
Scaling Performance of Interior-Point Method

on Large-Scale Chip Multiprocessor System
Mikhail Smelyanskiy Victor W Lee Daehyun Kim Anthony D Nguyen Pradeep Dubey

Microprocessor Technology Labs, Intel

{mikhail.smelyanskiy, victor.w.lee, daehyun.kim, anthony.d.nguyen, pradeep.dubey}@intel.com

ABSTRACT

In this paper we describe parallelization of interior-point method

(IPM) aimed at achieving high scalability on large-scale chip-

multiprocessors (CMPs). IPM is an important computational

technique used to solve optimization problems in many areas of

science, engineering and finance. IPM spends most of its

computation time in a few sparse linear algebra kernels. While

each of these kernels contains a large amount of parallelism,

sparse irregular datasets seen in many optimization problems

make parallelism difficult to exploit. As a result, most researchers

have shown only a relatively low scalability of 4X-12X on

medium to large scale parallel machines.

This paper proposes and evaluates several algorithmic and

hardware features to improve IPM parallel performance on large-

scale CMPs. Through detailed simulations, we demonstrate how

exploring multiple levels of parallelism with hardware support for

low overhead task queues and parallel reduction enables IPM to

achieve up to 48X parallel speedup on a 64-core CMP.

1. INTRODUCTION
Now commonplace, chip multiprocessors (CMPs) provide

applications with an opportunity to achieve much higher

performance than uniprocessor systems. Examples of CMPs are

8-core IBM CELL Broadband Engine [Gschwind06], 32-core Sun

Niagara [Kongetira04], and Intel® Core™ Duo Processor

[Gochman06]. Furthermore, as the number of cores on a CMP

continues to grow, the performance of the CMP increases

commensurately. This trend gives rise to two important questions:

(i) how to expose an adequate amount of parallelism to the

underlying CMP hardware within a given application, and (ii)

which hardware features help CMP platform fully explore this

parallelism in order to deliver highly scalable performance.

In this paper we address these two questions in the context of

interior-point method (IPM). IPM is an important computational

technique that solves optimization problems [Bixby02].

Optimization refers to the minimization (or maximization) of an

objective function of several decision variables which satisfy

some constraints [Nocedal06]. Examples of optimization include

the optimal choice of a portfolio of stocks, given a budget and

diversity requirements, or the optimal design of a truss, given

certain load requirements. In our work we focus on linear

optimization problems where both the objective function and the

constraints are linear. Our findings are directly applicable to non-

linear problems, which use a similar set of computational kernels

as linear optimization.

IPM spends a majority of its time in a direct sparse linear

solver. Parallelism within the sparse solver exists on several

levels: coarse-grain and fine-grain. While coarse-grain parallelism

suffices to achieve good scalability on a small number of CMP

cores, effective utilization of a large number of cores requires

exploiting multiple levels of parallelism. This is achieved by

partitioning the problem into many tasks and dynamically

scheduling these tasks among cores. Such partitioning in general

allows for much better load balance among cores, but may result

in many small tasks. Consequently, dynamic scheduling schemes,

oftentimes implemented using task queues programming model,

suffer from high overhead of scheduling small tasks. Scheduling

overhead can greatly reduce parallel scalability on many cores. In

this work, we evaluate the impact of hardware support for low

overhead task queues on IPM. We show how such support

enables good load balance while significantly reduces overhead of

task scheduling.

Another important source of performance degradation in IPM

comes from parallel reduction, where multiple cores update the

same memory locations. To guarantee atomicity of such updates,

existing schemes use fine-grain synchronization to serialize their

execution. Similar to task scheduling overhead, serialization

overhead can severely degrade parallel scalability on many cores.

We propose and evaluate parallel reduction hardware, which

significantly decreases the overhead of reduction.

Hardware support for low overhead task queues and parallel

reduction enables CMP to efficiently explore large amount of

parallelism available in IPM and achieve high scalable

performance on many cores. We have implemented these two

techniques in our cycle-accurate CMP simulator, and analyzed the

performance of the fully parallelized IPM application [Koka04]

on a diverse suite of datasets from NETLIB collection [Gay88].

As a result IPM achieves up to 48X speedup (43X on average)

with respect to the serial code performance on a 64-core CMP

platform.

This paper is organized as follows. Section 2 introduces IPM

and its main computational kernels. Sections 3 and 4 provide a
brief introduction to sparse linear solver and its parallelization as

well as motivate hardware support for low-overhead task queues

and parallel reduction. Section 5 discusses a particular

implementation of such hardware support. Section 6 presents

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage, and

that copies bear this notice and the full citation on the first page. To

copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

SC07 November 10-16, 2007, Reno, Nevada, USA

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

performance and scalability analysis of IPM on our simulator.

Finally, we discuss related work and conclude.

2. MAIN COMPUTATIONAL KERNELS

OF IPM

In the past decade, the IPM has become a method of choice

for solving large linear optimization problems of the form:

min cTx, subject to Ax=b, x ≥ 0

Here the vector x = (x1,…,xn) is the optimization decision

variable of the problem, the function cTx is the objective function,

A is an m by n matrix of linear constraints, and vectors x, c, and b

have appropriate dimensions. A vector x* is called an optimal

solution of the optimization problem if it has the smallest

objective value among all vectors that satisfy the constraints.

Figure 1 outlines the kth iteration of the main optimization

loop of IPM [Lustig96]. The method starts with an initial

approximation to the solution of the optimization problem, x. The

core of the method is the main optimization loop, which updates

the vector x at each iteration until the convergence to the optimal

solution vector x* is achieved.

As figure shows, IPM spends most of its computation time in

a small number of linear algebra kernels. Optimizing and

parallelizing these kernels is key to efficient implementation of

IPM. These are the most important kernels:

1. Formulation of linear systems of equations, Mx=b, where M

is the symmetric matrix of the form M = A Z-1A, where A is

the original matrix of constraints. This requires a matrix-

matrix multiplication operation.

2. Cholesky factorization of matrix M = L LT in order to solve

the system of linear equations, Mx=b. Here L is the lower

triangular, and LT is its transpose. This step is normally the

most time-consuming step of the IPM.

3. Triangular solver uses the result of factorization to solve a

system of linear equations (L LT)x=b, using the following

three steps

a. Forward solver solves Ly=b.

b. Backward solver solves LTx=z.

4. Matrix-vector multiplication (MVM) computes Ax and ATx

for different vectors x.

5. Basic Linear Algebra Subroutines (BLAS1) performs inner

products, vector additions, vector norm and ratio test

computation.

Table 1 shows the execution time breakdown of IPM on a

single core, for a number of sparse linear programming problems

(see Section 6.2 for detailed description of the datasets used in
this analysis). We observe that IPM spends large proportion of

time in sparse linear solver (kernels 2 and 3). However, good

parallel performance of IPM requires an efficient parallel

implementation of all kernels. For example, while IPM spends on

average only 7.6% of its execution time in BLAS1, leaving this

kernel unparallelized limits IPM speedup to 13X regardless of

how well the rest of the kernels scale. Therefore in our

implementation we parallelize all IPM kernels.

3. INTRODUCTION TO SPARSE LINEAR

SOLVER

In this section we introduce the general framework of sparse

linear solvers that follows block Cholesky approach [Ng93]. Two

fundamental concepts behind solving sparse systems of linear

equations are super-node and elimination tree. Both are defined in

respect to the factor matrix L whose non-zero structure is

computed prior to factorization.

A super-node is a set of contiguous columns in L whose non-

zero structure consists of a dense triangular block on the diagonal

and an identical set of non-zeroes for each column below the

diagonal. An elimination tree is task dependence graph that

characterizes the computation and data flow among the super-

nodes of L during Cholesky factorization and triangular solver. In

the elimination tree the parent of super-node j is determined by

the first sub-diagonal non-zero in super-node i. Figure 2(a) shows

an example of the factor matrix L, its non-zero elements

(represented with ‘X’s) and 6 super-nodes (sn1 through sn6).

Figure 2(b) shows the corresponding elimination tree. There is an

edge between sn1 and sn5, because, as (a) shows (in shade), the

second row of the 2 by 2 diagonal block of sn5 depends on non-

zero row 10 in sn1.

Given an elimination tree (ET), each of the three steps of

linear solver can be expressed using the following generic

formulation:

 1. Compute rp = b – Axk and rd = c – z – A
T
yk

2. Check for convergence, using the norms of rp and rd
3. Form M = AQA

T, where Q = XZ
-1 is a diagonal matrix

4. Compute Cholesky factor M = LDL
T
, where L is lower triangular

5. Compute the predictor directions, dp = (dpx, dpy, dpz)
5.1. dpy = M

-1 [rp + AQ (rp - XZe)]
5.2. dpx = Q [AT

 dpy + XZe – rd]
5.3. dpz = –Ze – Q

-1
dpx

6. Do a ratio test to compute ap and ad, by computing
6.1. ap = min{-xj / Dxj: Dxj < 0 and j = 1 .. n}
6.2. ad = min{-zj / Dzj: Dzj < 0 and j = 1 .. n}

7. Compute the barrier “parameter” u based on (xk, yk, zk), ap and ad
8. Compute the search direction ds = (dsx, dsy, dsz)

8.1. dsy = M
-1[rp + AQ (rd + ue – XZe – DpxDpze)]

8.2. dsx = Q [AT
dy – ue + XZe + DpxDpze – rd]

8.3. dsz = uX
-1
e – Ze – Q

-1
 DsxDsze – Q

-1
dsx

9. Do a ratio test to compute ap and ad
9.1. ap = p min{-xj / Dxj: Dxj < 0 and j=1..n}, where p = 0.99995
9.2. ad = p min{-zj / Dzj: Dzj < 0 and j=1..n}, where p = 0.99995

10. Update the iterate as
10.1. xk+1 = xk + ap dsx
10.2. yk+1 = yk + ad dsy
10.3. zk+1 = zk + ad dsz

 Figure 1: A single iteration of primal-dual IPM

Table 1: IPM execution time breakdown for linear

programming problems

Kernel ken-18 mod2 pds-10 watson world average

Mmm 44.5% 4.7% 2.7% 7.1% 6.6% 13.1%

Cholesky 30.8% 59.3% 67.7% 37.6% 63.5% 51.8%

forward solver 7.0% 11.6% 8.8% 16.4% 9.1% 10.6%

backward solver 9.7% 11.6% 9.4% 20.7% 10.4% 12.4%

MVM 2.5% 5.3% 3.6% 7.2% 4.2% 4.5%

BLAS1 5.5% 7.5% 7.8% 11.0% 6.2% 7.6%

The super-nodes are processed in breadth first order: bottom-

up for Cholesky and backward solver, top-down for forward

solver. Super-nodes are stored using dense matrix representation.

As described in the following section, the processing tasks

involve various dense matrix operations.

4. PARALLELIZATION OF SPARSE

LINEAR ALGEBRA KERNELS OF IPM

In this section we describe sparse linear algebra kernels in

more detail as well as show how to expose and exploit parallelism

within each of the kernels.

4.1 Cholesky Factorization
Figure 3 shows pseudo-code for Cholesky factorization. A

Cholesky processing task (Lines 3-6) is generally expressed in

terms of two primitive operations, cdiv and cmod update. The

cdiv(sn1) operation (Line 3) multiplies the dense rectangular

portion of the super-node sn1 below its main diagonal by the

inverse of the sn1’s dense diagonal block. cmod(sn2, sn1) update

multiplies sn1 with the transpose of its sub-matrix C, which

corresponds to the dense triangular block of the sn2; it then

scatter-adds the result of multiplication into destination super-

node sn2. Such scatter-add operation is also known as the

reduction operation.

The main loop in Figure 3 performs breadth-first bottom-up

traversal of the super-nodes in the elimination tree starting from

the leaves (Line 2). Each ancestor super-node performs cmod

update on its decedents in the tree (Lines 4-6). By the time a

super-node is traversed, it has collected all updates from its

ancestors. At this point cdiv operation is performed to complete

its own factorization (Line 3).

Parallelism in Cholesky factorization exists on three different

levels:

Level-1: Coarse-grain parallelism exists within the elimination

tree, where two or more super-nodes belonging to independent

sub-trees of the elimination tree are traversed in parallel on

different cores. Note, however, that two or more ancestors may

simultaneously update the same descendent super-node of the

elimination tree. When simultaneous updates occur to the same

memory location, the result may be incorrect. To avoid this

situation requires a mechanism to guarantee atomicity of such

updates.

Level-2: The second level of parallelism exists in the innermost

loop (Lines 4-6). Each ancestor super-node sna can

simultaneously cmod update its descendents (Line 5). The

second level of parallelism also exists within the two steps of

cdiv operation, where independent dense triangular systems are

solved for different right-hand sides.

Level-3: Fine-grain parallelism exists within individual cmod

updates (Lines 5). Exploiting this parallelism amounts to

xxxxxxxxx13

13

sn6sn5sn4sn3sn2sn1

x

10

x

x

11

x

12

xxx10

xxxx11

xx12

xxx9

xx8

x7

xx6

x5

xx4

x3

xx2

x1

987654321

xxxxxxxxx13

13

sn6sn5sn4sn3sn2sn1

x

10

x

x

11

x

12

xxx10

xxxx11

xx12

xxx9

xx8

x7

xx6

x5

xx4

x3

xx2

x1

987654321

sn1 sn2

sn3 sn4sn5

sn6

sn1sn1 sn2sn2

sn3sn3 sn4sn4sn5sn5

sn6sn6

Figure 2: A triangular matrix with 6 super-nodes and the corresponding elimination tree.

1. T = breadth-first bottom-up traversal of ET

2. for each super-node sna in T

3. cdiv(sna)

4. for each descendant super-node snd that must

 be updated by sna

5. cmod(snd , sna)

6. endfor

7. endfor

Figure 3: Cholesky factorization pseudo-code.

(a) Factor matrix with super-nodes (b) Elimination Tree

T = breadth-first traversal of ET (bottom-up or top-down)

for each super-node sni in T

perform processing task on sni

endfor

parallelization of the dense matrix-matrix product as well as

scatter-add operations.

4.2 Triangular Solvers

Cholesky factorization results in a lower-triangular factor

matrix L, such that M=LLT. The solution to the system of

equations Mx=b is then obtained by first performing the forward

solver Ly=b and second the backward solver LTx=y. Similar to

Cholesky computation, forward and backward solvers are made

more efficient by taking advantage of the super-nodal structure of

the factor matrix L.

The high-level pseudo code of forward solver is shown in

Figure 4. Forward solver traverses the elimination tree from top

to bottom. For each super-node sni, it performs a forward solve of

a dense lower triangular system involving dense triangular block

of sni, Lsni,sni (Line 4), multiplies the solution vector by the dense

rectangular portion of the sni, L*,sni (Line 5), and scatter-adds

the result of multiplication into the solution vector y (Line 6)

taking non-zero structure of sni into account.

Backward solver is similar to forward solver, except that

elimination tree is traversed from bottom to top and no scatter-add

reduction is required. Both sparse forward and backward solvers

contain parallelism on two levels:

Level-1: Similar to Cholesky, coarse-grain parallelism in the

triangular solver exists among the super-nodes from

independent sub-trees of the elimination tree. Performing

scatter-add into the solution vector y (Line 6) may also result

in simultaneous updates to the same elements of y, unless

there exists mechanism to ensure atomicity of such updates.

In backward solver the solution vector updates (Line 6)

issued from parallel super-nodes are applied to disjoint

elements of the solution vector and thus require no atomicity.

Level-2: Fine-grain parallelism exists within matrix-vector

multiply, scatter-add reduction operation, and dense

forward/backward solver of the dense diagonal block of the

super-node.

4.3 Parallelization using Task Queue Model

A simple parallel implementation of Cholesky factorization

and triangular solver only exploits coarse grain Level-1

parallelism. However, we observe that parallelism varies across

elimination tree. At the bottom of the tree there are many small

independent super-nodes with large amounts of coarse-grain

parallelism. At the top of the tree there are few large super-nodes

with small amounts of coarse-grain but large amounts of fine-

grain parallelism.

Hence only exploiting coarse grain parallelism results in

limited parallel scalability due to load imbalance, as there is

insufficient amount of work for each core to be fully utilized.

Therefore to achieve high scalable performance of IPM, our

implementation exploits all existing levels of parallelism: Level-1,

Level-2 and Level-3 in Cholesky factorization, and Level-1 and

Level-2 in forward and backward solvers. To accomplish this, we

use a completely dynamic partitioning approach together with a

task queue model of parallel programming.

Dynamic partitioning approach divides a task at each level of

parallelism into smaller sub-tasks at a lower level, where the size

of each sub-task is dynamically determined based on the size of

the original task. Thus if the size of the original task is small, no

subdivision is done. If the original task is large, it is partitioned

into sub-tasks to keep system fully utilized. In forward solver, for

example, the bottom of the tree has many small tasks at Level-1;

hence no further partitioning is done. In the middle of the tree the

number of Level-1 tasks decreases, while their size increases. As a

result, our implementation starts partitioning these tasks into

smaller Level-2 sub-tasks. At the top of the tree, where only a

few large super-nodes are left, the Level-2 tasks dominate.

Dynamic partitioning exposes larger amount of parallelism while

at the same time reduces task size variability. This leads to

improved load balance and better scalability on many cores.

To take advantage of dynamic partitioning and to further

improve load balance, we use a task queue runtime system, which

is responsible for en-queuing, de-queuing and scheduling tasks on

a set of persistent threads. To this end it uses a popular

mechanism called distributed task queues with task stealing,

which is shown in Figure 5. In this scheme, each thread has its

own local queue on which it primarily operates. When a thread

en-queues a task from the partition, it places it in its local queue.

When it finishes executing a task and needs a new task to execute,

it first looks in its local queue. If there are no tasks available in its

own queue, it steals a task from one of the other queues. Note that

each of the queues is shared and needs to be protected by locks.

Task stealing assures that all cores are utilized as long as there are

available tasks.

Overall, dynamic partitioning and task queuing are the key to

efficient parallel implementation of sparse linear solver.

Figure 5: Distributed task queues

1. y=b

2. T = breadth-first top-bottom traversal of ET

3. for each super-node sni in T

4. ysni = [Lsni,sni]
-1 ysni

5. ty = L*,sni ysni

6. y = y – ty

7. end for

Figure 4: Forward solver pseudo-code.

…

C0
C1 Cn

Task Stealing

4.4 Matrix-Matrix Multiplication and Other

Kernels

While sparse linear solver is an essential part of IPM, it is

important to parallelize the remaining kernels to achieve high

scalability on many cores. We use well-known data partitioning

schemes which divide these kernels into independent tasks.

Matrix-matrix multiplication is highly parallel, because each

element of matrix M is computed independently as a dot product

of the corresponding rows of A. Therefore, each task is comprised

of a contiguous sub-set of non-zero elements of M.

To achieve good scalability of matrix-vector multiplication

y=Ax, each task works with a contiguous subset of non-zero

elements of A. As a result, the task may contain one or more rows

of A. The task performs the dot product of non-zero elements of

each such row i of A with the corresponding elements of x, and

stores the result into y[i]. Since two or more tasks may contain

elements of the same row of A, multiple threads may

simultaneously update the same element of y. We guard each

update to y with a fine-grain lock, assigning one lock per cache

line, to guarantee atomicity of such updates. For our datasets the

number of such simultaneous updates is small compared to the

rest of the computation, therefore the overhead of fine-grain

locking is also small.

5. EXPLOITING PARALLELISM IN IPM

WITH HARDWARE SUPPORT

The previous section describes how to expose an abundant

amount of parallelism in the sparse linear solver kernel of IPM.

This section describes hardware support for low overhead task

queues and parallel reduction to efficiently explore this

parallelism on many CMP cores.

5.1 Low Overhead Task Queues

To efficiently utilize a large number of cores, a dynamic

partitioning scheme creates a large number of parallel tasks. As a

result, there are many small tasks, especially toward the top of the

tree where only fine-grain parallelism prevails.

When task sizes are small, the overhead involved in software

implementation of task queues can significantly degrade

scalability of an application on a large number of cores

[Kumar2007]. The overhead is due to several factors. The most

significant factor is contention overhead, when multiple threads

simultaneously access the same queue to steal the tasks. Such

situations are common in sparse linear solver. For example, as

discussed in Section 4, a large super-node at the top of the tree is
partitioned by a given thread into many smaller sub-tasks, which

get en-queued into its local queue. Other threads attempt to

simultaneously de-queue these tasks from the queue. This creates

contention over the shared queue and effectively serializes

execution, as each thread has to wait until the previous thread

atomically de-queued the task.

Another significant factor is the instruction overhead of

managing the queue during task en-queuing and de-queuing

operations. This overhead arises from grabbing and releasing the

lock that protects the queue from simultaneous accesses by

multiple threads, as well as incrementing (or decrementing) queue

head pointer to point to the next empty position in the queue.

In this work we use low overhead task queues, proposed in

[Kumar2007], which accelerate task scheduling on CMP by

implementing en-queuing and de-queuing operations in hardware.

More specifically, in this proposal the tasks are stored in hardware

queues, and are prefetched to the cores so that each core can start

a new task as soon as it finishes its current one. This results in

significant reduction of task scheduling overhead and improved

scalability on CMP system.

5.2 Parallel Reduction Hardware

Scatter-add reduction operation is a common operation in

many linear algebra kernels. As shown in Sections 4.1 and 4.2,
Cholesky and forward solver used in IPM both require reduction.

In general, reduction involves combining a set of data values into

a single value. Implementing high performance reduction in

parallel is challenging as it requires a mechanism to prevent data

corruption caused by simultaneous updates from different cores.

At the software level, synchronization is required to serialize

updates. At the hardware level, the cache lines containing the

reduction target need to be migrated from one core’s cache to

another before update can happen. While necessary, these forms

of data corruption prevention mechanisms introduce significant

amount of overhead and often cause performance degradation.

There are several software approaches to reduce impact of

serialization in parallel reduction. Some approaches use fine-grain

locks, each of which guard one or several cache lines. Other

approaches rely on some form of hardware fetch-and-add

mechanism for atomically updating a memory location. However,

both approaches suffer from cache line migration during multiple

concurrent updates to this cache line. Alternatively, one can

privatize shared data, so that each thread operates on its local

copy. Global reduction of all private copies is performed at the

end of the parallel region. In both Cholesky and forward solver,

parallel reduction involves updates to only a few non-contiguous

locations of the large data structure. As a result, global reduction

of the entire data structure results in substantial space and

computation overhead.

Hardware support can substantially reduce the overhead in

parallel reduction. Many supercomputers, such as the Connection

Machine CM5 [Leiserson96] and IBM BlueGene [BlueGene02],

provide a dedicated network for reduction operations. Our work

takes a different approach that modifies the cache coherence

protocol to simultaneously maintain multiple modified copies of a

cache line for reduction. While this approach is similar to the

solution proposed by [Kim03] and [Garzaran01] in the context of

distributed shared memory multi-processors, we extend its

L2 Cache

Original Y Adder

ALU

L1 Cache

Core

ALU

Core

Chip

Adder

L1 Cache

Local Y AdderLocal Y
Local

Reduce

Local

Reduce
1a 1b

Global

Reduce

at Writeback or Use

2
L2 Cache

Original Y Adder

ALU

L1 Cache

Core

ALU

Core

Chip

Adder

L1 Cache

Local Y AdderLocal Y

L2 Cache

Original YOriginal Y Adder

ALU

L1 Cache

Core

ALU

Core

Chip

Adder

L1 Cache

Local YLocal Y AdderLocal YLocal Y
Local

Reduce

Local

Reduce
1a 1bLocal

Reduce

Local

Reduce
1a 1b

Global

Reduce

at Writeback or Use

2
Global

Reduce

at Writeback or Use

2

Figure 6: Parallel reduction hardware

implementation to CMP environments, as shown in Figure 6. In

our scheme, the cache lines which hold the reduction target are

marked non-coherent and each core participating in the reduction

operation is allowed to have a modified copy of the cache line

while computing the partial reduced value. For example, in case

of forward solver the solution vector y is marked as the reduction

target. At the start of the reduction operation, the L1 cache

controller sends a special request to the home directory controller

to initiate the reduction operation. The L1 cache controller also

allocates a cache line for temporary storage. This line will be

initialized with reduction neutral value (e.g. zero for addition) and

the core immediately performs reduction operation. Note this is

different from software-based implementation where the core

blocks while waiting to receive a single globally shared copy of

the line to perform the reduction. When the first reduction request

arrives to the home directory, the coherence protocol invalidates

the line from all other L1 caches, transitions the line into a special

reduction state, and finally adds the requesting core to the list of

owners of the line. For subsequent reduction requests from other

cores participating in the reduction the protocol only adds a new

participant to the owner lists. When the reduction target is

accessed (via read, read-for-ownership or eviction request), the

home directory controller collects all non-coherent lines at the

cores to which they belong and computes global reduction value

before forwarding it to the consumer.

Note that to compute global reduction value, the directory

controller has to be enhanced with execution units that support the

required reduction operations. Due to the fact that all elements of

a line can be processed in parallel or in a pipelined fashion the

performance of parallel reduction can be further improved by

pipelining these execution units or adding more units.

Overall, parallel reduction hardware described above

significantly reduces amount of contention when multiple cores

update data elements in the same cache line. Moreover, the

scheme alleviates overhead of cache line migration as well as

overhead of arithmetic operation required to perform reduction

operation. This results in significant improvement in parallel

scalability and performance on large-scale CMP system.

6. EXPERIMENTAL RESULTS

6.1 System Modeled

We use a cycle-accurate, execution-driven CMP simulator for

our experiments. This simulator has been validated against real

systems and is used extensively in our lab. Table 2 summarizes

our base system configuration.

We model a CMP where each core is in-order, has a private

L1 data cache, and all cores share an L2 cache. Each L1 cache has

a hardware stride pre-fetcher. The cores are connected with a bi-

directional ring, and the L2 cache is broken into multiple banks

and distributed around the ring. A given cache line can exist in

only one L2 bank according to an address hashing function

(XORs the most significant bits with the least significant).

Inclusion is enforced between the L1s and L2. Coherence between

the L1s is maintained via a directory-based MSI protocol. Each

L2 cache line also holds the directory information for that line.

The ring has 41 stops, each of which can have two components

connected to it (i.e., core or L2 cache bank). Our system models

an aggregated memory bandwidth of 160GB/s which is similar to

16 channels of DDR3-1333. Finally, our simulator models

aggregate ring bandwidth of 512GB/s.

For experiments which involve hardware support for low

overhead task queues and parallel reduction, we add hardware as

described in Sections 5.1 and 5.2 to the system.

6.2 IPM Implementation and Datasets

Our interior-point method is based on PCx - a serial interior-

point predictor-corrector linear programming package

[Czyzyk96]. Our parallel implementation of the Cholesky

factorization and the solver routines uses as a baseline sparse

direct solver package, called PARDISO [Schenk00], which is part

of Intel’s Math Kernel Library [MKL07]. Our baseline

implementation uses a highly tuned version of software task

queues [Kumar06] for load balancing, as well as fine-grain

locking, with one lock per cache line, for parallel reduction.

 Table 3 summarizes the statistics for the datasets used in our

experiments. They come from the standard NETLIB test set

[Gay88] and represent linear programming models from several

application domains.

 Column 1 lists the name of the datasets. Column 2 shows the

number of constraints in the linear programming problem, which

corresponds to the number of rows of matrix A. Column 3 shows

the number of decision variables in the problem, which

corresponds to the number of columns of A. Our problems range

from medium size problems with tens of thousands constraints

and variables to large size problems with hundreds of thousands

constraints and variables. Column 4 shows the number of non-

zeros in the matrix M = A Z-1A. Column 5 shows the density of M,

which shows that our datasets are very sparse. Column 6 shows

the number of non-zeros in the L factor of M. Compared with

original matrix, the factor matrix has substantially more non-zero

elements than original matrix, due to fill-ins. The amount of fill-in

Table 2: Simulation Parameters

Core Parameters Memory Hierarchy Parameters Contentionless Memory Latencies

of Cores 1 to 64 Private (L1)

Cache

32kB, 2-way, 64B line L1 hit 3 cycles

Architecture 2-issue, in-order core Shared L2 cache 8MB, 16-bank,

8-way/bank, 64B line

L2 hit 18 - 58 cycles

Functional Units 2 Int ALU, 1 FPU; 1

Mul/Div, 2-port LSU

Interconnect Bi-directional ring Main Memory 298 - 338 cycles

Branch Pred. G-share, 2k entries

can be reduced with re-ordering techniques. Our algorithm uses

Minimal Degree Reordering from METIS [Karypis98].

6.3 Scalability of Sparse Linear Solver

In this and later sections we present scalability results of

individual IPM kernels as well as the entire application from our

cycle-accurate simulator. The results are shown for 1 to 64 cores

in a stacked bar-chart format. Each bar is broken down into

multiple sub-bar segments, where each segment represents an

incremental improvement due to a given software or hardware

optimization. The speedup is reported relative to the performance

of serial implementation of IPM.

Inherent Parallelism in Sparse Solver
To better understand the speedup sparse linear solver achieves

on CMP system, we compute the maximum ideal speedup of

Cholesky, forward and backward solvers for different levels of

parallelism. The ideal speedup is computed as the ratio of the

work performed by the serial implementation of the algorithm

over the work on the elimination tree’s longest path when a given

level of parallelism is explored. The amount of work on the

longest path is the cumulative sum of work performed by each

super-node along the path. In this idealized study the work per

super-node is approximated using total number of floating-point

operations required to process the super-node. When coarse-grain

parallelism is explored, the work within each super-node is

performed serially, while work across independent super-nodes is

performed in parallel, constrained only by the data-dependencies

among super-nodes in the elimination tree. When fine-grain

parallelism is explored, the work within each super-node can also

be done in parallel, constrained only by the true data

dependencies within super-node’s processing task.

The results for Cholesky factorization, backward and forward

solvers are shown in Table 4. Column 2 shows ideal speedup for

Cholesky factorization when coarse-grain (Level-1) parallelism is

explored. We observe that exploring only Level-1 parallelism

limits the ideal speedup to less than 20X for three out of five

datasets. For these datasets the longest path is dominated by the

large super-nodes at the top of the elimination tree. Column 3

shows ideal speedup when all three levels of parallelism are

explored. This allows the work within each super-node to be done

in parallel and, given large amount of inherent fine-grain

parallelism within each super-node, results in tens of thousand-

fold ideal speedup for all datasets.

Columns 4 and 5 show ideal speedup for backward solver.

The results are almost identical for forward solver. Similar to

Cholesky, Level-1 parallelism is limited, while the combined

Level-1 and Level-2 parallelism is abundant.

These results suggest that sparse direct solver has a potential

for high scalability on parallel architecture, due to a large amount

of inherent parallelism that exists within the given datasets.

Understanding the difference between the ideal and achieved

speedup points to algorithmic and hardware limitations, which

prevent application from realizing architecture’s full potential.

Furthermore, as shown in the remainder of this section, it helps

guide performance tuning of an application, as well as make

hardware improvements to the baseline architecture.

Forward Solver
Figure 7(a) shows the scalability of forward solver. The

bottom bar segment shows the speedup achieved by the baseline

version, which only explores Level-1 parallelism using software

task queues and fine-grain locking for parallel reduction. On

average, the speedup does not exceed 3.8X on 64 cores and

begins to drop significantly on the configurations with 16 or more

cores. As Table 4 shows, for three datasets, mod-2, pds-10 and

world, such poor scalability is due to the limited amount of Level-

1 parallelism. As the number of cores increases beyond limit,

scalability doest not improves further. Meanwhile, the amount of

synchronization among the cores also increases. This results in

slowdown on 16 and more cores. While the remaining two

datasets, ken-18 and watson, have sufficient amount of Level-1

parallelism, their limited scalability is due to the high overhead of

task queuing and parallel reduction, as explained later in this

subsection.

The second bar segment (from the bottom) shows the

additional speedup (on top of the baseline) which results from

exploring both Level-1 and Level-2 parallelism using the same

software task queues and fine-grain lock reduction as in the

baseline version. Most datasets show no improvement, while pds-

10 shows negligible improvements on 16 cores. To understand

the sources of such poor parallel performance, we profile the

parallel execution of forward solver. Figure 7(b) shows, for 1 to

64 core configurations, the amount of time spent in actual

computation (top segment), parallel reduction (middle segment)

and task queues (bottom segment). To achieve linear scalability,

time spent in each of these three regions should decrease linearly

as the number of cores increases. However, as the figure shows,

time spent in task queues decreases only slightly for 4 datasets,

and even increases for mod2, pds-10 and world, on 32 and 64

cores. This is due to software overhead of scheduling small tasks,

which result from exploring both levels of parallelism. Similarly,

the time spent in reduction increases for all but one dataset

(mod2) as the number of cores increases. This is due to the fact

that the overhead of fine-grain locking increases with the number

of cores, because the contention for the shared data also increases.

Table 3 : Dataset statistics

LP LP M M Density L

Dataset Rows Columns nnz (%) nnz

mod2 28761 56348 219039 0.0265% 1454339

ken-18 105127 154699 291082 0.0026% 2175306

pds-10 16558 49932 79866 0.0291% 1180995

watson 209614 411177 1263788 0.0029% 3776935

world 28653 58028 211001 0.0257% 1327756

Table 4: Inherent parallelism in sparse linear solver

 Cholesky Factorization
Backward (Forward)

Solver

Datasets Level-1 Level-123 Level-1 Level-12

ken-18 147 353608 134 5024

mod-2 13 91074 12 1230

pds-10 8 105867 5 970

watson 68 134703 138 7663

world 16 83235 15 1155

The contention is especially serious in ken-18 and watson which

leads to significant reduction overhead.

The third bar segment in Figure 7(a) shows an additional

speedup achieved by forward solver with the help of low overhead

hardware task queues when only Level-1 parallelism is explored.

Scalability of all datasets improves significantly all the way to 64

cores. The experiment shows that software task queue overhead is

the reason why we have not seen this level of scaling in the

previous two experiments. As shown in Table 4, while ken-18

and watson have ample amount of Level-1 parallelism, other

datasets need to rely on Level-2 parallelism to achieve higher

speedup. This is confirmed with the fourth bar segment which

shows the speedup achieved using low overhead task queues

when both Level-1 and Level-2 parallelism are explored. Except

for ken-18 and watson, the remaining datasets show additional

speedup.

The achieved speedup is still far from the ideal, even when

both levels of parallelism are explored. The topmost bar segment

demonstrates forward solver performance with added hardware

support for parallel reduction. Reduction hardware more than

doubles scalability of most of the datasets on 64 cores compared

to fine-grain locking, resulting in speedup between 20X and 30X.

Note that scalability of watson increases by more than 5X on 64

cores, which is due to high overhead of the reduction in this

particular dataset, which is alleviated with the reduction hardware.

Overall, with the help of hardware support for low overhead task

queues and reduction hardware, forward solver has improved

parallel scalability, on average, from 3.8X to 24X on 64 CMP

cores.

Backward Solver
Figure 8(a) shows scalability of backward solver. The bottom

shows the speedup achieved by original parallel PARDISO

version of the backward solver which only explores Level-1

parallelism using software task queues. The second bar segment

from the bottom shows the speedup when both levels of

parallelism are explored. Similar to forward solver, the speedup

varies between 3X and 6X across all datasets, and begins to drop

after 16 cores. Execution time analysis similar to Figure 7(b)

shows that such poor scalability is to due to high overhead of

software task queues.

The third and fourth bar segments show an additional speedup

achieved by backward solver using low overhead task queues for

Level-1 and Level-1/Level-2 parallelism, respectively. Results are

similar to forward solver; hardware task queues result in the

substantial speedup of 19X to 36X on all datasets. The backward

solver scales better than the forward solver because it does not

require reduction operation.

Cholesky factorization
As execution time breakdown in Table 1 shows, Cholesky

factorization is the most time-consuming kernel in IPM. Figure

8(b) shows the scalability of Cholesky factorization.

The bottom bar segment shows the additional speedup

achieved by original parallel Cholesky found in PARDISO solver

which only explores Level-1 parallelism using software

implementation of task queues. The speedup varies across

datasets, and is consistent with the ideal speedup in Table 4. For

examples, watson and ken-18, which according to the table have a

large amount of Level-1 parallelism, achieve the highest speedup

of 8X and 38X on 64 cores. On the other hand, mod2, pds-10, and

world, whose ideal Level-1 speedup is limited, achieve a more

modest speedup on 64 cores.

The second bar segment (from the bottom) shows the

additional speedup achieved when all three levels of parallelism

are explored. The speedup of mod2, pds-10, and world improve

above 30X on 64 cores. The impact of fine-grain parallelism is

limited on ken-18 and watson due to the fact that both have plenty

of coarse Level-1 parallelism. Overall, we see that in order to

achieve good parallel speedup on Cholesky, it is important to

exploit all levels of parallelism.

In contrast to forward and backward solvers, using low

overhead task queues results in negligible performance

improvement. This can be seen from by the third and fourth bar

segments. The third segment shows an additional speedup

achieved by Cholesky when Level-1 parallelism is explored.

Similarly, the fourth segment shows an additional speedup when

all three levels of parallelism are explored. We see that, compared

to both solvers, the impact of low overhead task queues is almost

unnoticeable on Level-1 parallelism and is small, between 8% and

16%, on all three levels of parallelism. This due to the fact that

Level-1, Level-2 and Level-3 tasks in Cholesky are much larger

Figure 7: Scalability of forward solver

(a) Forward solver (b) SW TaskQ + Level_12 execution profile

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4

ken-18 mod2 pds-10 watson world

S
p
e
e
d
u
p

Low Overhead TaskQ+Level_12+HW Reduction

Low Overhead TaskQ+Level_12

Low Overhead TaskQ+Level_1

SW TaskQ+Level_12

SW TaskQ+Level_1 (Baseline)

0

50

100

150

200

250

300

350

400

450

1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

ken-18 mod2 pds-10 watson world

E
x
e
c
u
ti
o
n
 C
y
c
le
s
 B
re
a
k
d
o
w
n
 (
in
 M
il
li
o
n
s
)

Task Queue Overhead Reduction Overhead Computation

than in forward and backward solvers, and can effectively hide the

overhead of task scheduling.

Even when three levels of parallelism are explored in all

datasets, the utilization is still less than 50% on 64 cores. This is

due to the overhead of reduction operation. As shown by the

topmost bar segment, the use of reduction hardware improves

scalability significantly, resulting in close to linear speedup on 64

cores in 4 out of 5 datasets. watson scalability is still limited to

30X. This is due to the following reason. Our implementation

uses shared counters, one per tree node, to keep track of

parent/child relationship among nodes. When the child node

updates the parent node, during cmod update operation (see

Section 4.1), it atomically decrements the shared counter to

register its update. When multiple children, running on different

threads, try to simultaneously update the same counter, execution

is serialized to ensure atomicity of updates. w atson has a

significant number of tree nodes with many children; this results

in substantial parallel overhead due to such serialization. For

other datasets, the average number of children per tree node is

much smaller than in watson, hence serialization overhead is

negligible.

6.4 Scalability of MMM, MVM and BLAS1

We have also simulated three remaining kernels, MMM,

MVM and BLAS1. MMM scales almost linearly up to 64 cores

for all datasets. Partitioning MMM into the blocks of non-zero

elements, as described in Section 4.4, creates many large tasks.

This results in good load balance and high parallel scalability.

MVM and BLAS1 exhibit more modest scalability from 16X

to 40X across all datasets. These routines have little amount of

data reuse within a single iteration of IPM, while their working set

does not stay resident in L2 cache across consecutive iterations of

IPM, due to large memory footprint required by sparse linear

solver. As a result, memory bandwidth limits scalability of these

two kernels.

6.5 Scalability of Interior Point Method

Figure 9 shows incremental scalability results of the entire

IPM application. These results track the scalability of individual

IPM kernels, most importantly the sparse linear solver.

The bottom bar segment shows the scalability of the original

version of IPM which uses a baseline sparse solver. The speedup

does not exceed 8X on 16 cores and exhibits a slow-down on 32

and 64 cores for all datasets. This behavior is expected as mod-2,

pds-10 and world have a limited amount of Level-1 parallelism in

the sparse solver. While Cholesky scales well with ken-18 and

watson, IPM scalability for these two datasets is limited by a high

overhead of task queuing in forward and backward solvers and

parallel reduction forward solver. As indicated by the third bar

segment, Level-1 parallelism with low overhead task queues

significantly improves scalability in these two datasets. As

expected, this is due to large scalability gains in forward and

backward solvers.

The second bar segment (from the bottom) shows that

exploring all levels of parallelism with software task queues

provides modest scalability improvement in mod-2, pds-10 and

world. Exploring all levels of parallelism with low overhead task

queues significantly improves the scalability of these three

datasets, as shown by the fourth bar segment. Compared to

software implementations, hardware support for low overhead

task queues improves IPM performance 8-fold to 20-fold on 64

cores.

Finally, hardware support for parallel reduction improves IPM

performance up to 2-fold compared to fine-grain locking used in

the baseline version. As shown by the topmost bar segment,

hardware support for low overhead task queues and parallel

reduction enable IPM to achieve up to 48X speedup (43X on

average) on a 64-core CMP.

7. RELATED WORK

Previous work on parallel IPM has been done in the context

of shared memory or message passing multiprocessing systems.

To our knowledge, this is the first work which parallelizes and

analysis IPM on CMP platform using cycle accurate simulation,

and achieves as high as 75% parallel efficiency on 64 cores.

A number of authors [Eckstein92][Lustig92][[Gondzio04]

have parallelized interior point methods. However, their work

targets specially structured problems, whereas our implementation

targets general unstructured sparse datasets. Parallel

implementation of IPM reported in [Karypsis94] achieves less

than 50% parallel efficiency on 64 processors of CUBE 2 message

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0
1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4

ken-18 mod2 pds-10 watson world

S
p

e
e

d
u

p
SW TaskQ+Level_1 (Baseline) SW TaskQ+Level_12

Low Overhead TaskQ+Level_1 Low Overhead TaskQ+Level_12

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4 1 2 4 8

1
6

3
2

6
4

ken-18 mod2 pds-10 watson world

S
p
e
e
d
u
p

Low Overhead TaskQ+Coarse Grain+Fine Grain+Ideal HW Reduction

Low Overhead TaskQ+Coarse Grain+Fine Grain

Low Overhead TaskQ+Coarse Grain

SW TaskQ+Coarse Grain+Fine Grain

SW TaskQ+Coarse Grain (Baseline)

 (a) Backward solver (b) Cholesky factorization

Figure 8: Scalability of backward solver and Cholesky factorization

passing multi-processor. [Lustig96] presents results of

parallelization of CPLEX IPM and reports up to 38% parallel

efficiency on 32 processors of Power Challenge shared memory

supercomputer. More recently, parallel implementation of IPM

based on PCx [Koka04] and PARDISO report modest speedup on

4-way SMP systems.

There is a great body of work on parallelization of sparse

linear solver, which is an important computational kernel of IPM.

Solvers, such as SuperLU [Li96], WSMP [Gupta00], and

PARDISO [Schenk00], are designed to run on shared memory

parallel systems. Several others, such as block-oriented solver in

[Rothberg93], MUMPS [Amestory01], and SuperLU DIST

[Li03], are implemented using message passing to run on

distributed memory message passing machines. None of these

solvers has been parallelized to scale on the emerging large-scale

CMP systems.

To the best of our knowledge all previous implementations of

IPM use software implementation of task queues. We are the first

to demonstrate the significant impact of hardware support for low

overhead task queues on scalability of IPM. Hardware support for

parallel reduction has been proposed and studied in the past by

many authors [Gottlieb84][Leiserson96][BlueGene02]. While

these proposals provide a dedicated network for reduction

operations, our work integrates parallel reduction hardware

support into coherence protocol, and is the first to demonstrate

how it improves IPM performance on CMP platform.

8. CONCLUSIONS

In this paper we describe parallelization of interior-point

method (IPM) aimed at achieving scalable performance on large-

scale chip-multiprocessor (CMP). We present parallelization of

IPM computational kernels, as well as address major bottlenecks

preventing scalability on many cores. Furthermore, we evaluate

the impact of several hardware features to improve IPM parallel

performance on large-scale CMP. Through our cycle accurate

simulator, we demonstrate how exploring multiple levels of

parallelism, with the help of hardware support for low overhead

task queues and parallel reduction enables IPM to achieve up to

48X speedup (43X on average) on 64-core CMP.

Acknowledgments

We would like to thank Sanjeev Kumar who provided the

software and hardware implementations of task queue library in

our simulator. We would also like to thank the other members of

Intel’s Applications Research Lab, as well as Radek Grzeszczuk,

Carole Dulong, and Jorge Nocedal for the numerous discussions

and feedback.

9. BIBLIOGRAPHY

[Amestory01] P. R. Amestoy, I. S. Du, J. Koster, and J. Y.

L'Excellent. A Fully Asynchronous Multifrontal Solver Using

Distributed Dynamic Scheduling. SIAM Journal on Matrix

Analysis and Applications, 23(1):15–41, 2001

[Bixby02] Robert E. Bixby. Solving Real-World Linear

Programs: A Decade and More of Progress. Operations Research,

50(1):3–15, 2002.

[Czyzyk96] J. Czyzyk, S. Mehrotra, and S. J. Wright. PCx User

Guide. Technical Report OTC 96/01, Optimization Technology

Center, Argonne National Lab and Northwestern University, May

1996.

[Eckstein92] J. Eckstein, R. Qi, V.I. Ragulin and S. A. Zenios.

Data parallel implementation of dense linear programming

algorithms. Technical Report TMC-230, Thinking Machines

Corporation, Cambridge, MA, 1992.

[Garzaran01] M. J. Garzaran, M. Prvulovic, Y. Zhang, A. Jula, H.

Yu, L. Rauchwerger, and J. Torrellas. Architectural Support for

Parallel Reductions in Scalable Shared-Memory Multiprocessors.

In Proceedings of the 10th International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2001.

[Gay88] D.M. Gay. Electronic Mail Distribution of Linear

Programming Test Problems. In Committee on Algorithms

Newsletter, No. 13, pages 10–12.

[Gochman06] S. Gochman, A. Mendelson, A. Naveh, E. Rotem.

Introduction to Intel® Core™ Duo Processor Architecture. Intel

Technology Journal, Volume 10, Issue 2, 2006.

[Gschwind06] M Gschwind. Chip multiprocessing and the cell

broadband engine. In Proceedings or ACM Computing Frontiers

2006, ACM Press, pages 1–8, 2006.

[Gondzio04] Gondzio, J. and A. Grothey. Exploiting Structure in

Parallel Implementation of Interior Point Methods for

Optimization. Technical Report MS-04-004, School of

Mathematics, The University of Edinburgh, 2004.

[Gottlieb84] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.

McAuliffe, L. Rudolph, and M. Snir. The NYU Ultracomputer –

designing an MIMD parallel computer. IEEE Transactions on

Computers, C-32(2):175–189, 1984.

[Gupta00] A. Gupta. WSMP: Watson Sparse Matrix Package

(Part-II: Direct Solution of General Sparse Systems). Technical

Report RC 21888 (98472), IBM T. J. Watson Research Center,

2000.

[Karypsis94] G. Karypis, A. Gupta, and V. Kumar. A parallel

formulation of interior point algorithms. In Proceedings of the

1994 ACM/IEEE Conference on Supercomputing, 1994.

[Karypis98] G. Karypis and V. Kumar. METIS - A Software

Package for Partitioning Unstructured Graphs, Partitioning

Meshes, and Computing Fill-Reducing Orderings of Sparse

Matrices. Version 4.0. University of Minnesota, 1998.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

ken-18 mod2 pds-10 watson world

S
p
e
e
d
u
p

Low Overhead TaskQ+All_Levels+HW Reduction

Low Overhead TaskQ+All_Levels

Low Overhead TaskQ+Level_1

SW TaskQ+All_Levels

SW TaskQ+Level_1 (Baseline)

Figure 9: Scalability of entire Interior Point Method

[Kim03] D Kim, M Chaudhuri, and M Heinrich. Active Memory

Techniques for ccNUMA Multiprocessors. In Proceedings of the

17th International Parallel and Distributed Processing

Symposium (IPDPS), 2003.

[Koka04] P. Koka, T. Suh, M. Smelyanskiy, R. Grzeszczuk, and

C. Dulong. Construction and Performance Characterization of

Parallel Interior Point Solver on 4-way Intel Itanium

Multiprocessor System. IEEE 7th Annual Workshop on Workload

Characterization (WWC-7), 2004.

[Kumar2007] S Kumar, C. J. Hughes, and A Nguyen. Carbon:

Architectural Support for Fine-Grained Parallelism on Chip

Multiprocessors. In Proceedings of IEEE/ACM International

Symposium on Computer Architecture (ISCA), 2007.

[Kongetira04] P. Kongetira, K. Aingaran, and K. Olokotun.

Niagara: A 32-Way Multithreaded SPARC Processor. IEEE

Micro, 25(2):21–29, March/April 2006.

[Leiserson96] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas,

C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C.

Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W.

Yang, and R. Zak. The network architecture of the Connection

Machine CM-5. Journal of Parallel and Distributed Computing,

33(2):145–158, 1996.

[Li96] X. S. Li. Sparse Gaussian Elimination on High

Performance Computers. PhD Dissertation, Computer Science

Division, Department of Electrical Engineering and Computer

Science, University of California, Berkeley, 1996.

[Li03] X. S. Li and J. W. Demmel. SuperLU DIST: A Scalable

Distributed-Memory Sparse Direct Solver for Unsymmetric

Linear Systems. ACM Transactions on Mathematical Software,

29(2):110-140, June 2003.

[Lustig92] J. Lustig and G. Li. An implementation of parallel

primal and dual interior-point method for block structured linear

programs. Computational Optimization and Applications

(COAP), 1 (1992) 141-161.

[Lustig96] I. J. Lustig and E. Rothberg. Gigaflops in Linear

Programming. Operations Research Letters, 18(4):157–165,

1996.

[MKL07]Intel® Math Kernel Library Reference Manual, 2007

[Ng93] E. Ng and B. Peyton. Block Sparse Cholesky Algorithms

on Advanced Uniprocessor Computers. SIAM Journal on

Scientific Computing, 14(5):1034–1056, 1993.

[Nocedal06] J. Nocedal and S.J. Wright. Numerical Optimization,

Springer, 2nd edition, 2006.

[Rothberg93] E. Rothberg and A. Gupta. An efficient block-

oriented approach to parallel sparse Cholesky factorization. In

Proceedings of ACM/IEEE conference on Supercomputing, pages

503-512, 1993.

[Schenk00] O. Schenk. Scalable Parallel Sparse LU Factorization

Methods on Shared memory Multiprocessors. Ph.D. Dissertation,

Swiss Federal Institute of Technology, Zurich, Switzerland, 2000.

