions, which eliminates two



arithmetic instructions. KNC has a higher number of “Other
Instructions” per neighbour, but these are mostly software
prefetches and mask manipulations (to handle iterations with
fewer than 16 neighbours).

The number of instructions required to append to the
neighbour list is the least consistent across architectures.
Due to the lack of 256-bit integer support in AVX, our
implementation uses 128-bit stores, and thus this operation
does not scale with SIMD width. In contrast, KNC’s cost for
this operation is very low, due to its packed store instruction.

C. Effects of SIMD Width
The SIMD analysis thus far has assumed that the number of
neighbours per atom is sufficiently large (compared to the
SIMD width) that the amount of padding required to make
the number of neighbours a multiple of W is small. This
holds true for miniMD’s default simulation (28 neighbours
per atom) on the hardware we use, but architectures with
wider SIMD, or simulations with small cut-off distances,
require a different approach to achieve high efficiency.

There are typically thousands of atoms in an MD simula-
tion, and thus moving to “cross-atom” SIMD (i.e. vectorising
the loop over atoms) exposes significantly more parallelism
than a “cross-neighbour” approach – and sufficient paral-
lelism for many hardware generations to come. For the
force compute loop, using SIMD in this fashion results in
two changes compared to our previous code: (i) gathers
and scatters are required in the outer loop, to accumulate
forces into atoms, if we group non-contiguous atoms; and
(ii) there is a potential for update conflicts, since several
atoms may share a neighbour – if we attempt to update the
same neighbour multiple times simultaneously, only one of
the updates will take effect.

One way to address these update conflicts is to abandon
the use of N3, removing the scatters of updated neighbour
forces within the inner loop at the expense of evaluating each
atom-pair twice. This scheme is common on GPUs [5], [6].
However, for all of the approaches explored in this paper,
replacing the neighbour updates with redundant computation
results in a slow-down. For the LJ benchmark using 256-
bit SIMD on the CPU, this slow-down is only 24%, but
the cost of redundant computation will be higher for more
computationally expensive potentials.

In the absence of fast atomic gather-scatter opera-
tions [30], we propose that update conflicts be handled
by arranging the neighbour lists such that there are no
duplicate indices in any set of W neighbours. Detecting
duplicates within a group of W neighbours requires O(W 2)
comparisons but, since comparison hardware typically scales
with SIMD width, we expect the number of needed SIMD
comparison instructions to be a more tractable O(W ).

Our algorithm for conflict resolution is as follows. For
every set of W indices, check for a conflict (i.e. a duplicate
index). If there are no conflicts, then this set of indices can

1 2 4 4 1 3 5 5
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Figure 5. Resolving conflicts using 128-bit SIMD.

Table V
PERCENTAGE INCREASE IN NEIGHBOUR LIST SIZE (DUE TO PADDING).

128-bit 256-bit 512-bit 1024-bit 2048-bit
Cross-Neighbour 3.19% 9.36% 18.21% 45.04% 71.60%
Cross-Atom (No CR) 1.44% 2.45% 4.51% 10.63% 26.28%
Cross-Atom (CR) 1.69% 3.50% 6.55% 13.74% 33.21%

be written to the neighbour list. If there are conflicts, we
split the set into at most W subsets: one subset containing
all of the indices that do not conflict, and up to W � 1
subsets containing one index each. In place of conflicting
indices, we insert “dummy” neighbours (index 0) as padding,
and store a bit-mask denoting their location in each subset.
When all neighbour sets have been considered, subsets are
matched based upon their masks, combined if possible, and
then written to the neighbour list. Figure 5 demonstrates this
process for 128-bit SIMD, for two sets of W indices with
a single conflict each.

Where a group of W atoms have a different number of
neighbours, or it is impossible to combine two subsets, some
padding will remain in the neighbour list. Table V compares
the amount of padding introduced by: (i) cross-neighbour
SIMD; (ii) cross-atom SIMD, before conflict resolution (No
CR); and (iii) cross-atom SIMD, after conflict resolution
(CR), for a simulation of 256k atoms using a cut-off of
2.5. These results show that the cross-atom approach is more
efficient than the cross-neighbour approach for several SIMD
widths, and that conflict resolution itself introduces little
additional padding.

Since the operation of the proposed conflict resolution
algorithm is orthogonal to that of the neighbour list al-
gorithm proposed in Section IV-B, we implement it as a
post-processing step that removes conflicts from an existing
neighbour list. This step also: transposes the list (such that
it stores the 0th neighbour of W atoms, followed by the 1st,
and so on) to improve performance during force compute;
and sorts “windows” of atoms according to their number
of neighbours, to alleviate compute imbalance (a group of
W atoms must process the maximum number of neighbours
within the group).

The results in Table VI give the speed-up of cross-atom



Table VI
SPEED-UP OF CONFLICT RESOLUTION APPROACH.

256k 2048k
1.5 2.5 5.0 1.5 2.5 5.0

Force Compute 1.37x 1.02x 0.95x 1.30x 1.02x 0.95x
Total Simulation 1.04x 0.94x 0.87x 1.04x 0.96x 0.87x

SIMD with conflict resolution (relative to our best cross-
neighbour SIMD approach) on the CPU with 256-bit AVX.
We include results for six different MD simulations: 256k
and 2048k atoms, with Rc set to 1.5, 2.5 and 5.0 (giving an
average of 6, 28 and 221 neighbours respectively). We see
a slow-down for the larger two cut-off distances, since cut-
off distances of 2.5 and 5.0 have sufficient cross-neighbour
parallelism that we do not improve SIMD efficiency. For
a cut-off of 1.5, we see a small speed-up (1.04x) for the
complete application; the speed-up for force compute alone
is more significant (1.37x), but its contribution to execution
time is low for this particular simulation.

That a post-processing step such as this one can be
performed efficiently on current hardware, and results in a
speed-up where expected, demonstrates that it is a suitable
method for handling SIMD update conflicts in MD simu-
lations. However, MD implementations that use threading
must also guarantee the independence of tasks allowed to ex-
ecute simultaneously. Our conflict resolution approach could
be used to guarantee independence beyond a single thread,
but this is not practical for a many-core architecture; for
KNC, we would need to resolve conflicts for 3840 parallel
tasks (60 cores ⇥ 4 threads ⇥ 16 SIMD units). We address
the issue of handling update conflicts between threads in the
next section.

V. COPROCESSOR OPTIMISATIONS

Optimising an MD application for a hybrid system com-
prising a traditional CPU and coprocessor involves more
challenges than making efficient use of SIMD. In this
section, we detail a number of additional optimisations we
have employed to maximise the performance of miniMD ex-
ecuting on a server containing both Intel R�Xeon R�processors
and Intel R�Xeon Phi

TM
coprocessors.

A. Problem Decomposition
miniMD uses a spatial decomposition across MPI ranks (i.e.
each rank is assigned a subvolume of space, and computes
the forces for the atoms in that space). As atoms move
during the simulation, they may move from one subvolume
to another; furthermore, the forces acting on an atom may
be dependent on atoms in a different subvolume. The main
simulation loop thus contains two communication steps.
First, before the short-range force calculation, all processors
exchange position information for atoms near their subvol-
ume boundaries with neighbouring processors. The receiving
processor allocates space for these ghost atoms. Second,

Node
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CPU CPU
.
.
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Figure 6. The hardware/class hierarchy.

after the force calculation, all processors must send some
force contributions back to the “owner” of each ghost.

We augment this MPI decomposition with a hierarchy of
subdomains, as shown in Figure 6. At the first level, we
divide the problem domain amongst nodes, and each node
runs a single MPI task. We then further subdivide a node’s
subdomain amongst sockets (where a socket is either a CPU
socket or a KNC socket/card), and finally we split each
socket’s subdomain amongst some number of threads. We
specify the fraction of a node’s subvolume assigned to the
KNC hardware at run-time.

The use of such a hierarchy allows for communication
between subdomains to be specialised: threads running on
the same socket can communicate directly through shared
memory; threads running on different sockets can commu-
nicate either through shared memory or over PCIe; and
all threads can pack their off-node communication into a
single MPI message rather than competing for the network
interface. Using a spatial decomposition at each level allows
us to use ghost atoms to handle the update conflicts between
threads, and helps to minimise the size of messages sent
between the CPU and KNC.

B. PCIe Bandwidth/Latency

A possible bottleneck for KNC performance is the latency
and bandwidth of the PCIe bus. To minimise the amount
of PCIe communication, we adopt the same communication
mechanism as [5] and opt not to use N3 between different
sockets. Although this results in a small amount of redundant
computation (for those atom-pairs that cross socket bound-
aries), it reduces the amount of PCIe communication by a
factor of two since we can skip sending force contributions
back to the “owner” socket of each atom.

We further optimise PCIe communication by overlapping
it with useful work. Our decision to not use N3 across
sockets means that we need only hide a single exchange
of messages between the CPU and KNC for each iteration
of the simulation loop (sending position updates for atoms
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Figure 7. A subdomain split into dependent and independent volumes.

used by neighbour sockets) unless we need to rebuild the
neighbour lists. To facilitate this, we divide atoms into
the three types shown in Figure 7: those that interact
only with other atoms in the same subdomain (independent
atoms); those that potentially interact with atoms in another
subdomain (dependent atoms); and those that are copies
of atoms in another subdomain (ghost atoms). We can
compute the forces for all atom-pairs not featuring ghost
atoms without any cross-domain communication; therefore,
we overlap PCIe communication with this computation, and
hide it almost completely.

C. Code Re-use

The arrangement of subdomains described in Section V-A is
represented in code as a hierarchy of abstract C++ classes:
an MPI Domain, a Socket Domain and a Thread Domain.
These abstract classes contain all of the common function-
ality across CPU and KNC hardware, and make up the
bulk of the code. Where different code is required (e.g. for
performance reasons, or because of differing communica-
tion mechanisms), this is implemented in a subclass. This
minimises the amount of code that must be re-written for
optimisation on a particular architecture.

Specifically, around 60% of the code base for
our optimised implementation of miniMD is shared
between Intel R�Xeon R�processors and Intel R�Xeon
Phi

TM
coprocessors. The evaluation hardware used in

this study did not support the use of MPI between CPU and
KNC, and the majority of the remaining code differs due to
our use of a low-level interface for PCIe communication.
Only 5–10% (the force compute and neighbour list kernels)
is written in platform-specific intrinsics, and these sections
of the code are in fact very similar (as shown in Figure 8);
algorithmically, they are identical, but each instruction set
uses a distinct set of intrinsics.

// Compute square distance (w/ dot product).
del1 = _mm_sub_ps(xi, xj);
rsq1 = _mm_dp_ps(del1, del1, 0x71);

// Calculate 1/rsqˆ3
sr2 = _mm_div_ps(_mm_set1_ps(1.0f), rsq);
sr6 = _mm_mul_ps(sr2, _mm_mul_ps(sr2, sr2));

(a) SSE

// Calculate square distance (w/ dot product).
del1 = _mm256_sub_ps(xi, xj);
rsq1 = _mm256_dp_ps(del1, del1, 0x71);

// Calculate 1/rsqˆ3
sr2 = _mm256_div_ps(_mm256_set1_ps(1.0f), rsq);
sr6 = _mm256_mul_ps(sr2, _mm256_mul_ps(sr2, sr2));

(b) AVX

// Calculate square distance (w/o dot product).
del1 = _mm512_sub_ps(xi, xj);
delsq = _mm512_mul_ps(del1, del1);
rsq1 = _mm512_add_ps(delsq,

_mm512_swizzle_r32(delsq, _MM_SWIZ_REG_BADC));
rsq1 = _mm512_add_ps(rsq1,

_mm512_swizzle_r32(rsq1, _MM_SWIZ_REG_CDAB));
rsq = _mm512_mask_add_ps(rsq, mask_AAAA, rsq, rsq1);

// Calculate 1/rsqˆ3
sr2 = _mm512_rcp23_ps(rsq);
sr6 = _mm512_mul_ps(sr2, _mm512_mul_ps(sr2, sr2));

(c) KCi

Figure 8. Comparison of platform-specific intrinsics for force compute.

VI. RESULTS

To demonstrate the performance and scalability of our opti-
mised code2, we present results for simulations with multiple
atom counts and two different cut-off distances (2.5 and
5.0). The first of these is the standard cut-off distance used
in miniMD’s LJ benchmark, whereas the second is used to
investigate the effects of inter-atomic potentials with larger
cut-off distances. This approach matches that of [5], and the
number of neighbours per atom under these conditions is
similar to that of the LAMMPS Rhodopsin protein bench-
mark. All experiments use cross-neighbour SIMD, since
both cut-off distances provide sufficient parallelism.

We fix the other simulation parameters as follows: ⇢ =
0.8442, T = 1.44, Nrebuild = 20, Rs = 0.3, timesteps =
100. We report performance in atom-steps per second (i.e.
(# atoms ⇥ timesteps)/execution time), and execution time
in seconds. We repeated experiments 10 times, and report the
average (mean). Although we report results here from single
precision runs, early results from our double and mixed pre-
cision implementations suggest that the performance impact
is what one would expect and is similar to that reported for
GPU codes (i.e. that the double precision code is twice as
slow, and the mixed precision code somewhere between).

2Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products. Configurations: Refer to
Table I. For more information go to http://www.intel.com/performance.



Table VII
PERFORMANCE SUMMARY FOR 2.048M ATOMS.

Orig. CPU KNC CPU+KNC(AVX)
Cut-off of 2.5

Atom-steps/s 20.2M 62.3M 85.6M 131.0M
Time (s) 10.14 3.29 2.39 1.56

Cut-off of 5.0
Atom-steps/s 2.90M 13.5M 19.2M 30.5M

Time (s) 70.71 15.14 10.65 6.72

Throughout this section, we use the term “communica-
tion” to cover all costs incurred as a result of sending or
receiving a message over a given channel: the packing and
unpacking of message buffers, waiting for messages to arrive
and the transfer of the message itself. Also throughout this
section, all experiments involving the CPU use 256-bit AVX.

A. Performance Summary

Table VII reports the performance of a 2.048M atom simu-
lation for: (i) the original miniMD; (ii) our implementation
using AVX; (iii) KNC running alone; and (iv) using the CPU
and KNC together (CPU+KNC), where the CPU uses AVX.

Running on the CPU with AVX, our version of miniMD
achieves speed-ups of 3.1x and 4.7x over the original
miniMD for the cut-offs of 2.5 and 5.0, respectively; KNC
provides further speed-ups of 1.4x in both cases. CPU+KNC
execution gives speed-ups over the original miniMD of 6.5x
and 10.5x, and speed-ups over our version of miniMD on the
CPU of 2.1x and 2.3x. The CPU+KNC execution efficiencies
(i.e. CPU+KNC performance divided by the sum of CPU and
KNC performance) are 89% and 93%.

KNC has a peak floating-point rate over four times that of
the two CPU sockets used for these experiments (Table I),
but achieves only 1.4x higher performance. For force com-
pute, the CPU has a significant per-thread advantage over
KNC, requiring fewer cycles per neighbour (Table II) and
running at 1.7x the frequency; that KNC is faster overall is
due to its much larger number of threads.

The per-thread performance of KNC is worse because
many operations are either not implemented in SIMD, or do
not achieve 100% SIMD efficiency due to being dominated
by gathers/scatters. These problems also apply to CPUs, but
their effects are more prominent on KNC due to its wider
SIMD. Further, MD (particularly the LJ potential) is not
dominated by fused multiply-adds (FMAs), which leads to
reduced utilisation of KNC’s SIMD arithmetic hardware –
every regular addition, subtraction or multiplication wastes
50% of the compute capability. The CPUs do not have FMA
hardware, but where the number of additions/subtractions
and multiplications is not balanced, we also waste compute
capability. KNC threads (like those of other coprocessors)
are also more sensitive to exposed cache or memory latency
due to the simplicity of KNC cores – cache misses that

Table VIII
PERFORMANCE BREAKDOWN FOR 2.048M ATOMS.

Comp. Orig. CPU KNC CPU+KNC
(AVX) (CPU) (KNC)
Cut-off of 2.5

Force % 82.0 63.9 63.2 55.8 62.4
NL % 9.0 13.5 12.6 10.7 12.1

Comm % 4.9 9.5 15.4 26.5 17.7
Other % 4.0 13.1 8.7 7.1 7.8

Cut-off of 5.0
Force % 90.3 86.0 85.4 78.9 80.5

NL % 6.7 6.9 6.4 6.2 6.7
Comm % 1.7 4.1 6.3 13.3 11.0
Other % 0.4 3.0 2.0 1.7 1.9

cannot be hidden by other threads on the same core are
more expensive. This is particularly problematic during
gather/scatter operations, since the access pattern is too
unpredictable to be captured by a hardware prefetcher and
the overhead of software prefetching is too high.

B. Performance Breakdown

Table VIII gives a breakdown of a 2.048M atom simulation
into four components: short-range force calculation (Force);
building the neighbour lists (NL); communication (Comm),
including force/position communication and the exchanging
of atoms across subvolume boundaries; and any remaining
time (Other), comprising the integration steps for computing
updated velocities and positions. The CPU+KNC breakdown
is given from the perspective of the CPU and KNC in
separate columns. For the original miniMD, Force consumes
the vast majority of time, followed by NL. Comm is the next
most expensive, and Other is the smallest component.

For our versions of miniMD, Force remains the largest
component of execution time for both cut-offs. However,
as the component that is most accelerated by our use of
SIMD, it takes a smaller fraction of time. For the AVX
implementation, we see speed-ups of 4.0x and 4.9x for the
cut-offs of 2.5 and 5.0 respectively, and KNC provides an
additional speed-up of 1.4x in both cases. We see a larger
speed-up for the larger cut-off for two reasons: firstly, the
time spent in force compute is dependent upon the number of
inter-atomic distances that must be evaluated, which grows
with the cube of the cut-off; and secondly, due to our use
of SIMD across neighbours, SIMD efficiency is improved.

Our SIMD acceleration of the neighbour list construction
improves its performance considerably; thus, the contribu-
tion of NL to execution time remains relatively constant.
For the AVX implementation, we see speed-ups of 2.1x and
4.6x for the cut-offs of 2.5 and 5.0 respectively, and KNC
provides an additional speed-up of 1.5x in both cases. One
might expect this component of the simulation to become
relatively more expensive for larger cut-offs (as with the
force compute), since it also depends upon the number
of atom-pairs. However, although the distance computation



costs scale similarly, a larger cut-off results in more atoms
per bin and therefore significantly lowers looping overheads.

As we increase the number of threads for a fixed problem
size, the fraction of time spent in Comm increases. This is
due to a larger number of dependent atoms, which leads to
higher inter-thread communication costs; we must exchange
partial force and position information (through shared mem-
ory) for more atoms in each iteration. KNC uses significantly
more threads than the CPU and thus spends a larger fraction
of time in inter-thread communication. Further, it spends
time in PCIe communication. Although this cost is mostly
hidden for the exchanging of updated atom positions every
iteration, it remains exposed when moving atoms between
nodes and for the first exchange of position information after
a neighbour list build. These factors lead to KNC spending
19% and 7% more time in communication than the AVX
implementation on the CPU. For CPU+KNC, we see that the
CPU spends a much larger fraction of its time in Comm than
when running without KNC; this increase is due to handling
PCIe communication not present in CPU-only runs.

The fraction of time spent in Other is larger in our
versions of miniMD than in the original, since it benefits
least from the use of SIMD and threading. On the CPU, the
position/velocity updates scale very poorly due to limited
memory bandwidth – these operations involve very little
computation per atom and require streaming through mul-
tiple large arrays that do not fit in the on-die caches (e.g.
for 2.048M atoms, the velocity update touches 48 bytes per
atom – a total of ⇡ 98MB). As noted in Table I, KNC’s
effective memory bandwidth is twice that of the CPU, and
this is reflected in its performance for this operation – KNC
is 2.1x and 2.2x faster than the CPU for the two cut-offs.

C. Thread Scaling
Figure 9 shows the execution times for the original miniMD
and our implementation when weak-scaled, with a cut-off
of 2.5. We made every effort to ensure that the number of
atoms per core remained ⇡32K (in line with the LAMMPS
benchmark) and that the total problem volume remained a
cube. For AVX, execution time grows by 24% from 1 to 16
cores; for KNC, it grows by 24% from 1 to 60 cores. Scaling
is better for a cut-off of 5.0, due to the larger fraction of time
spent in Force and NL: for AVX, the execution time grows by
6% from 1 to 16 cores; and for KNC, it grows by 12% from
1 to 60 cores. The original miniMD scales slightly better in
both cases due to its much worse overall performance. Its
execution time grows by 15% and 5% going from 1 to 16
cores, for the cut-offs of 2.5 and 5.0 respectively.

Figure 10 shows the execution times for the original
miniMD and our implementation when strong-scaled on a
1.372M atom problem, with a cut-off of 2.5. The original
code achieves a 14x speed-up on 16 cores, while our
AVX implementation achieves only 12x. This is due to the
significant speed-up we see for Force and NL; Comm and
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Figure 9. Weak-scaling results for a cut-off of 2.5.
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Figure 10. Strong-scaling results for a cut-off of 2.5. Note that the y-axis
is scaled logarithmically.

Other do not scale as well and are relatively more expensive.
KNC achieves only a 40x speed-up on 60 cores for the same
reason – Force, NL, Comm and Other see speed-ups of 52x,
41x, 7x and 14x respectively. A cut-off of 5.0 leads to much
better parallel efficiency, and our implementation achieves a
14x speed-up on 16 CPU cores. We see a 50x speed-up on
60 KNC cores – Force, NL, Comm and Other see speed-ups
of 55x, 45x, 6x and 14x respectively.

D. Performance Comparison
Figure 11 compares the absolute performance (in atom-
steps/s) of our implementation with that of the original
miniMD, for different problem sizes. The performance gap
between traditional architectures and coprocessors is often
exaggerated [31]–[34], but we avoid this by: (i) comparing
against an optimised CPU code, to avoid inflating claims
about KNC’s performance; (ii) drawing comparisons be-
tween codes of the same floating-point precision; and (iii)
reporting full application times, rather than focusing on
kernels that may be more amenable to acceleration.

For the problem sizes shown, the performance of miniMD
for a given cut-off distance is almost constant – atom density
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Figure 11. Absolute performance in atom-steps/s (higher is better).

is fixed, and thus the computational cost per atom remains
the same across problem sizes. Our implementations, how-
ever, improve as problem size increases, because smaller
problems are dominated by inter-thread communication
costs. For very small atom counts (⇡ 4K) miniMD exhibits
the same behaviour; for some simulations, it is quicker to
run on less than the maximum number of cores (all numbers
in the graphs are for the maximum number of cores). CPU
performance starts to level off at 256K atoms, while KNC
and especially CPU+KNC see better performance from even
larger simulations since KNC has more threads.

Our optimised AVX code is consistently faster than the
original scalar implementation, although the gains grow with
problem size, as already described. For a cut-off of 2.5, it is
up to 4x faster, and for a cut-off of 5.0 up to 5x faster – a
difference that can be attributed to the increased amount of
parallelism in problems with higher cut-off distances. One
takeaway from this result, besides the effectiveness of our
particular optimisations, is the need to revisit and re-tune
CPU code when investigating the utility of coprocessors.

The KNC and CPU+KNC implementations can both pro-
vide significantly higher performance than the CPU alone;

KNC by itself is up to 1.42x faster than the CPU, and
CPU+KNC is up to 2.26x faster. The coprocessor requires
sufficient work to be helpful, improving performance starting
at 256K atoms for a cut-off of 2.5, and at 108K atoms for
a cut-off of 5.0. Real-world implementations utilising KNC
should thus take problem size into account when choosing
the number of threads and cores to use, to avoid degrading
performance on small problems.

VII. CONCLUSIONS

We present an analysis of the vectorisation of MD codes,
and demonstrate that gathers/scatters are one of the key
bottlenecks. We detail efficient implementations of the
neighbour list build and short-range force calculation loops
that scale with both SIMD width and number of threads,
and propose an alternative method of resolving N3 write-
conflicts. On current Intel R�hardware, this conflict-resolution
approach boosts short-range force calculation performance
by almost 40% for simulations with small cut-off distances;
its applicability to future architectures (with wider SIMD)
remains to be demonstrated in future work.

We compare the performance of our optimised imple-
mentation to that of the original miniMD benchmark, and
show it to be consistently faster (by up to 5x on the same
hardware and up to 10x with the addition of an Intel R�Xeon
Phi

TM
coprocessor) for a range of problem sizes and cut-off

distances. This considerable performance increase highlights
the need to tune codes and ensure that SIMD is being used
effectively. For problems with a large amount of exploitable
parallelism, we show that KNC is up to 1.4x faster than a
dual-socket, oct-core Intel R�Xeon R�E5-2660 server.

Although specialised for MD, we believe that the tech-
niques that we describe are applicable to other classes of
applications. Other codes featuring gather-scatter memory
access patterns (e.g. unstructured mesh) could benefit from
similar SIMD optimisations, while our methodology of
sharing code and computational work between the CPU
and KNC could be utilised by codes solving other spatially
decomposed problems (e.g. computational fluid dynamics).

The high single-node performance of our implementation
risks exposing inter-node latency/bandwidth, and the inter-
thread communication costs for some simulations are already
significant. While these costs are arguably exaggerated by
our use of a potential with low arithmetic intensity, min-
imising and hiding communication costs is clearly a critical
direction for future research.
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