
Parallel Computing for Large-Scale Optimization
Problems: Challenges and Solutions

Compute-Intensive, Highly Parallel Applications and Uses

Intel®

Technology
Journal

Volume 09 Issue 02 Published, May 19, 2005 ISSN 1535-864X DOI: 10.1535/itj.0902

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 151

Parallel Computing for Large-Scale Optimization Problems:
Challenges and Solutions

Mikhail Smelyanskiy, Corporate Technology Group, Intel Corporation
Stephen Skedzielewski, Corporate Technology Group, Intel Corporation

Carole Dulong, Corporate Technology Group, Intel Corporation

Index words: optimization, linear programming, quadratic programming, interior point method, sparse
linear system of equations, Cholesky factorization, backward solver, forward solver, elimination tree,
supernode, parallel computing, multiprocessor system, shared-memory programming model, message-
passing programming model, problem structure, block-angular matrices, asset liability management

ABSTRACT

Optimization refers to the minimization (or
maximization) of an objective function of several
decision variables that have to satisfy specified
constraints. There are many applications of optimization.
One example is the portfolio optimization problem
where we seek the best way to invest some capital in a
set of n assets. The constraints might represent a limit on
the budget (i.e., a limit on the total amount to be
invested), the requirement that investments are
nonnegative (assuming short positions are not allowed),
and a minimum acceptable value of expected return for
the whole portfolio. The objective or cost function might
be a measure of the overall risk or variance of the
portfolio return. In this case, the optimization problem
corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet
the firm requirements. Another example is production
planning and inventory: the problem is to determine the
optimal amount to produce in each month so that
demand is met while the total cost of production and
inventory is maintained without shortages.

In recent years the Interior Point Method (IPM) has
became a dominant choice for solving large optimization
problems for many scientific, engineering, and
commercial applications. Two reasons for the success of
the IPM are its good scalability on existing
multiprocessor systems with a small number of
processors and its potential to deliver a scalable
performance on systems with a large number of
processors. IPM spends most of its runtime in several
important sparse linear algebra kernels. The scalability
of these kernels depends on several key factors such as
problem size, problem sparsity, and problem structure.

This paper describes the computational kernels that are
the building blocks of IPM, and we explain the different
sources of parallelism in sparse parallel linear solvers,
the dominant computation of IPM. We analyze the
scalability and performance of two important
optimization workloads for solving linear and quadratic
programming problems.

INTRODUCTION
Optimization refers to the minimization (or
maximization) of an objective function of several
decision variables that have to satisfy specified
constraints. It enables businesses to make better
decisions about how to commit resources, which include
equipment, capital, people, vehicles, raw materials, time,
and facilities.

While existing hardware performs well on problems with
tens of thousands of constraints and hundreds of
thousands of variables, it lacks the necessary
computational and bandwidth resources to target future
datasets whose solution will require teraflops of
computation and gigaflops of bandwidth. As an example,
consider the Asset Liability Management (ALM)
problem from computational finance, where the goal is
to coordinate the management of assets and liabilities
over several time periods to maximize the return at the
end of the final time periods. To hedge against risk
requires diversification of a portfolio with many assets;
considering more time periods means better planning.
Our simple back-of-the-envelope estimate shows that
modeling just three time periods and as few as seventy-
four assets creates an optimization problem that takes
about one hour to solve on today’s platforms, but only
ten seconds to solve on a teraflop platform of tomorrow.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 152

In order for an optimization workload to achieve high
performance on future parallel architectures, one needs
to understand (i) the source of parallelism, (ii) how the
parallelism changes for different optimization problems,
and (iii) how to extract this parallelism for a given
problem.

We focus on the Interior Point Method (IPM), a
dominant choice for solving large-scale optimization
problems in many scientific, engineering, and financial
applications. While complex mathematical analysis is the
driving force behind IPM, most of the algorithm’s
computation time is spent in a few sparse linear algebra
functions: sparse linear solvers, matrix-matrix
multiplication, matrix-vector multiplication, and a few
others. Developing parallel systems that efficiently
execute these few functions is paramount to high
performance for the IPM.

In this paper, we discuss IPM workloads as well as
several approaches to parallelizing IPM. First, we
discuss important computational kernels that are the
building blocks of IPM. Second, we explain several
sources of parallelism in sparse parallel linear solvers,
the dominant computation of IPM. We also describe
how additional parallelism within IPM can be discovered
by exploiting inherent problem structures. Thirdly, we
present the scalability results and performance analysis
of shared-memory IPM on several datasets from linear
programming. This workload utilizes highly optimized,
parallel routines from the Intel Math Kernel Library,
built using the PCx framework and parallelized by our
team. We also present scalability results and
performance analysis of a structure-exploiting quadratic
IPM workload, the Object-Oriented Parallel interior
point Solver (OOPS), on asset liability and management
problems.

OPTIMIZATION AND THEIR USAGE
MODELS
An optimization problem, has the form

 minimize f0(x)

subject to fi(x) bi, i = 1,…, m

Here the vector x = (x1,…,xn) is the optimization
decision variable of the problem, the function f0(x) is the
objective function, the functions fi , i = 1,…,m, are the
(inequality) constraint functions, and the constants
b1,…,bm are the limits, or bounds, for the constraints. A
vector x* is called optimal, or a solution of the
optimization problem if it has the smallest objective
value among all vectors that satisfy the constraints.

There are several important classes of optimization
problems, characterized by particular forms of the

objective and constraint functions. As an example, the
optimization problem is called a Linear Program (LP) if
the objective and constraint functions f0,…, fm are
linear functions of x. The LP optimization problem is of
the form

min cTx, subject to Ax=b, x 0

where A is m by n the matrix of linear constraints, and
vectors x, c, and b have appropriate dimensions.

Another important example, the convex quadratic
optimization problem (QP), is of the form

min cTx + ½ xTQx, subject to Ax=b, x 0

where Q is n by n positive semidefinite matrix, and A, x,
c, and b are the same as in LP.

LP and QP are important not only because many
problems encountered in practice can be formulated as
either LP and QP problems, but also because many
methods for solving general non-linear programming
problems (NLP) solve them by solving the sequence of
linear (sequential linear programming) or quadratic
(sequential quadratic programming) approximations of
the original NLP problem.

There are many applications of optimization. In the
radiation therapy planning optimization problem, when
choosing a plan for any individual patient, one seeks to
determine radiation beam directions and intensity with
the goals of maximizing the delivered dose to the tumor
while minimizing the dose in normal tissue and organs at
risk. There exist different formulations of this problem
as LP, QP, or NLP.

In production planning and inventory problems, the
problem is to determine the optimal amount to produce
in each month so that demand is met yet the total cost of
production and inventory is minimized and shortages are
not permitted. This problem has been traditionally
solved using the LP approach.

Another example is the famous portfolio optimization
problem where we seek the best way to invest some
capital in a set of n assets. The variable xi represents the
investment in the ith asset, so the vector x=(x1,…,xn)
describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the
budget (i.e., a limit on the total amount to be invested),
the requirement that investments are nonnegative
(assuming short positions are not allowed), and a
minimum acceptable value of expected return for the
whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio
return. In this case, the optimization problem
corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 153

the firm requirements. The problem is known as the
Markovitz mean-variance optimization problem and is
modeled using QP.

The last example is device sizing in electronic design,
which is the task of choosing the width and length of
each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The
constraints represent a variety of engineering
requirements, such as limits on the device sizes imposed
by the manufacturing process, timing requirements that
ensure that the circuit can operate reliably at a specified
speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total
power consumed by the circuit. The optimization
problem is to find the device sizes that satisfy the design
requirements (on manufacturability, timing, and area)
and are most power efficient. This problem can be
modeled using LP or QP.

INTERIOR-POINT METHOD (IPM)
In the past decade, the IPM has become a method of
choice for solving large convex optimization problems.
As parallel processing hardware continues to make its
way into mainstream computing, it becomes important to
investigate whether parallel computation can improve
the performance of this commercially vital application.

The IPM has a unified framework for LP, QP, and NLP.
The method starts with the initial guess to the solution of
the optimization problem, x. The core of the method is
the main optimization loop, which updates the vector x
at each iteration until the convergence to the optimal
solution vector x* is achieved. A key to efficient
implementation and parallelization of IPM is that all
three algorithms depend on four linear algebra kernels
listed below:

1. Form linear systems of equations, Mx=b, where M
is the symmetric matrix of the form








 Ζ−
=

0A

A
M

T

, where A is the original matrix

of constraints. The matrix of this form is called
augmented system. For linear programming
problems, where Z is a diagonal matrix, one uses
substitution of variables in the above linear system
of equations, so that matrix M is reduced to normal

equation form AZAM 1−= . This requires a

matrix-matrix multiplication operation.

2. Cholesky factorization of matrix M = L D LT in
order to solve the system of linear equations, Mx=b.
Here L is lower triangular, D is diagonal if M is
positive definite, and D contains 1 by 1 and 2 by 2

bocks if M is indefinite. This step is normally the
most time-consuming step of the IPM.

3. Triangular solver uses result of factorization to
solve a system of linear equations (L D LT)x=b,
using the following three steps

a. Forward solver, solves Ly=b

b. Diagonal solver solves Dz=y. Note that
when normal equations are used in the case
of LP, this step can be eliminated, because
the diagonal matrix D is positive and hence
M can be represented as M=(L’) (L’)T,
where L’ = L D1/2.

c. Backward solver solves LTx=z

4. Matrix vector multiply: Ax, ATx (transpose matrix
vector multiply), and Mx (symmetric matrix-vector
multiply).

Other operations, such as inner products, vector
additions, and vector norm computation contribute a
small amount compared to the above operations.

We see that the parallel efficiency of IPM depends on
the efficient parallel implementation of these four linear
algebra kernels. For the majority of realistic problems,
solving systems of equations (kernels 2 and 3) is the
most time-consuming portion of the IPM. For most
optimization dataset models, the underlying matrix M is
very sparse. As will be explained in later sections,
sparsity is important because it uncovers an additional
coarse-level parallelism, which is otherwise unavailable
in the dense problems.

PARALLELIZATION OF IPM
In this section we describe the serial and parallel
algorithm for solving sparse linear systems of equation.
We discuss different levels of parallelism that can be
explored for unstructured problems as well as additional
levels of parallelism that become available in structured
problems.

Sparse Unstructured Problems
This section deals with sparse unstructured matrices that
arise from general optimization LP, QP, and NLP
problems. Such matrices possess no distinct and
exploitable non-zero structure. In the rest of this paper,
we assume that the original symmetric matrix M is
scattered into the factor matrix L. Two fundamental
concepts behind solving sparse systems of linear
equations are supernode and elimination tree. A
supernode is a set of contiguous columns in the factor L
whose non-zero structure consists of a dense triangular
block on the diagonal and an identical set of non-zeroes

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 154

for each column below the diagonal. An example of
supernode is given in Figure 1(a).

Figure 1: Example of factor matrix L supernode and
its elimination tree

Figure 1(a) shows 13x13 sparse matrix L: empty entries
are assumed to have zero values. In this example there
are six supernodes. For example, columns 1 and 2 form
supernode sn1, columns 7 and 8 form supernode sn4,
and columns 11, 12, and 13 form supernode sn6. Since
all columns in the supernode have an identical non-zero
structure, in practice non-zero elements of supernodes
are compactly compressed into and stored as a dense
matrix.

The elimination tree is a task dependence graph that
characterizes the computation and data flow among the
supernodes of L during Cholesky and triangular solve,
and it is defined as follows: parent(snj) = min{sni | i > j
and at least one of the elements of snj which correspond
to the diagonal block of sni is non-zero}. In other words,
the parent of supernode j is determined by the first sub-
diagonal non-zero in supernode i. Figure 1(b) shows an
example of the elimination tree for the matrix in Figure

1(a). We see that there is an edge between sn1 and sn5,
because as the shaded portion of the figure shows, the
second row of the 2 by 2 diagonal block of sn5
corresponds to the non-zero row 10 in sn1. Similarly,
there is an edge between sn3 and sn6, because the first
two rows of sn6 correspond to non-zero elements in
rows 11 and 12 of supernode 3.

Given the elimination tree, the Cholesky factorization
forward and backward kernels can all be expressed using
the following generic formulation:

T = breadth-first traversal of ET (bottom-up or top-
down)
for each supernode sni in ET
 perform processing task on sni
endfor

The order of the tree traversal and the processing task
are different for each kernel. Cholesky and the forward
solver perform bottom-up traversal of the elimination
tree, whereas backward solver performs top-down
traversal of the elimination tree. The processing task for
forward and backward solver are very similar; however,
we do not discuss them here due to space limitations.
The details of a Cholesky processing task are discussed
next.

Cholesky Factorization
Cholesky factorization is the most time-consuming
operation among the four kernels. According to our
experiments (see our experimental section results for
unstructured problems) on average, IPM spends 70% of
the time in this kernel. The high-level pseudo-code of
Cholesky is given in Figure 2(a). Cholesky processing
task (Lines 3-7) is generally expressed in terms of two
primitive operations on the supernode, cdiv and cmod,
both of which are shown in Figure 2(b) and Figure 2(c),
respectively.

x****13

sn7

13

sn6sn5sn4sn3

x

10

x
x

11

x

12

x10

xxxx11

xx12

x9

xx8
x7

xx6
x5

4

3

2

1

98765

x****13

sn7

13

sn6sn5sn4sn3

x

10

x
x

11

x

12

x10

xxxx11

xx12

x9

xx8
x7

xx6
x5

4

3

2

1

98765

sn3 sn4

sn5 sn6

sn7

sn3sn3 sn4sn4

sn5sn5 sn6sn6

sn7sn7

(a) Factor matrix with supernodes

(b) Elimination Tree

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 155

Figure 2: Cholesky factorization

Given supernode sn1, cdiv(sn1), also known as
supernode factorization, requires multiplication of the
dense rectangular portion of the supernode below its
main diagonal by the inverse of the supernode’s dense
diagonal block. The inversion is not actually computed.
Rather, this computation is broken into two steps shown
in Figure 2(b) for supernode sn1. In the first step, we
perform dense Cholesky on the diagonal block of sn1. In
the second step, we solve a large number of triangular
systems for each nonzero row of the supernode below
the main diagonal.

The second and most time-consuming primitive
operation in Cholesky factorization is called cmod,
which is also known as supernode-supernode update.
cmod(sn2, sn1) operation adds into destination
supernode sn2 the multiple of the source supernode sn1
and, similar to cdiv, consists of two steps, shown in
Figure 2(c). The first step uses dense matrix-matrix
multiply, to multiply the sn1 by the transpose of its sub-
matrix C which corresponds to the dense triangular
block of the sn2. This results in the temporary supernode
tsn. In the second step, the temporary supernode tsn is
scatter-subtracted from the second supernode sn2. The
scatter operation is required because tsn and sn2 may
have different non-zero structures (which is the case in
Figure 2(c)).

The high-level pseudo-code of Cholesky, shown in
Figure 2(a), scatters original matrix M into the factor L
and performs a series of cdiv and cmod operations on
supernodes of L to factorize it. The algorithm performs
breadth-first bottom-up traversal of the elimination tree
(designated as ET in the figure) starting from the leaves
(Line 2). Each supernode sna, receives cmod updates
from its descendant supernodes snd (Lines 3-6). Upon
receiving all the updates, a cdiv operation is performed
on sna to complete factorization of the supernode. The
factorized supernode is now ready to update its own
ancestors. All ancestor supernodes that require an update
from the descendent supernode are known in advance;
the leave supernodes require no updates. Note that due
to the fact that each supernode is stored as a dense
matrix, one can use efficient implementations of dense
linear algebra subroutines (such as BLAS 2, BLAS 3,
and LINPACK) to perform cdiv and cmod operations.

Understanding Parallelism in Cholesky
Factorization
We now examine the opportunities for parallelism in the
above implementation of sparse Cholesky in Figure 2(a).
This implementation contains parallelism on several
different levels:

Level 1: Elimination tree parallelism, which corresponds
to the parallel execution of the outermost loop in Lines
2-7. Here several iterations of the loop, which

1. ET = breadh-first bottom-up traversal of ET
2. for each sna in ET
3. for each descendant snd that must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn

1. ET = breadh-first bottom-up traversal of ET
2. for each sna in ET
3. for each descendant snd that must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 156

correspond to independent sub-trees of the elimination
tree, can be started in parallel on several processors. In
other words, if T1 and T2 are disjoint sub-trees of the
elimination tree, with neither root node a descendant of
the other, then all of the supernodes of T1 can be
factorized completely independently of the supernodes
corresponding to T2, and vice versa. Hence, these
computations can be done simultaneously by separate
processors with no communication between them.

Level 2: The second level of parallelism exists in the
innermost loop (Lines 3-5) and is essentially a parallel
reduction operation. For a given ancestor supernode sna,
all updates from its descendents (Line 4) can proceed in
parallel. Note, however, that it may happen (more often
than not) that two or more descendents will try to scatter-
subtract into the same elements of their ancestor. This
requires some locking mechanism to guarantee that only
one update happens at a time.

Level 3: The third level of parallelism exists within an
individual cmod update operation called from the
innermost loop (Line 4). Due to the fact that each cmod
operation is composed of dense Cholesky and dense
matrix-matrix product operation, each can be further
parallelized. The parallelism also exists within the cdiv
operation performed on a given supernode sn. As
explained earlier, the cdiv(sn) operation involves solving
a large independent set of dense triangular systems;
hence all such solves can be done in parallel.

To quantify the parallelism inherent to sparse Cholesky
factorization, we note that the number of operations
required to factorize a typical sparse matrix on a single

processor is roughly)(2/3nnzΘ , where nnz is a

number of non-zeros in the matrix. Assuming only one
column per supernode, unlimited hardware resource and
zero-communication cost, at each step of parallel
computation we will execute as many parallel
factorization operations as possible, constrained only by
the data-dependencies within the elimination tree, which
are inherent to a particular sparse dataset. Therefore the
number of parallel steps to factorize the sparse matrix is
a critical path through the elimination tree. The height of
a well-balanced elimination tree is approximately

))(ln(NΘ , where N is the number of row/columns of

M. Thus, the expected ideal speed-up of Cholesky is

approximately))ln((2/3 NnnzΘ .

Sparse Structured Problems
Of the four levels of parallelism described above, the
elimination-tree-level parallelism is the coarsest and
therefore is the most attractive to exploit with parallel
processing. However, to exploit this parallelism

efficiently requires a balanced elimination tree. Different
elimination trees can be constructed for a given
symmetric matrix M when the matrix is re-ordered using
symmetric row and column permutations. Obviously an
elimination tree where all sub-trees have a similar height
will result in better parallel speed-up than one where
most of the nodes are in one long branch. However,
finding a re-ordering of the matrix that leads to a more
balanced elimination tree is a non-trivial task (in fact it is
NP-complete).

In many situations, however, explicitly constructing a
balanced elimination tree is not necessary. Many truly
large-scale optimization problems are not only sparse but
also display some flavor of block structure that make
them highly amenable to parallelism [4]. By a block-
structured matrix we understand a matrix that is
composed of sub-matrices. A block-structured matrix
can be nested, where each sub-matrix is a block-
structured matrix itself. The example of the nested
block-angular matrix is given in Figure 3(a).

Figure 3: Nested block structured matrix and its tree
representation

The nested block-structure of a matrix can be thought of
as a tree. Its root is the whole matrix, and every block of
a particular sub-matrix is a child node of the node
representing this sub-matrix. Leaf nodes correspond to
the elementary sub-matrices that can no longer be
divided into blocks. Figure 3(b) shows an example of the

(a) Example of block-angular matrix

(b) Tree representation

C

E

F1

F2

M =

D1

D2

D3

A1

A2

A3

A4

G

M

F1 F2

D1

E

D2 D3 A1 A2 A3 C

A4 G

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 157

matrix M’s tree. We see that sub-matrix F1 of M has a
diagonal structure, whereas sub-matrix F2 of M has a
block-angular structure.

The existence of a well-defined structure is due to the
fact that many optimization problems are usually
generated by a process involving discretization of space
or time (such as control problems or other problems
involving differential equations), or of probability
distribution (such as stochastic programming). Other
sources of structure are possible such as in a network
survivability problem where slight variations of the core
network matrix are repeated many times. Note that a
block of a block-structured matrix can itself be a sparse
matrix. Therefore block structure offers the additional
coarse level of parallelism, which is coarser than the
elimination tree level of parallelism.

Structure-Oriented Cholesky Factorization
The efficient exploitation of matrix structure by linear
algebra routines is based on the fact that any method
supported by the linear algebra library can be performed
by working through the tree: at every node, evaluating
the required linear algebra operation for the matrix
corresponding to this node can be broken down into
child nodes in the tree. Different structures, however,
need their own linear algebra implementation.

In Figure 4(a), we show by means of a simple example
how Cholesky factorization can be implemented on
block-angular matrix M. This matrix consists of 4 by 4
blocks. It is easy to see that the factor matrix L shown in
Figure 4(b) is also block-angular. We partition L into 4-
column blocks: sci consists of sub-blocks Li and L4i for
i=1,2,3, and sc4 contains a single block LC. Note that the
column blocks are similar to supernodes for unstructured
matrices. The only difference is that a supernode, by
definition, must only contain sub-blocks of dense rows,
whereas column blocks of a block-structured matrix can
contain sub-blocks with an arbitrary sparsity pattern.

Despite this difference, the same concepts that applied to
supernodes equally apply to column blocks. Figure 4(c)
shows the elimination for matrix L, and Figure 4(d)
shows the application of Cholesky factorization from
Figure 2(a) to the column blocks of L. Step 1 is
composed of two sub-steps: (i) cdiv(sc1) performs the
required operations on sub-blocks L1 and L14,. and (ii)
cmod(sc4, sc1) updates LC of sc4 with the corresponding
product of L41 L41

T. Note that sc1 only has to update sc4,
since, as indicated by the elimination tree, sc4 is its only
parent. Similar operations are performed on sc2 and sc3
in steps 2 and 3, respectively. Finally, the cdiv operation
is performed on sc4 to factorize the sub-block LC and to
complete the Cholesky factorization of M.

Figure 4: Exploiting block-angular matrix structure

Understanding Parallelism in Structure-Oriented
Cholesky
The serial factorization algorithm in Figure 4(d) lends
itself naturally to parallelization as shown in Figure 5.
Steps 1, 2, and 3, which are completely independent, get
distributed among the three processors, P1, P2, and P3.

The resulting computation happens in Phase 1. Notice
that instead of simultaneously updating the same matrix
Ctmp, each processor Pi, stores the result of this update
into its private copy of Ctmp, Ci. In Phase 2, the global
reduction operation is performed, wherein each
processor adds its own contribution to Ctmp. Finally, in

sc4sc3sc2sc1

M=

CB3B2B1

M3

M2

M1

sc4sc3sc2sc1

M=

CB3B2B1

M3

M2

M1

sc4sc3sc2sc1

L=

LCL43L42L41

L3

L2

L1

sc4sc3sc2sc1

L=

LCL43L42L41

L3

L2

L1

sc4

sc1 sc2 sc3

sc4sc4

sc1sc1 sc2sc2 sc3sc3

cmod(sc4, sc3): Ctmp = Ctmp – L43 L43Tcdiv(sc3): L3=Cholesky(M3), L43 = B3 L3-T3.

-cdiv(sc4): LC=Cholesky(Ctmp)4.

2.

1.

Serial
Steps

cmod(sc4, sc1): Ctmp = C – L41 L41Tcdiv(sc1): L1=Cholesky(M1), L41 = B1 L1-T

cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

cmod(sc4, sc3): Ctmp = Ctmp – L43 L43Tcdiv(sc3): L3=Cholesky(M3), L43 = B3 L3-T3.

-cdiv(sc4): LC=Cholesky(Ctmp)4.

2.

1.

Serial
Steps

cmod(sc4, sc1): Ctmp = C – L41 L41Tcdiv(sc1): L1=Cholesky(M1), L41 = B1 L1-T

cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

(a) Block-angular matrix M (b) Factor L of M (c) Elimination Tree of L

(d) Serial computation to factorize M

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 158

Phase 3, matrix Ctmp is factorized and the result is stored
in LC, which completes parallel factorization of M. Note
that the reduction operation in Step 2 can be parallelized.
In addition, work performed in Phase 1 on each

processor, as well Cholesky factorization in Phase 3, can
also be parallelized. If M1, M2, M3, or Ctmp is
unstructured, the parallel algorithm described in the
previous section can be used.

Figure 5: Split of computations between processors in structure-oriented Cholesky

Hence we see that by exploiting the special structure of
the matrix, we are able to exploit the coarser level of
parallelism unlike in cases of unstructured matrices.

PERFORMANCE ANALYSIS OF LINEAR
AND QUADRATIC IPM WORKLOADS
In this section we present the scalability results and
performance analysis of two applications. The first
application is the shared-memory implementation of
IPM for solving arbitrary unstructured linear
programming problems. The second application is the
MPI implementation of a structure-exploiting quadratic
IPM workload (OOPS) for solving structured asset
liability management quadratic programming problems.
We performed both experiments on a 4-way 3.0 GHz
Intel® Xeon™ processor MP-based system, with 8 GB of
global shared memory and three levels of cache on each
processor: 16 KB L1, 512 KB L2, and 4 MB L3. The
four processors and memory are connected with a
ServerWorks GC-HE, capable of delivering the peak
bandwidth of 6.4 Gb/s.

Performance Characterization of IPM for
Unstructured Linear Programs
For these experiments we use an Interior Point Solver
(IPS) workload [3], which our team built for solving
linear programming problems. IPS is based on PCx, a
serial interior-point linear programming package
developed at Argonne National Laboratory in
collaboration with Northwestern University [5]. Our
implementation of the Cholesky factorization and the
solver routines uses a parallel sparse direct solver

® Intel and Xeon are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United
States and other countries.

package, called PARDISO, developed at the University
of Basel [6], which is now included as part of Intel’s
Math Kernel Library. In addition, we implemented and
parallelized the routines for sparse matrix-matrix
multiplication and sparse matrix-vector multiplication.
Note that both the PARDISO code and our routines are
parallelized using OpenMP.

Table 1 summarizes the statistics for the datasets used in
our experiments. They mostly come from the standard
NETLIB test set and represent realistic linear models
from several application domains. Columns 1 and 2
show the number of variables and constraints in the
constraint matrix for each problem. Column 3 shows the
size of M, and Column 4 shows the number of non-zeros
in its factor L. Note that the datasets are sorted in the
order of increasing number of non-zeros. The last
column shows the density of the factor matrix, computed
as 100%*non-zeros/(neqns2). We see that on average,
the problems are fairly large and most of them are very
sparse.

Phase 3Phase 2Phase 1

LC=Cholesky(Ctmp)

(Parallel) Cholesky(Parallel) ReductionIndependent Parallel Computation

Ctmp=C– C1–C2–C3

C3=L43 L43TL3=Cholesky(M3):L43 = B3 L3-TP3

P2

P1 C1= L41 L41TL1=Cholesky(M1):L41 = B1 L1-T

C2=L42 L42TL2=Cholesky(M2):L42 = B2 L2-T

Phase 3Phase 2Phase 1

LC=Cholesky(Ctmp)

(Parallel) Cholesky(Parallel) ReductionIndependent Parallel Computation

Ctmp=C– C1–C2–C3

C3=L43 L43TL3=Cholesky(M3):L43 = B3 L3-TP3

P2

P1 C1= L41 L41TL1=Cholesky(M1):L41 = B1 L1-T

C2=L42 L42TL2=Cholesky(M2):L42 = B2 L2-T

P
ar

al
le

l
S

te
p

s

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 159

Table 1: Characteristics of LP datasets

 nconstraints nvariables neqns nlns Density (%)
ken-18.dat 78862 128434 78862 2175306 0.034977
fleet12.dat 21616 67841 21616 4085152 0.874294
pds-20.dat 32287 106180 32287 6388010 0.612788
fome13.dat 47872 97144 47872 10668201 0.465509
snp30lp1 297998 953120 297998 20352321 0.022919

gismondy.dat 18262 23266 18262 30887926 9.261729
Figure 6(a) shows the breakdown of total execution time
spent in the main optimization loop into the four
important parallel regions and the remaining serial
region. The parallel regions are Cholesky factorization,
triangular solver (both forward and backward), matrix-
matrix multiply (mmm), and matrix-vector multiply
(mvm). For each dataset, we show four bars
corresponding to one (1P), two (2P), and four (4P)
processors, respectively. Each bar is broken into five
parts, one for each execution region. Note all the times
are relative to one processor runtime, and the number on
the top of one processor shows the total time spent in the
main optimization loop. We see that for many datasets
Cholesky is the most time-consuming kernel (main
optimization loop of IPM spends on average 70%
factorizing the matrix), and it also achieves good
scalability for these datasets. The solver, which is the
second most-time consuming kernel (17% of time on
average), scales worse compared to the Cholesky and
will require a considerable tuning effort in order for IPM
to scale well on larger numbers of processors. Another
4% of time is spent in parallel mmm, which scales very
well up to four processors. An additional 4% of the time
is spent in different flavors of parallel mvm. The
remaining 5% of the time is spent in the serial region.

Figure 6(b) reports the speed-up of IPS on one, two, and
four processors. The highest speed-up (2.7x on four
processors) is attained for the gismondi dataset, which is
also the largest dataset in terms of the number of non-
zero elements. Comparing Table 1 and Figure 6(b), we
see that both the run-time and scalability of IMS are
almost perfectly correlated with the number of non-zeros
in the factor matrix that represents the problem size. This
is encouraging as it suggests that parallel computation
improves the performance on harder problems.

We used the Intel Thread Profiler, a parallel
performance analysis tool, to identify and locate
bottlenecks that are limiting the parallel speed-up of IPS.
In this paper we only present the results for Cholesky

factorization. The Thread Profiler identifies three
important factors that adversely impact speed-up:

1. Load imbalance is the time the threads that
completed execution wait at a barrier at the end of
the parallel region until all remaining threads have
completed the assigned work of the region. When
unequal amounts of computation are assigned to
threads, threads with less work to execute sit idle at
the region barrier until those threads with more
work have finished.

2. Locks is the time a thread spends waiting to acquire
a lock.

3. OpenMP overhead is the time spent inside the
OpenMP Runtime Engine that implements
OpenMP.

For all datasets, Figure 7 shows the total Cholesky
factorization time (summed over all processors) spent
executing instructions (busy time), waiting on acquiring
the locks (locks time), waiting on barriers due to load
imbalance (imbalance time), and the time spent inside
the OpenMP engine (OpenMP overhead time). Note that
all results on one, two, and four processors are
normalized to the one processor time. Perfect speed-up
is possible only when the total time does not increase as
the processors increase. As expected from Figure 6(b),
ken-18 has the worst speed-up because the busy, wait,
and OpenMP times increase by 150% for two processors
and by as much as 350% for four processors. We can
also observe a 30-60% increase in busy time on two and
four processors for the other five datasets. By looking at
the source code we identified the cause of these
increases: they are due to the busy waiting loop inside
the PARDISO implementation of Cholesky, wherein
several processors try to acquire a shared lock in order to
enter a critical region. The modest scalability of the
triangular solver is due to the same reasons. The future
implementation of the sparse linear solver within
PARDISO is likely to address this issue.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 160

Figure 6: Parallel performance of main optimization loop of IPS

Figure 7: Concurrency and load balance in the parallel Cholesky factorization

Performance Characterization of IPM for
the Structured Quadratic Program
For these experiments we used the OOPS workload [7],
which we obtained from researchers at the University of
Edinburgh. This uses a quadratic programming variant
of IPM to solve the ALM problem. ALM is the process
of finding an optimal solution to the problem of
minimizing the risk of investments whose returns are
uncertain. The method associates a risk probability to
each asset and uses discrete random events observed at
times t = 0, …, T to create a branching scenario tree
rooted at the initial time. At each time step the
probability of reaching a given node is computed by
looking at its predecessor nodes. At the end of the
process (time T+1) we can assign a probability to each
outcome and compute the asset value at that time. The
probability at the leaves of this branching tree will sum
to one and we can assess the risk by looking at the asset
value vs. the probability graph. The above steps are

formulated as a structured quadratic problem with a
block-angular structure, which is solved using OOPS.

The research team at the University of Edinburgh also
provided problem sets that are summarized in Table 2.
Columns 1, 2, and 3 show the number of time steps, the
blocked matrices that compose the problem, and the
number of assets. The last five columns are the same as
given in the linear optimization. Again, we see that these
problems are fairly large and very sparse.

0

50

100

150

200

250

300

350

400

450

500

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

fleet12 fome13 gismondi ken-18 pds-20 snp30lp1

Datasets and Number of Processors

P
er

ce
n

ta
g

e

Busy Imbalance Locks OpenMP Overhead

0

100

200

300

400

500

600

700

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

fleet12 fome13 gismondi ken-18 pds-20 snp30lp1

Datasets

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)
Cholesky Solver mmm mvm Serial

x6

x6

x6

0.5

1

1.5

2

2.5

3

1P 2P 4P
Number of Processors

Sp
ee

du
p

fleet12.dat

fome13.dat

gismondy.dat

ken-18.dat

pds-20.dat

snp30lp1

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 161

Table 2: Characteristics of ALM datasets

 steps blocks assets nconstraints nvariables neqns non-zeros Density (%)

ALM8b 3 33 50 57,274 168,451 57,274 1,009,800 0.03%

ALM8c 3 50 50 130,102 382,651 130,102 3.378,750 0.02%

ALM8d 3 70 50 253,522 745,651 253,522 9,070,250 0.01%

ALM2 6 10 5 666,667 1,666,666 666,667 3,611,075 0.08%

ALM9 5 24 4 2,077,207 5,193,016 2,077,207 23,368,500 0.01%

UNS2 109 40 40 2,160,919 5,402,296 2,160,919 27,071,115 0.00%

These inputs were run on the same 4-way 3.0 GHz Intel
Xeon processor MP-based system that we described
earlier. Figure 8(a) shows the breakdown of total
execution time for OOPS. The regions appear to be
slightly different than in the case of unstructured LP. As
explained in the Interior Point Method section, OOPS
builds an augmented matrix in each iteration of the
optimization loop, whereas IPS performs mmm to form
the normal matrix. This matrix is factorized using
structure-exploiting Cholesky. Triangular solvers are
similar to IPS, but many calls to operations on vectors
and matrices are combined into the “Mat, Vect” region.
For each dataset, we show four bars corresponding to
one (1P), two (2P), and four (4P) processors,
respectively. The time shown in this graph is relative to
the time taken on the one-processor run. The total time
(in seconds) for a one-processor run is given above its
bar. The factorization routine has a large parallel section,
followed by a global reduction (serial), followed by the
redundant Cholesky factorization, which is duplicated in
each processor (as described above). This duplication
minimizes the communication, but causes the
factorization step to exhibit less than linear scalability, as
shown in our measurements. A similar pattern (parallel,
serial, duplicate-parallel) occurs in the forward and
backward solver routines, and we see a similar speed-up
as in the factorization step. Since the solver takes a
larger fraction of time in OOPS than in IPS, we broke it

down into its components. The Mat, Vect section scales
in a similar manner to the other routines. These routines
have not been heavily optimized and have headroom for
additional improvement. We also see a significant
amount of overhead (11-13%) on the one-processor run
on the larger data sets when compared with a serial
version of OOPS. We speculate that this overhead is due
to shared memory implementation of MPI, and we plan
to investigate the cause of this overhead in our future
work.

Figure 8(b) reports the speed-up of IPS for the test
datasets on one, two, and four processors. The scalability
appears to be correlated with the amount of work
required to factor the constraint matrix M. The scaling of
OOPS does not yet exploit all of the parallelism that is
present in the algorithm.

To understand the performance overhead of the MPI
calls, Figure 9 shows the results from running the Intel
trace analysis tools on this workload. It instruments the
code and measures the time waiting for messages. The
instrumented runs show that a relatively small amount of
time is spent in the MPI libraries and that almost all of
that time is in the MPI reduction routine. It corresponds
most closely to the “imbalance” portion of the OMP
breakdowns. The rest of the additional time is spent in
the OOPS code. We are investigating the source of this
extra time.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 162

Figure 8: Parallel performance of main optimization loop of OOPS

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

ALM8b ALM8c ALM8d ALM2 ALM9 UNS2

P
er

ce
n

ta
g

e

MPI

App

Figure 9: Concurrency and load balance in OOPS

CONCLUSION
In this paper we described a parallel IPM for solving
optimization problems. The performance of IPM
depends on several key sparse linear algebra kernels.
The most important kernel is the solution of the sparse
linear system of equations. We described serial and
parallel implementations of the sparse linear solver for
both unstructured and structured optimization problems.

We have done performance and scalability analysis of
IPS–a linear optimization workload for solving
unstructured linear programs. We reported up to 2.7x
speed-up on the 4-way 3.0 GHz Intel Xeon processor
MP-based system for a diverse set of linear problems.

We also presented the performance and scalability
analysis of OOPS–a structure-exploiting quadratic
optimization workload for solving structured quadratic
problems. OOPS exposes parallelism by passing
structure information from the high-level optimization
problems into the linear algebra layer. We achieved up
to a 2.7x speed-up on the number of datasets from
important asset liability management problems.

Overall, we observed that the scalability of IPM depends
on several key factors such as problem size, problem
sparsity, as well as problem structure. Although we
observed similar performance scalability for the linear
unstructured problems and the quadratic structured
problems, the structured problems exhibit multiple levels

(a) Execution time breakdown (b) Speedup

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1P 2P 4P

Number of Processors

S
pe

ed
up

ALM8a

ALM8b

ALM8c

ALM2

ALM9

UNS2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

ALM8b ALM8c ALM8d ALM2 ALM9 UNS2

R
u

n
ti

m
e

(r
el

at
iv

e
to

 1
P

)
Cholesky Augment Fw d Solver Diag Solver Bkw d Solver Mat, Vect Other

59s 135s 280s 566s 1049s 1711s

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 163

of parallelism that are not all exploited in the current
OOPS implementation. This leaves headroom for
performance scalability on systems with large numbers
of processors, which we are going to explore in our
future work.

One expects the optimization problem size to grow in the
future. For example, an increased number of assets in an
investor’s portfolio will lead to better risk diversification
and hence higher return on investment. Many truly large-
scale optimization problems are not only sparse but also
display block-structure, because these problems are
usually generated by discretizations of space or time.
These large optimization problems will clearly benefit
from a system capable of exploiting multiple levels of
parallelism from fine grain to coarse grain.

ACKNOWLEDGMENTS
We acknowledge Radek Grzeszczuk for the key role that
he played in the effort to identify and understand Interior
Point Method as an important optimization workload.
Our thanks go to Jacek Gondzio and Andreas Grothey
from the University of Edinburgh for providing the
OOPS code and assisting us in understanding its
functionality. We also acknowledge Bruce Greer for
helping us to acquire and understand the PARDISO
solver source code. Finally, we thank Dmitry Ragozin
from Intel for his help in understanding the performance
bottlenecks of the PARDISO solver.

REFERENCES
[1] J. Nocedal and S.J. Wright, Numerical Optimization,

Springer-Verlag, New York, Inc, 1999.

[2] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2003.

[3] Pranay Koka, Taeweon Suh, Mikhail Smelyanskiy,
Radek Grzeszczuk, and Carole Dulong,
“Construction and Performance Characterization of
Parallel Interior Point Solver on 4-way Intel Itanium
Multiprocessor System,” IEEE 7th Annual Workshop
on Workload Characterization (WWC-7*), October
2004.

 [4] Gondzio, J. and A. Grothey, “Exploiting Structure in
Parallel Implementation of Interior Point Methods
for Optimization,” Technical Report MS-04-004,
School of Mathematics, The University of
Edinburgh, December 18, 2004.

[5] J. Czyzyk, S. Mehrotra, and S. J. Wright, “PCx User
Guide,” Technical Report OTC 96/01, Optimization
Technology Center at Argonne National Lab and
Northwestern University, May 1996.

[6] University of Basel, PARDISO Direct Sparse Solver.
http://www.computational.unibas.ch/cs/scicomp*.

[7] Gondzio, J. and A. Grothey, “Parallel Interior Point
Solver for Structured Quadratic Programs:
Application to Financial Planning Problems,”
Technical Report MS-03-001, School of
Mathematics, The University of Edinburgh, April 16,
2003, revised in December 12, 2003.

AUTHORS’ BIOGRAPHIES
Mikhail Smelyanskiy is a member of the Research Staff
in the Corporate Technology Group. He received his
B.Sc., M.Sc., and Ph.D. degrees in Electrical
Engineering and Computer Science from the University
of Michigan, Ann Arbor in 1996, 1999, and 2004,
respectively. Since he joined Intel in September 2003, he
has worked on future multi-core computer architecture to
efficiently execute applications from the area of
optimization and finance. His graduate work was on
VLIW compiler scheduling algorithms for efficient
resource utilization. His e-mail is Mikhail.Smelyanskiy
at intel.com.

Stephen Skedzielewski is a senior researcher in the
Workload Analysis Dept. in the Corporate Technology
Group. He recently joined this group after spending nine
years analyzing IPF compiler performance. His main
technical interests are in performance analysis and
parallel computing. He has a B.S. degree from Caltech
and M.S. and Ph.D. degrees from the University of
Wisconsin, Madison. His e-mail is
Stephen.Skedzielewski at intel.com.

Carole Dulong is a senior researcher and computer
architect in the Microprocessor Technology Lab. She
leads a team of researchers working on various data-
mining techniques. She joined Intel in 1990. She was a
member of the IPF architecture definition team and
contributed to the IPF compiler design. She graduated
from Institut Superieur d’Electronique de Paris (France).
Her e-mail is Carole.Dulong at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm

http://www.computational.unibas.ch/cs/scicomp
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 164

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright © 2005 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

