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ABSTRACT 

Optimization refers to the minimization (or 
maximization) of an objective function of several 
decision variables that have to satisfy specified 
constraints. There are many applications of optimization. 
One example is the portfolio optimization problem 
where we seek the best way to invest some capital in a 
set of n assets. The constraints might represent a limit on 
the budget (i.e., a limit on the total amount to be 
invested), the requirement that investments are 
nonnegative (assuming short positions are not allowed), 
and a minimum acceptable value of expected return for 
the whole portfolio. The objective or cost function might 
be a measure of the overall risk or variance of the 
portfolio return. In this case, the optimization problem 
corresponds to choosing a portfolio allocation that 
minimizes risk, among all possible allocations that meet 
the firm requirements. Another example is production 
planning and inventory: the problem is to determine the 
optimal amount to produce in each month so that 
demand is met while the total cost of production and 
inventory is maintained without shortages. 

In recent years the Interior Point Method (IPM) has 
became a dominant choice for solving large optimization 
problems for many scientific, engineering, and 
commercial applications. Two reasons for the success of 
the IPM are its good scalability on existing 
multiprocessor systems with a small number of 
processors and its potential to deliver a scalable 
performance on systems with a large number of 
processors. IPM spends most of its runtime in several 
important sparse linear algebra kernels. The scalability 
of these kernels depends on several key factors such as 
problem size, problem sparsity, and problem structure. 

This paper describes the computational kernels that are 
the building blocks of IPM, and we explain the different 
sources of parallelism in sparse parallel linear solvers, 
the dominant computation of IPM. We analyze the 
scalability and performance of two important 
optimization workloads for solving linear and quadratic 
programming problems.  

INTRODUCTION 
Optimization refers to the minimization (or 
maximization) of an objective function of several 
decision variables that have to satisfy specified 
constraints. It enables businesses to make better 
decisions about how to commit resources, which include 
equipment, capital, people, vehicles, raw materials, time, 
and facilities.   

While existing hardware performs well on problems with 
tens of thousands of constraints and hundreds of 
thousands of variables, it lacks the necessary 
computational and bandwidth resources to target future 
datasets whose solution will require teraflops of 
computation and gigaflops of bandwidth. As an example, 
consider the Asset Liability Management (ALM) 
problem from computational finance, where the goal is 
to coordinate the management of assets and liabilities 
over several time periods to maximize the return at the 
end of the final time periods. To hedge against risk 
requires diversification of a portfolio with many assets; 
considering more time periods means better planning. 
Our simple back-of-the-envelope estimate shows that 
modeling just three time periods and as few as seventy-
four assets creates an optimization problem that takes 
about one hour to solve on today’s platforms, but only 
ten seconds to solve on a teraflop platform of tomorrow.  



Intel Technology Journal, Volume 9, Issue 2, 2005 

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 152 

In order for an optimization workload to achieve high 
performance on future parallel architectures, one needs 
to understand (i) the source of parallelism, (ii) how the 
parallelism changes for different optimization problems, 
and (iii) how to extract this parallelism for a given 
problem. 

We focus on the Interior Point Method (IPM), a 
dominant choice for solving large-scale optimization 
problems in many scientific, engineering, and financial 
applications. While complex mathematical analysis is the 
driving force behind IPM, most of the algorithm’s 
computation time is spent in a few sparse linear algebra 
functions: sparse linear solvers, matrix-matrix 
multiplication, matrix-vector multiplication, and a few 
others. Developing parallel systems that efficiently 
execute these few functions is paramount to high 
performance for the IPM. 

In this paper, we discuss IPM workloads as well as 
several approaches to parallelizing IPM. First, we 
discuss important computational kernels that are the 
building blocks of IPM. Second, we explain several 
sources of parallelism in sparse parallel linear solvers, 
the dominant computation of IPM. We also describe 
how additional parallelism within IPM can be discovered 
by exploiting inherent problem structures. Thirdly, we 
present the scalability results and performance analysis 
of shared-memory IPM on several datasets from linear 
programming. This workload utilizes highly optimized, 
parallel routines from the Intel Math Kernel Library, 
built using the PCx framework and parallelized by our 
team. We also present scalability results and 
performance analysis of a structure-exploiting quadratic 
IPM workload, the Object-Oriented Parallel interior 
point Solver (OOPS), on asset liability and management 
problems.  

OPTIMIZATION AND THEIR USAGE 
MODELS 
An optimization problem, has the form 

 minimize f0(x) 

subject to fi(x)  bi,  i = 1,…, m 

Here the vector x = (x1,…,xn) is the optimization 
decision variable of the problem, the function f0(x) is the 
objective function, the functions fi , i = 1,…,m, are the 
(inequality) constraint functions, and the constants 
b1,…,bm are the limits, or bounds, for the constraints. A 
vector x* is called optimal, or a solution of the 
optimization problem if it has the smallest objective 
value among all vectors that satisfy the constraints.  

There are several important classes of optimization 
problems, characterized by particular forms of the 

objective and constraint functions. As an example, the 
optimization problem is called a Linear Program (LP) if 
the objective and constraint functions f0,…, fm are 
linear functions of x. The LP optimization problem is of 
the form 

min cTx, subject to Ax=b, x  0 

where A is m by n the matrix of linear constraints, and 
vectors x, c, and b have appropriate dimensions.  

Another important example, the convex quadratic 
optimization problem (QP), is of the form  

min cTx + ½ xTQx, subject to Ax=b, x  0 

where Q is n by n positive semidefinite matrix, and A, x, 
c, and b are the same as in LP.  

LP and QP are important not only because many 
problems encountered in practice can be formulated as 
either LP and QP problems, but also because many 
methods for solving general non-linear programming 
problems (NLP) solve them by solving the sequence of 
linear (sequential linear programming) or quadratic 
(sequential quadratic programming) approximations of  
the original NLP  problem.  

There are many applications of optimization. In the 
radiation therapy planning optimization problem, when 
choosing a plan for any individual patient, one seeks to 
determine radiation beam directions and intensity with 
the goals of maximizing the delivered dose to the tumor 
while minimizing the dose in normal tissue and organs at 
risk. There exist different formulations of this problem 
as LP, QP, or NLP. 

In production planning and inventory problems, the 
problem is to determine the optimal amount to produce 
in each month so that demand is met yet the total cost of 
production and inventory is minimized and shortages are 
not permitted. This problem has been traditionally 
solved using the LP approach. 

Another example is the famous portfolio optimization 
problem where we seek the best way to invest some 
capital in a set of n assets. The variable xi represents the 
investment in the ith asset, so the vector x=(x1,…,xn) 
describes the overall portfolio allocation across the set of 
assets. The constraints might represent a limit on the 
budget (i.e., a limit on the total amount to be invested), 
the requirement that investments are nonnegative 
(assuming short positions are not allowed), and a 
minimum acceptable value of expected return for the 
whole portfolio. The objective or cost function might be 
a measure of the overall risk or variance of the portfolio 
return. In this case, the optimization problem 
corresponds to choosing a portfolio allocation that 
minimizes risk, among all possible allocations that meet 
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the firm requirements. The problem is known as the 
Markovitz mean-variance optimization problem and is 
modeled using QP. 

The last example is device sizing in electronic design, 
which is the task of choosing the width and length of 
each device in an electronic circuit. Here the variables 
represent the widths and lengths of the devices. The 
constraints represent a variety of engineering 
requirements, such as limits on the device sizes imposed 
by the manufacturing process, timing requirements that 
ensure that the circuit can operate reliably at a specified 
speed, and a limit on the total area of the circuit. A 
common objective in a device sizing problem is the total 
power consumed by the circuit. The optimization 
problem is to find the device sizes that satisfy the design 
requirements (on manufacturability, timing, and area) 
and are most power efficient. This problem can be 
modeled using LP or QP. 

INTERIOR-POINT METHOD (IPM) 
In the past decade, the IPM has become a method of 
choice for solving large convex optimization problems. 
As parallel processing hardware continues to make its 
way into mainstream computing, it becomes important to 
investigate whether parallel computation can improve 
the performance of this commercially vital application.  

The IPM has a unified framework for LP, QP, and NLP. 
The method starts with the initial guess to the solution of 
the optimization problem, x. The core of the method is 
the main optimization loop, which updates the vector x 
at each iteration until the convergence to the optimal 
solution vector x* is achieved. A key to efficient 
implementation and parallelization of IPM is that all 
three algorithms depend on four linear algebra kernels 
listed below:   

1. Form linear systems of equations, Mx=b, where M 
is the symmetric matrix of the form 








 Ζ−
=

0A

A
M

T

, where A is the original matrix 

of constraints. The matrix of this form is called 
augmented system. For linear programming 
problems, where Z is a diagonal matrix, one uses 
substitution of variables in the above linear system 
of equations, so that matrix M is reduced to normal 

equation form AZAM 1−= . This requires a 

matrix-matrix multiplication operation. 

2. Cholesky factorization of matrix M = L D LT in 
order to solve the system of linear equations, Mx=b. 
Here L is lower triangular, D is diagonal if M is 
positive definite, and D contains 1 by 1 and 2 by 2 

bocks if M is indefinite. This step is normally the 
most time-consuming step of the IPM. 

3. Triangular solver uses result of factorization to 
solve a system of linear equations (L D LT)x=b, 
using the following three steps 

a. Forward solver, solves Ly=b 

b. Diagonal solver solves Dz=y. Note that 
when normal equations are used in the case 
of LP, this step can be eliminated, because 
the diagonal matrix D is positive and hence 
M can be represented as M=(L’) (L’)T, 
where L’ = L D1/2. 

c. Backward solver solves LTx=z 

4. Matrix vector multiply: Ax, ATx (transpose matrix 
vector multiply), and Mx (symmetric matrix-vector 
multiply). 

Other operations, such as inner products, vector 
additions, and vector norm computation contribute a 
small amount compared to the above operations.  

We see that the parallel efficiency of IPM depends on 
the efficient parallel implementation of these four linear 
algebra kernels. For the majority of realistic problems, 
solving systems of equations (kernels 2 and 3) is the 
most time-consuming portion of the IPM. For most 
optimization dataset models, the underlying matrix M is 
very sparse. As will be explained in later sections, 
sparsity is important because it uncovers an additional 
coarse-level parallelism, which is otherwise unavailable 
in the dense problems. 

PARALLELIZATION OF IPM 
In this section we describe the serial and parallel 
algorithm for solving sparse linear systems of equation. 
We discuss different levels of parallelism that can be 
explored for unstructured problems as well as additional 
levels of parallelism that become available in structured 
problems.   

Sparse Unstructured Problems 
This section deals with sparse unstructured matrices that 
arise from general optimization LP, QP, and NLP 
problems. Such matrices possess no distinct and 
exploitable non-zero structure. In the rest of this paper, 
we assume that the original symmetric matrix M is 
scattered into the factor matrix L. Two fundamental 
concepts behind solving sparse systems of linear 
equations are supernode and elimination tree. A 
supernode is a set of contiguous columns in the factor L 
whose non-zero structure consists of a dense triangular 
block on the diagonal and an identical set of non-zeroes 
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for each column below the diagonal. An example of 
supernode is given in Figure 1(a). 

 

 

Figure 1: Example of factor matrix L supernode and 
its elimination tree  

Figure 1(a) shows 13x13 sparse matrix L: empty entries 
are assumed to have zero values. In this example there 
are six supernodes. For example, columns 1 and 2 form 
supernode sn1, columns 7 and 8 form supernode sn4, 
and columns 11, 12, and 13 form supernode sn6. Since 
all columns in the supernode have an identical non-zero 
structure, in practice non-zero elements of supernodes 
are compactly compressed into and stored as a dense 
matrix. 

The elimination tree is a task dependence graph that 
characterizes the computation and data flow among the 
supernodes of L during Cholesky and triangular solve, 
and it is defined as follows:  parent(snj) = min{sni | i > j 
and at least one of the elements of snj which correspond 
to the diagonal block of sni is non-zero}. In other words, 
the parent of supernode j is determined by the first sub-
diagonal non-zero in supernode i. Figure 1(b) shows an 
example of the elimination tree for the matrix in Figure 

1(a). We see that there is an edge between sn1 and sn5, 
because as the shaded portion of the figure shows, the 
second row of the 2 by 2 diagonal block of sn5 
corresponds to the non-zero row 10 in sn1. Similarly, 
there is an edge between sn3 and sn6, because the first 
two rows of sn6 correspond to non-zero elements in 
rows 11 and 12 of supernode 3.  

Given the elimination tree, the Cholesky factorization 
forward and backward kernels can all be expressed using 
the following generic formulation: 

T = breadth-first traversal of ET (bottom-up or top-
down) 
for each supernode sni in ET     
 perform processing task on sni 
endfor 

The order of the tree traversal and the processing task 
are different for each kernel. Cholesky and the forward 
solver perform bottom-up traversal of the elimination 
tree, whereas backward solver performs top-down 
traversal of the elimination tree. The processing task for 
forward and backward solver are very similar; however, 
we do not discuss them here due to space limitations. 
The details of a Cholesky processing task are discussed 
next. 

Cholesky Factorization 
Cholesky factorization is the most time-consuming 
operation among the four kernels. According to our 
experiments (see our experimental section results for 
unstructured problems) on average, IPM spends 70% of 
the time in this kernel. The high-level pseudo-code of 
Cholesky is given in Figure 2(a). Cholesky processing 
task (Lines 3-7) is generally expressed in terms of two 
primitive operations on the supernode, cdiv and cmod, 
both of which are shown in Figure 2(b) and Figure 2(c), 
respectively. 
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Figure 2: Cholesky factorization  

Given supernode sn1, cdiv(sn1), also known as 
supernode factorization, requires multiplication of the 
dense rectangular portion of the supernode below its 
main diagonal by the inverse of the supernode’s dense 
diagonal block. The inversion is not actually computed. 
Rather, this computation is broken into two steps shown 
in Figure 2(b) for supernode sn1. In the first step, we 
perform dense Cholesky on the diagonal block of sn1. In 
the second step, we solve a large number of triangular 
systems for each nonzero row of the supernode below 
the main diagonal.  

The second and most time-consuming primitive 
operation in Cholesky factorization is called cmod, 
which is also known as supernode-supernode update. 
cmod(sn2, sn1) operation adds into destination 
supernode sn2 the multiple of the source supernode sn1 
and, similar to cdiv, consists of two steps, shown in 
Figure 2(c). The first step uses dense matrix-matrix 
multiply, to multiply the sn1 by the transpose of its sub-
matrix C which corresponds to the dense triangular 
block of the sn2. This results in the temporary supernode 
tsn. In the second step, the temporary supernode tsn is 
scatter-subtracted from the second supernode sn2. The 
scatter operation is required because tsn and sn2 may 
have different non-zero structures (which is the case in 
Figure 2(c)).  

The high-level pseudo-code of Cholesky, shown in 
Figure 2(a), scatters original matrix M into the factor L 
and performs a series of cdiv and cmod operations on 
supernodes of L to factorize it. The algorithm performs 
breadth-first bottom-up traversal of the elimination tree 
(designated as ET in the figure) starting from the leaves 
(Line 2). Each supernode sna, receives cmod updates 
from its descendant supernodes snd (Lines 3-6). Upon 
receiving all the updates, a cdiv operation is performed 
on sna to complete factorization of the supernode. The 
factorized supernode is now ready to update its own 
ancestors. All ancestor supernodes that require an update 
from the descendent supernode are known in advance; 
the leave supernodes require no updates. Note that due 
to the fact that each supernode is stored as a dense 
matrix, one can use efficient implementations of dense 
linear algebra subroutines (such as BLAS 2, BLAS 3, 
and LINPACK) to perform cdiv and cmod operations. 

Understanding Parallelism in  Cholesky 
Factorization 
We now examine the opportunities for parallelism in the 
above implementation of sparse Cholesky in Figure 2(a). 
This implementation contains parallelism on several 
different levels:  

Level 1: Elimination tree parallelism, which corresponds 
to the parallel execution of the outermost loop in Lines 
2-7. Here several iterations of the loop, which 

1. ET = breadh-first  bottom-up traversal of ET 
2. for each sna in ET
3. for each descendant snd that  must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination 
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply 

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular     
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn

1. ET = breadh-first  bottom-up traversal of ET 
2. for each sna in ET
3. for each descendant snd that  must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination 
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply 

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular     
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn
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correspond to independent sub-trees of the elimination 
tree, can be started in parallel on several processors. In 
other words, if T1 and T2 are disjoint sub-trees of the 
elimination tree, with neither root node a descendant of 
the other, then all of the supernodes of T1 can be 
factorized completely independently of the supernodes 
corresponding to T2, and vice versa. Hence, these 
computations can be done simultaneously by separate 
processors with no communication between them. 

Level 2: The second level of parallelism exists in the 
innermost loop (Lines 3-5) and is essentially a parallel 
reduction operation. For a given ancestor supernode sna, 
all updates from its descendents (Line 4) can proceed in 
parallel. Note, however, that it may happen (more often 
than not) that two or more descendents will try to scatter-
subtract into the same elements of their ancestor. This 
requires some locking mechanism to guarantee that only 
one update happens at a time.  

Level 3: The third level of parallelism exists within an 
individual cmod update operation called from the 
innermost loop (Line 4). Due to the fact that each cmod 
operation is composed of dense Cholesky and dense 
matrix-matrix product operation, each can be further 
parallelized. The parallelism also exists within the cdiv 
operation performed on a given supernode sn. As 
explained earlier, the cdiv(sn) operation involves solving 
a large independent set of dense triangular systems; 
hence all such solves can be done in parallel. 

To quantify the parallelism inherent to sparse Cholesky 
factorization, we note that the number of operations 
required to factorize a typical sparse matrix on a single 

processor is roughly )( 2/3nnzΘ , where nnz is a 

number of non-zeros in the matrix. Assuming only one 
column per supernode, unlimited hardware resource and 
zero-communication cost, at each step of parallel 
computation we will execute as many parallel 
factorization operations as possible, constrained only by 
the data-dependencies within the elimination tree, which 
are inherent to a particular sparse dataset. Therefore the 
number of parallel steps to factorize the sparse matrix is 
a critical path through the elimination tree. The height of 
a well-balanced elimination tree is approximately 

))(ln(NΘ , where N is the number of row/columns of 

M. Thus, the expected ideal speed-up of Cholesky is 

approximately ))ln(( 2/3 NnnzΘ . 

Sparse Structured Problems 
Of the four levels of parallelism described above, the 
elimination-tree-level parallelism is the coarsest and 
therefore is the most attractive to exploit with parallel 
processing. However, to exploit this parallelism 

efficiently requires a balanced elimination tree. Different 
elimination trees can be constructed for a given 
symmetric matrix M when the matrix is re-ordered using 
symmetric row and column permutations.  Obviously an 
elimination tree where all sub-trees have a similar height 
will result in better parallel speed-up than one where 
most of the nodes are in one long branch. However, 
finding a re-ordering of the matrix that leads to a more 
balanced elimination tree is a non-trivial task (in fact it is 
NP-complete).  

In many situations, however, explicitly constructing a 
balanced elimination tree is not necessary. Many truly 
large-scale optimization problems are not only sparse but 
also display some flavor of block structure that make 
them highly amenable to parallelism [4]. By a block-
structured matrix we understand a matrix that is 
composed of sub-matrices. A block-structured matrix 
can be nested, where each sub-matrix is a block-
structured matrix itself. The example of the nested 
block-angular matrix is given in Figure 3(a).  

 

Figure 3: Nested block structured matrix and its tree 
representation 

The nested block-structure of a matrix can be thought of 
as a tree. Its root is the whole matrix, and every block of 
a particular sub-matrix is a child node of the node 
representing this sub-matrix. Leaf nodes correspond to 
the elementary sub-matrices that can no longer be 
divided into blocks. Figure 3(b) shows an example of the 

(a) Example of block-angular matrix 

(b) Tree representation 
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matrix M’s tree. We see that sub-matrix F1 of M has a 
diagonal structure, whereas sub-matrix F2 of M has a 
block-angular structure. 

The existence of a well-defined structure is due to the 
fact that many optimization problems are usually 
generated by a process involving discretization of space 
or time (such as control problems or other problems 
involving differential equations), or of probability 
distribution (such as stochastic programming). Other 
sources of structure are possible such as in a network 
survivability problem where slight variations of the core 
network matrix are repeated many times. Note that a 
block of a block-structured matrix can itself be a sparse 
matrix. Therefore block structure offers the additional 
coarse level of parallelism, which is coarser than the 
elimination tree level of parallelism.  

Structure-Oriented Cholesky Factorization 
The efficient exploitation of matrix structure by linear 
algebra routines is based on the fact that any method 
supported by the linear algebra library can be performed 
by working through the tree: at every node, evaluating 
the required linear algebra operation for the matrix 
corresponding to this node can be broken down into 
child nodes in the tree. Different structures, however, 
need their own linear algebra implementation.  

In Figure 4(a), we show by means of a simple example 
how Cholesky factorization can be implemented on 
block-angular matrix M. This matrix consists of 4 by 4 
blocks. It is easy to see that the factor matrix L shown in 
Figure 4(b) is also block-angular. We partition L into 4-
column blocks: sci consists of sub-blocks Li and L4i for 
i=1,2,3, and sc4 contains a single block LC. Note that the 
column blocks are similar to supernodes for unstructured 
matrices. The only difference is that a supernode, by 
definition, must only contain sub-blocks of dense rows, 
whereas column blocks of a block-structured matrix can 
contain sub-blocks with an arbitrary sparsity pattern. 

Despite this difference, the same concepts that applied to 
supernodes equally apply to column blocks. Figure 4(c) 
shows the elimination for matrix L, and  Figure 4(d) 
shows the application of Cholesky factorization from 
Figure 2(a) to the column blocks of L. Step 1 is 
composed of two sub-steps: (i) cdiv(sc1) performs the 
required operations on sub-blocks L1 and L14,. and (ii) 
cmod(sc4, sc1) updates LC of sc4 with the corresponding 
product of L41 L41

T. Note that sc1 only has to update sc4, 
since, as indicated by the elimination tree, sc4 is its only 
parent. Similar operations are performed on sc2 and sc3 
in steps 2 and 3, respectively. Finally, the cdiv operation 
is performed on sc4 to factorize the sub-block LC and to 
complete the Cholesky factorization of M.  

 

Figure 4: Exploiting block-angular matrix structure

Understanding Parallelism in Structure-Oriented 
Cholesky 
The serial factorization algorithm in Figure 4(d) lends 
itself naturally to parallelization as shown in Figure 5. 
Steps 1, 2, and 3, which are completely independent, get 
distributed among the three processors, P1, P2, and P3. 

The resulting computation happens in Phase 1. Notice 
that instead of simultaneously updating the same matrix 
Ctmp, each processor Pi, stores the result of this update 
into its private copy of Ctmp, Ci. In Phase 2, the global 
reduction operation is performed, wherein each 
processor adds its own contribution to Ctmp. Finally, in 
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cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

cmod(sc4, sc3): Ctmp = Ctmp – L43 L43Tcdiv(sc3): L3=Cholesky(M3), L43 = B3 L3-T3.

-cdiv(sc4): LC=Cholesky(Ctmp)4.

2.

1.

Serial 
Steps

cmod(sc4, sc1): Ctmp = C – L41 L41Tcdiv(sc1): L1=Cholesky(M1), L41 = B1 L1-T

cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

(a) Block-angular matrix M (b) Factor L of M (c) Elimination Tree of L

(d) Serial computation to factorize M
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Phase 3, matrix Ctmp is factorized and the result is stored 
in LC, which completes parallel factorization of M. Note 
that the reduction operation in Step 2 can be parallelized. 
In addition, work performed in Phase 1 on each 

processor, as well Cholesky factorization in Phase 3, can 
also be parallelized. If M1, M2, M3, or Ctmp is 
unstructured, the parallel algorithm described in the 
previous section can be used.  

 

Figure 5: Split of computations between processors in structure-oriented Cholesky

Hence we see that by exploiting the special structure of 
the matrix, we are able to exploit the coarser level of 
parallelism unlike in cases of unstructured matrices.  

PERFORMANCE ANALYSIS OF LINEAR 
AND QUADRATIC IPM WORKLOADS 
In this section we present the scalability results and 
performance analysis of two applications. The first 
application is the shared-memory implementation of  
IPM for solving arbitrary unstructured linear 
programming problems. The second application is the 
MPI implementation of a structure-exploiting quadratic 
IPM workload (OOPS) for solving structured asset 
liability management quadratic programming problems. 
We performed both experiments on a 4-way 3.0 GHz 
Intel® Xeon™ processor MP-based system, with 8 GB of 
global shared memory and three levels of cache on each 
processor: 16 KB L1, 512 KB L2, and 4 MB L3. The 
four processors and memory are connected with a 
ServerWorks GC-HE, capable of delivering the peak 
bandwidth of 6.4 Gb/s. 

Performance Characterization of IPM for 
Unstructured Linear Programs 
For these experiments we use an Interior Point Solver 
(IPS) workload [3], which our team built for solving 
linear programming problems. IPS is based on PCx, a 
serial interior-point linear programming package 
developed at Argonne National Laboratory in 
collaboration with Northwestern University [5]. Our 
implementation of the Cholesky factorization and the 
solver routines uses a parallel sparse direct solver 
                                                           
® Intel and Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United 
States and other countries. 

 

package, called PARDISO, developed at the University 
of Basel [6], which is now included as part of Intel’s 
Math Kernel Library. In addition, we implemented and 
parallelized the routines for sparse matrix-matrix 
multiplication and sparse matrix-vector multiplication. 
Note that both the PARDISO code and our routines are 
parallelized using OpenMP. 

Table 1 summarizes the statistics for the datasets used in 
our experiments. They mostly come from the standard 
NETLIB test set and represent realistic linear models 
from several application domains. Columns 1 and 2 
show the number of variables and constraints in the 
constraint matrix for each problem. Column 3 shows the 
size of M, and Column 4 shows the number of non-zeros 
in its factor L. Note that the datasets are sorted in the 
order of increasing number of non-zeros. The last 
column shows the density of the factor matrix, computed 
as 100%*non-zeros/(neqns2). We see that on average, 
the problems are fairly large and most of them are very 
sparse. 
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Table 1: Characteristics of LP datasets 

 nconstraints nvariables neqns nlns Density (%) 
ken-18.dat 78862 128434 78862 2175306 0.034977 
fleet12.dat 21616 67841 21616 4085152 0.874294 
pds-20.dat 32287 106180 32287 6388010 0.612788 
fome13.dat 47872 97144 47872 10668201 0.465509 
snp30lp1 297998 953120 297998 20352321 0.022919 

gismondy.dat 18262 23266 18262 30887926 9.261729 
Figure 6(a) shows the breakdown of total execution time 
spent in the main optimization loop into the four 
important parallel regions and the remaining serial 
region. The parallel regions are Cholesky factorization, 
triangular solver (both forward and backward), matrix-
matrix multiply (mmm), and matrix-vector multiply 
(mvm). For each dataset, we show four bars 
corresponding to one (1P), two (2P), and four (4P) 
processors, respectively. Each bar is broken into five 
parts, one for each execution region. Note all the times 
are relative to one processor runtime, and the number on 
the top of one processor shows the total time spent in the 
main optimization loop. We see that for many datasets 
Cholesky is the most time-consuming kernel (main 
optimization loop of IPM spends on average 70% 
factorizing the matrix), and it also achieves good 
scalability for these datasets. The solver, which is the 
second most-time consuming kernel (17% of time on 
average), scales worse compared to the Cholesky and 
will require a considerable tuning effort in order for IPM 
to scale well on larger numbers of processors. Another 
4% of time is spent in parallel mmm, which scales very 
well up to four processors. An additional 4% of the time 
is spent in different flavors of parallel mvm. The 
remaining 5% of the time is spent in the serial region.  

Figure 6(b) reports the speed-up of IPS on one, two, and 
four processors. The highest speed-up (2.7x on four 
processors) is attained for the gismondi dataset, which is 
also the largest dataset in terms of the number of non-
zero elements. Comparing Table 1 and Figure 6(b), we 
see that both the run-time and scalability of IMS are 
almost perfectly correlated with the number of non-zeros 
in the factor matrix that represents the problem size. This 
is encouraging as it suggests that parallel computation 
improves the performance on harder problems.  

We used the Intel Thread Profiler, a parallel 
performance analysis tool, to identify and locate 
bottlenecks that are limiting the parallel speed-up of IPS. 
In this paper we only present the results for Cholesky 

factorization. The Thread Profiler identifies three 
important factors that adversely impact speed-up: 

1. Load imbalance is the time the threads that 
completed execution wait at a barrier at the end of 
the parallel region until all remaining threads have 
completed the assigned work of the region. When 
unequal amounts of computation are assigned to 
threads, threads with less work to execute sit idle at 
the region barrier until those threads with more 
work have finished. 

2. Locks is the time a thread spends waiting to acquire 
a lock. 

3. OpenMP overhead is the time spent inside the 
OpenMP Runtime Engine that implements 
OpenMP. 

For all datasets, Figure 7 shows the total Cholesky 
factorization time (summed over all processors) spent 
executing instructions (busy time), waiting on acquiring 
the locks (locks time), waiting on barriers due to load 
imbalance (imbalance time), and the time spent inside 
the OpenMP engine (OpenMP overhead time). Note that 
all results on one, two, and four processors are 
normalized to the one processor time. Perfect speed-up 
is possible only when the total time does not increase as 
the processors increase. As expected from Figure 6(b), 
ken-18 has the worst speed-up because the busy, wait, 
and OpenMP times increase by 150% for two processors 
and by as much as 350% for four processors. We can 
also observe a 30-60% increase in busy time on two and 
four processors for the other five datasets. By looking at 
the source code we identified the cause of these 
increases: they are due to the busy waiting loop inside 
the PARDISO implementation of Cholesky, wherein 
several processors try to acquire a shared lock in order to 
enter a critical region. The modest scalability of the 
triangular solver is due to the same reasons. The future 
implementation of the sparse linear solver within 
PARDISO is likely to address this issue. 
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Figure 6: Parallel performance of main optimization loop of IPS 

 

 

Figure 7: Concurrency and load balance in the parallel Cholesky factorization

Performance Characterization of  IPM for 
the Structured Quadratic Program 
For these experiments we used the OOPS workload [7], 
which we obtained from researchers at the University of 
Edinburgh. This uses a quadratic programming variant 
of IPM to solve the ALM problem. ALM is the process 
of finding an optimal solution to the problem of 
minimizing the risk of investments whose returns are 
uncertain. The method associates a risk probability to 
each asset and uses discrete random events observed at 
times t = 0, …, T to create a branching scenario tree 
rooted at the initial time. At each time step the 
probability of reaching a given node is computed by 
looking at its predecessor nodes. At the end of the 
process (time T+1) we can assign a probability to each 
outcome and compute the asset value at that time. The 
probability at the leaves of this branching tree will sum 
to one and we can assess the risk by looking at the asset 
value vs. the probability graph. The above steps are 

formulated as a structured quadratic problem with a 
block-angular structure, which is solved using OOPS. 

The research team at the University of Edinburgh also 
provided problem sets that  are summarized in Table 2. 
Columns 1, 2, and 3 show the number of time steps, the 
blocked matrices that compose the problem, and the 
number of assets. The last five columns are the same as 
given in the linear optimization. Again, we see that these 
problems are fairly large and very sparse. 
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Table 2: Characteristics of ALM datasets

 steps blocks assets nconstraints nvariables neqns non-zeros Density (%) 

ALM8b 3 33 50 57,274 168,451 57,274 1,009,800 0.03% 

ALM8c 3 50 50 130,102 382,651 130,102 3.378,750 0.02% 

ALM8d 3 70 50 253,522 745,651 253,522 9,070,250 0.01% 

ALM2 6 10 5 666,667 1,666,666 666,667 3,611,075 0.08% 

ALM9 5 24 4 2,077,207 5,193,016 2,077,207 23,368,500 0.01% 

UNS2 109 40 40 2,160,919 5,402,296 2,160,919 27,071,115 0.00% 

These inputs were run on the same 4-way 3.0 GHz Intel 
Xeon processor MP-based system that we described 
earlier. Figure 8(a) shows the breakdown of total 
execution time for OOPS. The regions appear to be 
slightly different than in the case of unstructured LP. As 
explained in the Interior Point Method section, OOPS 
builds an augmented matrix in each iteration of the 
optimization loop, whereas IPS performs mmm to form 
the normal matrix. This matrix is factorized using 
structure-exploiting Cholesky. Triangular solvers are 
similar to IPS, but many calls to operations on vectors 
and matrices are combined into the “Mat, Vect” region. 
For each dataset, we show four bars corresponding to 
one (1P), two (2P), and four (4P) processors, 
respectively. The time shown in this graph is relative to 
the time taken on the one-processor run. The total time 
(in seconds) for a one-processor run is given above its 
bar. The factorization routine has a large parallel section, 
followed by a global reduction (serial), followed by the 
redundant Cholesky factorization, which is duplicated in 
each processor (as described above). This duplication 
minimizes the communication, but causes the 
factorization step to exhibit less than linear scalability, as 
shown in our measurements. A similar pattern (parallel, 
serial, duplicate-parallel) occurs in the forward and 
backward solver routines, and we see a similar speed-up 
as in the factorization step. Since the solver takes a 
larger fraction of time in OOPS than in IPS, we broke it 

down into its components. The Mat, Vect section scales 
in a similar manner to the other routines. These routines 
have not been heavily optimized and have headroom for 
additional improvement. We also see a significant 
amount of overhead (11-13%) on the one-processor run 
on the larger data sets when compared with a serial 
version of OOPS. We speculate that this overhead is due 
to shared memory implementation of MPI, and we plan 
to investigate the cause of this overhead in our future 
work.  

Figure 8(b) reports the speed-up of IPS for the test 
datasets on one, two, and four processors. The scalability 
appears to be correlated with the amount of work 
required to factor the constraint matrix M. The scaling of 
OOPS does not yet exploit all of the parallelism that is 
present in the algorithm. 

To understand the performance overhead of the MPI 
calls, Figure 9 shows the results from running the Intel 
trace analysis tools on this workload. It instruments the 
code and measures the time waiting for messages. The 
instrumented runs show that a relatively small amount of 
time is spent in the MPI libraries and that almost all of 
that time is in the MPI reduction routine. It corresponds 
most closely to the “imbalance” portion of the OMP 
breakdowns. The rest of the additional time is spent in 
the OOPS code. We are investigating the source of this 
extra time. 
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Figure 8: Parallel performance of main optimization loop of OOPS 
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Figure 9: Concurrency and load balance in OOPS

CONCLUSION 
In this paper we described a parallel IPM for solving 
optimization problems. The performance of IPM 
depends on several key sparse linear algebra kernels. 
The most important kernel is the solution of the sparse 
linear system of equations. We described serial and 
parallel implementations of the sparse linear solver for 
both unstructured and structured optimization problems.   

We have done performance and scalability analysis of 
IPS–a linear optimization workload for solving 
unstructured linear programs. We reported up to 2.7x 
speed-up on the 4-way 3.0 GHz Intel Xeon processor 
MP-based system for a diverse set of linear problems. 

We also presented the performance and scalability 
analysis of OOPS–a structure-exploiting quadratic 
optimization workload for solving structured quadratic 
problems. OOPS exposes parallelism by passing 
structure information from the high-level optimization 
problems into the linear algebra layer. We achieved up 
to a 2.7x speed-up on the number of datasets from 
important asset liability management problems.   

Overall, we observed that the scalability of IPM depends 
on several key factors such as problem size, problem 
sparsity, as well as problem structure. Although we 
observed similar performance scalability for the linear 
unstructured problems and the quadratic structured 
problems, the structured problems exhibit multiple levels 
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of parallelism that are not all exploited in the current 
OOPS implementation. This leaves headroom for 
performance scalability on systems with large numbers 
of processors, which we are going to explore in our 
future work.  

One expects the optimization problem size to grow in the 
future. For example, an increased number of assets in an 
investor’s portfolio will lead to better risk diversification 
and hence higher return on investment. Many truly large-
scale optimization problems are not only sparse but also 
display block-structure, because these problems are 
usually generated by discretizations of space or time. 
These large optimization problems will clearly benefit 
from a system capable of exploiting multiple levels of 
parallelism from fine grain to coarse grain.  
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