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ABSTRACT 

In this paper we describe parallelization of interior-point method 

(IPM) aimed at achieving high scalability on large-scale chip-

multiprocessors (CMPs). IPM is an important computational 

technique used to solve optimization problems in many areas of 

science, engineering and finance. IPM spends most of its 

computation time in a few sparse linear algebra kernels. While 

each of these kernels contains a large amount of parallelism, 

sparse irregular datasets seen in many optimization problems 

make parallelism difficult to exploit. As a result, most researchers 

have shown only a relatively low scalability of 4X-12X on 

medium to large scale parallel machines.  

This paper proposes and evaluates several algorithmic and 

hardware features to improve IPM parallel performance on large-

scale CMPs. Through detailed simulations, we demonstrate how 

exploring multiple levels of parallelism with hardware support for 

low overhead task queues and parallel reduction enables IPM to 

achieve up to 48X parallel speedup on a 64-core CMP. 

1. INTRODUCTION 
Now commonplace, chip multiprocessors (CMPs) provide 

applications with an opportunity to achieve much higher 

performance than uniprocessor systems.  Examples of CMPs are 

8-core IBM CELL Broadband Engine [Gschwind06], 32-core Sun 

Niagara [Kongetira04], and Intel® Core™ Duo Processor 

[Gochman06]. Furthermore, as the number of cores on a CMP 

continues to grow, the performance of the CMP increases 

commensurately. This trend gives rise to two important questions: 

(i) how to expose an adequate amount of parallelism to the 

underlying CMP hardware within a given application, and (ii) 

which hardware features help CMP platform fully explore this 

parallelism in order to deliver highly scalable performance.   

In this paper we address these two questions in the context of 

interior-point method (IPM). IPM is an important computational 

technique that solves optimization problems [Bixby02]. 

Optimization refers to the minimization (or maximization) of an 

objective function of several decision variables which satisfy 

some constraints [Nocedal06]. Examples of optimization include 

the optimal choice of a portfolio of stocks, given a budget and 

diversity requirements, or the optimal design of a truss, given 

certain load requirements. In our work we focus on linear 

optimization problems where both the objective function and the 

constraints are linear. Our findings are directly applicable to non-

linear problems, which use a similar set of computational kernels 

as linear optimization.  

IPM spends a majority of its time in a direct sparse linear 

solver. Parallelism within the sparse solver exists on several 

levels: coarse-grain and fine-grain. While coarse-grain parallelism 

suffices to achieve good scalability on a small number of CMP 

cores, effective utilization of a large number of cores requires 

exploiting multiple levels of parallelism. This is achieved by 

partitioning the problem into many tasks and dynamically 

scheduling these tasks among cores. Such partitioning in general 

allows for much better load balance among cores, but may result 

in many small tasks. Consequently, dynamic scheduling schemes, 

oftentimes implemented using task queues programming model, 

suffer from high overhead of scheduling small tasks. Scheduling 

overhead can greatly reduce parallel scalability on many cores.  In 

this work, we evaluate the impact of hardware support for low 

overhead task queues on IPM. We show how such support 

enables good load balance while significantly reduces overhead of 

task scheduling.   

Another important source of performance degradation in IPM 

comes from parallel reduction, where multiple cores update the 

same memory locations. To guarantee atomicity of such updates, 

existing schemes use fine-grain synchronization to serialize their 

execution. Similar to task scheduling overhead, serialization 

overhead can severely degrade parallel scalability on many cores. 

We propose and evaluate parallel reduction hardware, which 

significantly decreases the overhead of reduction.  

Hardware support for low overhead task queues and parallel 

reduction enables CMP to efficiently explore large amount of 

parallelism available in IPM and achieve high scalable 

performance on many cores. We have implemented these two 

techniques in our cycle-accurate CMP simulator, and analyzed the 

performance of the fully parallelized IPM application [Koka04] 

on a diverse suite of datasets from NETLIB collection [Gay88]. 

As a result IPM achieves up to 48X speedup (43X on average) 

with respect to the serial code performance on a 64-core CMP 

platform.  

This paper is organized as follows. Section  2 introduces IPM 

and its main computational kernels. Sections  3 and  4  provide a 
brief introduction to sparse linear solver and its parallelization as 

well as motivate hardware support for low-overhead task queues 

and parallel reduction. Section  5 discusses a particular 

implementation of such hardware support. Section  6 presents 
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performance and scalability analysis of IPM on our simulator.  

Finally, we discuss related work and conclude. 

2. MAIN COMPUTATIONAL KERNELS 

OF IPM  

In the past decade, the IPM has become a method of choice 

for solving large linear optimization problems of the form: 

min cTx, subject to Ax=b, x ≥ 0 

Here the vector x = (x1,…,xn) is the optimization decision 

variable of the problem, the function cTx is the objective function, 

A is an m by n matrix of linear constraints, and vectors x, c, and b 

have appropriate dimensions. A vector x* is called an optimal 

solution of the optimization problem if it has the smallest 

objective value among all vectors that satisfy the constraints.  

Figure 1 outlines the kth iteration of the main optimization 

loop of IPM [Lustig96]. The method starts with an initial 

approximation to the solution of the optimization problem, x. The 

core of the method is the main optimization loop, which updates 

the vector x at each iteration until the convergence to the optimal 

solution vector x* is achieved.  

As figure shows, IPM spends most of its computation time in 

a small number of linear algebra kernels. Optimizing and 

parallelizing these kernels is key to efficient implementation of 

IPM.  These are the most important kernels: 

1. Formulation of linear systems of equations, Mx=b, where M 

is the symmetric matrix of the form M = A Z-1A, where A is 

the original matrix of constraints. This requires a matrix-

matrix multiplication operation. 

2. Cholesky factorization of matrix M = L LT in order to solve 

the system of linear equations, Mx=b. Here L is the lower 

triangular, and LT is its transpose. This step is normally the 

most time-consuming step of the IPM. 

3. Triangular solver uses the result of factorization to solve a 

system of linear equations (L LT)x=b, using the following 

three steps 

a. Forward solver solves Ly=b. 

b. Backward solver solves LTx=z. 

4. Matrix-vector multiplication (MVM) computes Ax and ATx 

for different vectors x. 

5. Basic Linear Algebra Subroutines (BLAS1) performs inner 

products, vector additions, vector norm and ratio test 

computation. 

Table 1 shows the execution time breakdown of IPM on a 

single core, for a number of sparse linear programming problems 

(see Section  6.2 for detailed description of the datasets used in 
this analysis). We observe that IPM spends large proportion of 

time in sparse linear solver (kernels 2 and 3). However, good 

parallel performance of IPM requires an efficient parallel 

implementation of all kernels. For example, while IPM spends on 

average only 7.6% of its execution time in BLAS1, leaving this 

kernel unparallelized limits IPM speedup to 13X regardless of 

how well the rest of the kernels scale. Therefore in our 

implementation we parallelize all IPM kernels.  

3. INTRODUCTION TO SPARSE LINEAR 

SOLVER 

In this section we introduce the general framework of sparse 

linear solvers that follows block Cholesky approach [Ng93]. Two 

fundamental concepts behind solving sparse systems of linear 

equations are super-node and elimination tree. Both are defined in 

respect to the factor matrix L whose non-zero structure is 

computed prior to factorization.  

A super-node is a set of contiguous columns in L whose non-

zero structure consists of a dense triangular block on the diagonal 

and an identical set of non-zeroes for each column below the 

diagonal.  An elimination tree is task dependence graph that 

characterizes the computation and data flow among the super-

nodes of L during Cholesky factorization and triangular solver. In 

the elimination tree the parent of super-node j is determined by 

the first sub-diagonal non-zero in super-node i. Figure 2(a)  shows 

an example of the factor matrix L, its non-zero elements 

(represented with ‘X’s) and 6 super-nodes (sn1 through sn6). 

Figure 2(b) shows the corresponding elimination tree. There is an 

edge between sn1 and sn5, because, as (a) shows (in shade),  the 

second row of  the 2 by 2 diagonal block of sn5 depends on non-

zero row 10 in sn1. 

Given an elimination tree (ET), each of the three steps of 

linear solver can be expressed using the following generic 

formulation:  

 1. Compute rp = b – Axk and rd = c – z – A
T 
yk 

2. Check for convergence, using the norms of rp and rd  
3. Form  M = AQA

T, where Q = XZ
-1 is a diagonal matrix 

4. Compute Cholesky factor M = LDL
T
, where L is lower triangular 

5. Compute the predictor directions, dp = (dpx, dpy, dpz) 
5.1. dpy = M

-1 [rp + AQ (rp  - XZe)] 
5.2. dpx = Q [AT

 dpy + XZe – rd] 
5.3. dpz = –Ze – Q

-1
dpx 

6. Do a ratio test to compute ap and ad, by computing 
6.1. ap = min{-xj / Dxj: Dxj < 0 and  j = 1 .. n} 
6.2. ad = min{-zj / Dzj: Dzj < 0  and  j = 1 .. n} 

7. Compute the barrier “parameter” u based on (xk, yk, zk), ap and ad 
8. Compute the search direction ds = (dsx, dsy, dsz) 

8.1. dsy = M
-1[rp + AQ (rd + ue – XZe – DpxDpze)] 

8.2. dsx = Q [AT
dy – ue + XZe + DpxDpze – rd] 

8.3. dsz = uX
-1
e – Ze – Q

-1
 DsxDsze – Q

-1
dsx 

9. Do a ratio test to compute ap and ad 
9.1. ap = p min{-xj / Dxj: Dxj < 0 and  j=1..n}, where p = 0.99995 
9.2. ad = p min{-zj / Dzj: Dzj < 0 and  j=1..n}, where p = 0.99995 

10. Update the iterate as 
10.1. xk+1 = xk + ap dsx 
10.2. yk+1 = yk + ad dsy 
10.3. zk+1 = zk + ad  dsz 

       Figure 1: A single iteration of primal-dual IPM 

Table 1: IPM execution time breakdown  for linear 

programming problems  

Kernel ken-18 mod2 pds-10 watson world average 

Mmm 44.5% 4.7% 2.7% 7.1% 6.6% 13.1% 

Cholesky 30.8% 59.3% 67.7% 37.6% 63.5% 51.8% 

forward solver 7.0% 11.6% 8.8% 16.4% 9.1% 10.6% 

backward solver 9.7% 11.6% 9.4% 20.7% 10.4% 12.4% 

MVM 2.5% 5.3% 3.6% 7.2% 4.2% 4.5% 

BLAS1 5.5% 7.5% 7.8% 11.0% 6.2% 7.6% 



The super-nodes are processed in breadth first order: bottom-

up for Cholesky and backward solver, top-down for forward 

solver. Super-nodes are stored using dense matrix representation. 

As described in the following section, the processing tasks 

involve various dense matrix operations. 

4. PARALLELIZATION OF SPARSE 

LINEAR ALGEBRA KERNELS OF IPM 

In this section we describe sparse linear algebra kernels in 

more detail as well as show how to expose and exploit parallelism 

within each of the kernels. 

4.1 Cholesky Factorization 
Figure 3 shows pseudo-code for Cholesky factorization. A 

Cholesky processing task (Lines 3-6) is generally expressed in 

terms of two primitive operations, cdiv and cmod update. The 

cdiv(sn1) operation (Line 3) multiplies the dense rectangular 

portion of the super-node sn1 below its main diagonal by the 

inverse of the sn1’s dense diagonal block. cmod(sn2, sn1) update 

multiplies sn1 with the transpose of its sub-matrix C, which 

corresponds to the dense triangular block of the sn2; it then 

scatter-adds the result of  multiplication into destination super-

node sn2. Such scatter-add operation is also known as the 

reduction operation. 

 

 
The main loop in Figure 3 performs breadth-first bottom-up 

traversal of the super-nodes in the elimination tree starting from 

the leaves (Line 2). Each ancestor super-node performs cmod 

update on its decedents in the tree (Lines 4-6). By the time a 

super-node is traversed, it has collected all updates from its 

ancestors. At this point cdiv operation is performed to complete 

its own factorization (Line 3).  

Parallelism in Cholesky factorization exists on three different 

levels:  

Level-1: Coarse-grain parallelism exists within the elimination 

tree, where two or more super-nodes belonging to independent 

sub-trees of the elimination tree are traversed in parallel on 

different cores. Note, however, that two or more ancestors may 

simultaneously update the same descendent super-node of the 

elimination tree. When simultaneous updates occur to the same 

memory location, the result may be incorrect. To avoid this 

situation requires a mechanism to guarantee atomicity of such 

updates. 

Level-2: The second level of parallelism exists in the innermost 

loop (Lines 4-6). Each ancestor super-node sna can 

simultaneously cmod update its descendents (Line 5). The 

second level of parallelism also exists within the two steps of 

cdiv operation, where independent dense triangular systems are 

solved for different right-hand sides. 

Level-3: Fine-grain parallelism exists within individual cmod 

updates (Lines 5). Exploiting this parallelism amounts to 
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Figure 2: A triangular matrix with 6 super-nodes and the corresponding elimination tree. 

1. T = breadth-first  bottom-up traversal of ET  

2. for each super-node sna in T  

3.  cdiv(sna)  

4. for each descendant super-node snd that must 

           be updated by sna 

5.  cmod(snd , sna ) 

6. endfor 

7. endfor 

Figure 3: Cholesky factorization pseudo-code. 

 

(a) Factor matrix with super-nodes (b) Elimination Tree 

T = breadth-first traversal of ET (bottom-up or top-down) 

for each super-node sni in T 

perform processing task on sni 

endfor 

 



parallelization of the dense matrix-matrix product as well as 

scatter-add operations.  

4.2 Triangular Solvers 

Cholesky factorization results in a lower-triangular factor 

matrix L, such that M=LLT. The solution to the system of 

equations Mx=b is then obtained by first performing the forward 

solver Ly=b and second the backward solver LTx=y. Similar to 

Cholesky computation, forward and backward solvers are made 

more efficient by taking advantage of the super-nodal structure of 

the factor matrix L.   

The high-level pseudo code of forward solver is shown in 

Figure 4.  Forward solver traverses the elimination tree from top 

to bottom. For each super-node sni, it performs a forward solve of 

a dense lower triangular system involving dense triangular block 

of sni, Lsni,sni (Line 4), multiplies the solution vector by the dense 

rectangular portion of the sni, L*,sni (Line 5), and  scatter-adds 

the result of multiplication into the solution vector y (Line 6) 

taking non-zero structure of sni into account. 

 
Backward solver is similar to forward solver, except that 

elimination tree is traversed from bottom to top and no scatter-add 

reduction is required.  Both sparse forward and backward solvers 

contain parallelism on two levels:  

Level-1: Similar to Cholesky, coarse-grain parallelism in the 

triangular solver exists among the super-nodes from 

independent sub-trees of the elimination tree. Performing 

scatter-add into the solution vector y (Line 6) may also result 

in simultaneous updates to the same elements of y, unless 

there exists mechanism to ensure atomicity of such updates. 

In backward solver the solution vector updates (Line 6) 

issued from parallel super-nodes are applied to disjoint 

elements of the solution vector and thus require no atomicity.   

Level-2: Fine-grain parallelism exists within matrix-vector 

multiply, scatter-add reduction operation, and dense 

forward/backward solver of the dense diagonal block of the 

super-node. 

4.3 Parallelization using Task Queue Model 

A simple parallel implementation of Cholesky factorization 

and triangular solver only exploits coarse grain Level-1 

parallelism. However, we observe that parallelism varies across 

elimination tree. At the bottom of the tree there are many small 

independent super-nodes with large amounts of coarse-grain 

parallelism. At the top of the tree there are few large super-nodes 

with small amounts of coarse-grain but large amounts of fine-

grain parallelism. 

Hence only exploiting coarse grain parallelism results in 

limited parallel scalability due to load imbalance, as there is 

insufficient amount of work for each core to be fully utilized. 

Therefore to achieve high scalable performance of IPM, our 

implementation exploits all existing levels of parallelism: Level-1, 

Level-2 and Level-3 in Cholesky factorization, and Level-1 and 

Level-2 in forward and backward solvers. To accomplish this, we 

use a completely dynamic partitioning approach together with a 

task queue model of parallel programming.  

Dynamic partitioning approach divides a task at each level of 

parallelism into smaller sub-tasks at a lower level, where the size 

of each sub-task is dynamically determined based on the size of 

the original task. Thus if the size of the original task is small, no 

subdivision is done.  If the original task is large, it is partitioned 

into sub-tasks to keep system fully utilized. In forward solver, for 

example, the bottom of the tree has many small tasks at Level-1; 

hence no further partitioning is done. In the middle of the tree the 

number of Level-1 tasks decreases, while their size increases. As a 

result, our implementation starts partitioning these tasks into 

smaller Level-2 sub-tasks.  At the top of the tree, where only a 

few large super-nodes are left, the Level-2 tasks dominate. 

Dynamic partitioning exposes larger amount of parallelism while 

at the same time reduces task size variability. This leads to 

improved load balance and better scalability on many cores.  

To take advantage of dynamic partitioning and to further 

improve load balance, we use a task queue runtime system, which 

is responsible for en-queuing, de-queuing and scheduling tasks on 

a set of persistent threads. To this end it uses a popular 

mechanism called distributed task queues with task stealing, 

which is shown in   Figure 5. In this scheme, each thread has its 

own local queue on which it primarily operates. When a thread 

en-queues a task from the partition, it places it in its local queue. 

When it finishes executing a task and needs a new task to execute, 

it first looks in its local queue. If there are no tasks available in its 

own queue, it steals a task from one of the other queues. Note that 

each of the queues is shared and needs to be protected by locks. 

Task stealing assures that all cores are utilized as long as there are 

available tasks. 

Overall, dynamic partitioning and task queuing are the key to 

efficient parallel implementation of sparse linear solver.  

          

 

  

              

 

 

 

 

 

 

 

Figure 5: Distributed task queues 

1. y=b 

2. T = breadth-first top-bottom traversal of ET 

3. for each super-node sni in T 

4. ysni = [Lsni,sni]
-1 ysni 

5. ty = L*,sni ysni 

6. y = y – ty 

7. end for 

Figure 4: Forward solver pseudo-code. 
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4.4 Matrix-Matrix Multiplication and Other 

Kernels 

While sparse linear solver is an essential part of IPM, it is 

important to parallelize the remaining kernels to achieve high 

scalability on many cores. We use well-known data partitioning 

schemes which divide these kernels into independent tasks.  

Matrix-matrix multiplication is highly parallel, because each 

element of matrix M is computed independently as a dot product 

of the corresponding rows of A. Therefore, each task is comprised 

of a contiguous sub-set of non-zero elements of M.   

To achieve good scalability of matrix-vector multiplication 

y=Ax, each task works with a contiguous subset of non-zero 

elements of A.  As a result, the task may contain one or more rows 

of A. The task performs the dot product of non-zero elements of 

each such row i of A with the corresponding elements of x, and 

stores the result into y[i]. Since two or more tasks may contain 

elements of the same row of A, multiple threads may 

simultaneously update the same element of y. We guard each 

update to y with a fine-grain lock, assigning one lock per cache 

line, to guarantee atomicity of such updates. For our datasets the 

number of such simultaneous updates is small compared to the 

rest of the computation, therefore the overhead of fine-grain 

locking is also small. 

5. EXPLOITING PARALLELISM IN IPM 

WITH HARDWARE SUPPORT 

The previous section describes how to expose an abundant 

amount of parallelism in the sparse linear solver kernel of IPM. 

This section describes hardware support for low overhead task 

queues and parallel reduction to efficiently explore this 

parallelism on many CMP cores. 

5.1 Low Overhead Task Queues 

To efficiently utilize a large number of cores, a dynamic 

partitioning scheme creates a large number of parallel tasks. As a 

result, there are many small tasks, especially toward the top of the 

tree where only fine-grain parallelism prevails.  

When task sizes are small, the overhead involved in software 

implementation of task queues can significantly degrade 

scalability of an application on a large number of cores 

[Kumar2007]. The overhead is due to several factors. The most 

significant factor is contention overhead, when multiple threads 

simultaneously access the same queue to steal the tasks. Such 

situations are common in sparse linear solver. For example, as 

discussed in Section  4, a large super-node at the top of the tree is 
partitioned by a given thread into many smaller sub-tasks, which 

get en-queued into its local queue. Other threads attempt to 

simultaneously de-queue these tasks from the queue. This creates 

contention over the shared queue and effectively serializes 

execution, as each thread has to wait until the previous thread 

atomically de-queued the task.  

Another significant factor is the instruction overhead of 

managing the queue during task en-queuing and de-queuing 

operations. This overhead arises from grabbing and releasing the 

lock that protects the queue from simultaneous accesses by 

multiple threads, as well as incrementing (or decrementing) queue 

head pointer to point to the next empty position in the queue.  

In this work we use low overhead task queues, proposed in 

[Kumar2007], which accelerate task scheduling on CMP by 

implementing en-queuing and de-queuing operations in hardware. 

More specifically, in this proposal the tasks are stored in hardware 

queues, and are prefetched to the cores so that each core can start 

a new task as soon as it finishes its current one. This results in 

significant reduction of task scheduling overhead and improved 

scalability on CMP system. 

5.2 Parallel Reduction Hardware 

Scatter-add reduction operation is a common operation in 

many linear algebra kernels. As shown in Sections  4.1 and  4.2, 
Cholesky and forward solver used in IPM both require reduction. 

In general, reduction involves combining a set of data values into 

a single value. Implementing high performance reduction in 

parallel is challenging as it requires a mechanism to prevent data 

corruption caused by simultaneous updates from different cores. 

At the software level, synchronization is required to serialize 

updates. At the hardware level, the cache lines containing the 

reduction target need to be migrated from one core’s cache to 

another before update can happen. While necessary, these forms 

of data corruption prevention mechanisms introduce significant 

amount of overhead and often cause performance degradation.  

There are several software approaches to reduce impact of 

serialization in parallel reduction. Some approaches use fine-grain 

locks, each of which guard one or several cache lines. Other 

approaches rely on some form of hardware fetch-and-add 

mechanism for atomically updating a memory location. However, 

both approaches suffer from cache line migration during multiple 

concurrent updates to this cache line. Alternatively, one can 

privatize shared data, so that each thread operates on its local 

copy. Global reduction of all private copies is performed at the 

end of the parallel region. In both Cholesky and forward solver, 

parallel reduction involves updates to only a few non-contiguous 

locations of the large data structure. As a result, global reduction 

of the entire data structure results in substantial space and 

computation overhead. 

Hardware support can substantially reduce the overhead in 

parallel reduction. Many supercomputers, such as the Connection 

Machine CM5 [Leiserson96] and IBM BlueGene [BlueGene02], 

provide a dedicated network for reduction operations. Our work 

takes a different approach that modifies the cache coherence 

protocol to simultaneously maintain multiple modified copies of a 

cache line for reduction. While this approach is similar to the 

solution proposed by [Kim03] and [Garzaran01] in the context of 

distributed shared memory multi-processors, we extend its 
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Figure 6: Parallel reduction hardware 



implementation to CMP environments, as shown in Figure 6. In 

our scheme, the cache lines which hold the reduction target are 

marked non-coherent and each core participating in the reduction 

operation is allowed to have a modified copy of the cache line 

while computing the partial reduced value. For example, in case 

of forward solver the solution vector y is marked as the reduction 

target. At the start of the reduction operation, the L1 cache 

controller sends a special request to the home directory controller 

to initiate the reduction operation. The L1 cache controller also 

allocates a cache line for temporary storage. This line will be 

initialized with reduction neutral value (e.g. zero for addition) and 

the core immediately performs reduction operation. Note this is 

different from software-based implementation where the core 

blocks while waiting to receive a single globally shared copy of 

the line to perform the reduction. When the first reduction request 

arrives to the home directory, the coherence protocol invalidates 

the line from all other L1 caches, transitions the line into a special 

reduction state, and finally adds the requesting core to the list of 

owners of the line. For subsequent reduction requests from other 

cores participating in the reduction the protocol only adds a new 

participant to the owner lists. When the reduction target is 

accessed (via read, read-for-ownership or eviction request), the 

home directory controller collects all non-coherent lines at the 

cores to which they belong and computes global reduction value 

before forwarding it to the consumer.   

Note that to compute global reduction value, the directory 

controller has to be enhanced with execution units that support the 

required reduction operations. Due to the fact that all elements of 

a line can be processed in parallel or in a pipelined fashion the 

performance of parallel reduction can be further improved by 

pipelining these execution units or adding more units. 

Overall, parallel reduction hardware described above 

significantly reduces amount of contention when multiple cores 

update data elements in the same cache line. Moreover, the 

scheme alleviates overhead of cache line migration as well as 

overhead of arithmetic operation required to perform reduction 

operation. This results in significant improvement in parallel 

scalability and performance on large-scale CMP system.  

6. EXPERIMENTAL RESULTS 

6.1 System Modeled 

We use a cycle-accurate, execution-driven CMP simulator for 

our experiments. This simulator has been validated against real 

systems and is used extensively in our lab. Table 2 summarizes 

our base system configuration.  

We model a CMP where each core is in-order, has a private 

L1 data cache, and all cores share an L2 cache. Each L1 cache has 

a hardware stride pre-fetcher. The cores are connected with a bi-

directional ring, and the L2 cache is broken into multiple banks 

and distributed around the ring. A given cache line can exist in 

only one L2 bank according to an address hashing function 

(XORs the most significant bits with the least significant). 

Inclusion is enforced between the L1s and L2. Coherence between 

the L1s is maintained via a directory-based MSI protocol. Each 

L2 cache line also holds the directory information for that line. 

The ring has 41 stops, each of which can have two components 

connected to it (i.e., core or L2 cache bank). Our system models 

an aggregated memory bandwidth of 160GB/s which is similar to 

16 channels of DDR3-1333. Finally, our simulator models 

aggregate ring bandwidth of 512GB/s. 

For experiments which involve hardware support for low 

overhead task queues and parallel reduction, we add hardware as 

described in Sections  5.1 and  5.2 to the system. 

6.2  IPM Implementation and Datasets 

Our interior-point method is based on PCx - a serial interior-

point predictor-corrector linear programming package 

[Czyzyk96]. Our parallel implementation of the Cholesky 

factorization and the solver routines uses as a baseline sparse 

direct solver package, called PARDISO [Schenk00], which is part 

of Intel’s Math Kernel Library [MKL07]. Our baseline 

implementation uses a highly tuned version of software task 

queues [Kumar06] for load balancing, as well as fine-grain 

locking, with one lock per cache line, for parallel reduction.  

 Table 3 summarizes the statistics for the datasets used in our 

experiments. They come from the standard NETLIB test set 

[Gay88] and represent linear programming models from several 

application domains.  

 Column 1 lists the name of the datasets. Column 2 shows the 

number of constraints in the linear programming problem, which 

corresponds to the number of rows of matrix A. Column 3 shows 

the number of decision variables in the problem, which 

corresponds to the number of columns of A. Our problems range 

from medium size problems with tens of thousands constraints 

and variables to large size problems with hundreds of thousands 

constraints and variables. Column 4 shows the number of non-

zeros in the matrix M = A Z-1A. Column 5 shows the density of M, 

which shows that our datasets are very sparse. Column 6 shows 

the number of non-zeros in the L factor of M.  Compared with 

original matrix, the factor matrix has substantially more non-zero 

elements than original matrix, due to fill-ins. The amount of fill-in  

Table 2: Simulation Parameters 

Core Parameters Memory Hierarchy Parameters Contentionless Memory Latencies 

# of Cores 1 to 64 Private (L1) 

Cache 

32kB, 2-way, 64B line L1 hit 3 cycles 

Architecture 2-issue, in-order core Shared L2 cache 8MB, 16-bank,  

8-way/bank, 64B line 

L2 hit 18 - 58 cycles 

Functional Units 2 Int ALU, 1 FPU; 1 

Mul/Div, 2-port LSU 

Interconnect Bi-directional ring Main Memory 298 - 338 cycles 

Branch Pred. G-share, 2k entries     



can be reduced with re-ordering techniques. Our algorithm uses 

Minimal Degree Reordering from METIS [Karypis98].   

6.3 Scalability of Sparse Linear Solver 

In this and later sections we present scalability results of 

individual IPM kernels as well as the entire application from our 

cycle-accurate simulator. The results are shown for 1 to 64 cores 

in a stacked bar-chart format.  Each bar is broken down into 

multiple sub-bar segments, where each segment represents an 

incremental improvement due to a given software or hardware 

optimization. The speedup is reported relative to the performance 

of serial implementation of IPM.  

Inherent Parallelism in Sparse Solver 
To better understand the speedup sparse linear solver achieves 

on CMP system, we compute the maximum ideal speedup of 

Cholesky, forward and backward solvers for different levels of 

parallelism. The ideal speedup is computed as the ratio of the 

work performed by the serial implementation of the algorithm 

over the work on the elimination tree’s longest path when a given 

level of parallelism is explored. The amount of work on the 

longest path is the cumulative sum of work performed by each 

super-node along the path. In this idealized study the work per 

super-node is approximated using total number of floating-point 

operations required to process the super-node. When coarse-grain 

parallelism is explored, the work within each super-node is 

performed serially, while work across independent super-nodes is 

performed in parallel, constrained only by the data-dependencies 

among super-nodes in the elimination tree. When fine-grain 

parallelism is explored, the work within each super-node can also 

be done in parallel, constrained only by the true data 

dependencies within super-node’s processing task.  

The results for Cholesky factorization, backward and forward 

solvers are shown in Table 4. Column 2 shows ideal speedup for 

Cholesky factorization when coarse-grain (Level-1) parallelism is 

explored. We observe that exploring only Level-1 parallelism 

limits the ideal speedup to less than 20X for three out of five 

datasets. For these datasets the longest path is dominated by the 

large super-nodes at the top of the elimination tree. Column 3 

shows ideal speedup when all three levels of parallelism are 

explored. This allows the work within each super-node to be done 

in parallel and, given large amount of inherent fine-grain 

parallelism within each super-node, results in tens of thousand-

fold ideal speedup for all datasets.  

Columns 4 and 5 show ideal speedup for backward solver. 

The results are almost identical for forward solver. Similar to 

Cholesky, Level-1 parallelism is limited, while the combined 

Level-1 and Level-2 parallelism is abundant.  

These results suggest that sparse direct solver has a potential 

for high scalability on parallel architecture, due to a large amount 

of inherent parallelism that exists within the given datasets. 

Understanding the difference between the ideal and achieved 

speedup points to algorithmic and hardware limitations, which 

prevent application from realizing architecture’s full potential. 

Furthermore, as shown in the remainder of this section, it helps 

guide performance tuning of an application, as well as make 

hardware improvements to the baseline architecture.  

Forward Solver 
Figure 7(a) shows the scalability of forward solver. The 

bottom bar segment shows the speedup achieved by the baseline 

version, which only explores Level-1 parallelism using software 

task queues and fine-grain locking for parallel reduction. On 

average, the speedup does not exceed 3.8X on 64 cores and 

begins to drop significantly on the configurations with 16 or more 

cores. As Table 4 shows, for three datasets, mod-2, pds-10 and 

world, such poor scalability is due to the limited amount of Level-

1 parallelism. As the number of cores increases beyond limit, 

scalability doest not improves further. Meanwhile, the amount of 

synchronization among the cores also increases. This results in 

slowdown on 16 and more cores. While the remaining two 

datasets, ken-18 and watson, have sufficient amount of Level-1 

parallelism, their limited scalability is due to the high overhead of 

task queuing and parallel reduction, as explained later in this 

subsection. 

The second bar segment (from the bottom) shows the 

additional speedup (on top of the baseline) which results from 

exploring both Level-1 and Level-2 parallelism using the same 

software task queues and fine-grain lock reduction as in the 

baseline version.  Most datasets show no improvement, while pds-

10 shows negligible improvements on 16 cores.  To understand 

the sources of such poor parallel performance, we profile the 

parallel execution of forward solver. Figure 7(b) shows, for 1 to 

64 core configurations, the amount of time spent in actual 

computation (top segment), parallel reduction (middle segment) 

and task queues (bottom segment).  To achieve linear scalability, 

time spent in each of these three regions should decrease linearly 

as the number of cores increases. However, as the figure shows, 

time spent in task queues decreases only slightly for 4 datasets, 

and even increases for mod2, pds-10 and world, on 32 and 64 

cores.  This is due to software overhead of scheduling small tasks, 

which result from exploring both levels of parallelism. Similarly, 

the time spent in reduction increases for all but one dataset 

(mod2) as the number of cores increases. This is due to the fact 

that the overhead of fine-grain locking increases with the number 

of cores, because the contention for the shared data also increases. 

Table 3 :  Dataset statistics 

LP LP M M Density L 

Dataset Rows Columns nnz (%) nnz 

mod2 28761 56348 219039 0.0265% 1454339 

ken-18 105127 154699 291082 0.0026% 2175306 

pds-10 16558 49932 79866 0.0291% 1180995 

watson 209614 411177 1263788 0.0029% 3776935 

world 28653 58028 211001 0.0257% 1327756 

Table 4: Inherent parallelism in sparse linear solver 

 Cholesky Factorization 
Backward  (Forward) 

Solver 

Datasets Level-1 Level-123 Level-1 Level-12 

ken-18 147 353608 134 5024 

mod-2 13 91074 12 1230 

pds-10 8 105867 5 970 

watson 68 134703 138 7663 

world 16 83235 15 1155 



The contention is especially serious in ken-18 and watson which 

leads to significant reduction overhead.   

The third bar segment in Figure 7(a) shows an additional 

speedup achieved by forward solver with the help of low overhead 

hardware task queues when only Level-1 parallelism is explored. 

Scalability of all datasets improves significantly all the way to 64 

cores.  The experiment shows that software task queue overhead is 

the reason why we have not seen this level of scaling in the 

previous two experiments.  As shown in Table 4, while ken-18 

and watson have ample amount of Level-1 parallelism, other 

datasets need to rely on Level-2 parallelism to achieve higher 

speedup.  This is confirmed with the fourth bar segment which 

shows the speedup achieved using low overhead task queues 

when both Level-1 and Level-2 parallelism are explored.  Except 

for ken-18 and watson, the remaining datasets show additional 

speedup.   

The achieved speedup is still far from the ideal, even when 

both levels of parallelism are explored. The topmost bar segment 

demonstrates forward solver performance with added hardware 

support for parallel reduction. Reduction hardware more than 

doubles scalability of most of the datasets on 64 cores compared 

to fine-grain locking, resulting in speedup between 20X and 30X.  

Note that scalability of watson increases by more than 5X on 64 

cores, which is due to high overhead of the reduction in this 

particular dataset, which is alleviated with the reduction hardware. 

Overall, with the help of hardware support for low overhead task 

queues and reduction hardware, forward solver has improved 

parallel scalability, on average, from 3.8X to 24X on 64 CMP 

cores. 

Backward Solver 
Figure 8(a) shows scalability of backward solver. The bottom 

shows the speedup achieved by original parallel PARDISO 

version of the backward solver which only explores Level-1 

parallelism using software task queues. The second bar segment 

from the bottom shows the speedup when both levels of 

parallelism are explored. Similar to forward solver, the speedup 

varies between 3X and 6X across all datasets, and begins to drop 

after 16 cores. Execution time analysis similar to Figure 7(b) 

shows that such poor scalability is to due to high overhead of 

software task queues.  

The third and fourth bar segments show an additional speedup 

achieved by backward solver using low overhead task queues for 

Level-1 and Level-1/Level-2 parallelism, respectively. Results are 

similar to forward solver; hardware task queues result in the 

substantial speedup of 19X to 36X on all datasets.  The backward 

solver scales better than the forward solver because it does not 

require reduction operation. 

Cholesky factorization 
As execution time breakdown in Table 1 shows, Cholesky 

factorization is the most time-consuming kernel in IPM.  Figure 

8(b) shows the scalability of Cholesky factorization. 

The bottom bar segment shows the additional speedup 

achieved by original parallel Cholesky found in PARDISO solver 

which only explores Level-1 parallelism using software 

implementation of task queues. The speedup varies across 

datasets, and is consistent with the ideal speedup in Table 4. For 

examples, watson and ken-18, which according to the table have a 

large amount of Level-1 parallelism, achieve the highest speedup 

of 8X and 38X on 64 cores. On the other hand, mod2, pds-10, and 

world, whose ideal Level-1 speedup is limited, achieve a more 

modest speedup on 64 cores.  

The second bar segment (from the bottom) shows the 

additional speedup achieved when all three levels of parallelism 

are explored. The speedup of mod2, pds-10, and world improve 

above 30X on 64 cores. The impact of fine-grain parallelism is 

limited on ken-18 and watson due to the fact that both have plenty 

of coarse Level-1 parallelism. Overall, we see that in order to 

achieve good parallel speedup on Cholesky, it is important to 

exploit all levels of parallelism.  

In contrast to forward and backward solvers, using low 

overhead task queues results in negligible performance 

improvement. This can be seen from by the third  and fourth bar 

segments. The third segment shows an additional speedup 

achieved by Cholesky when Level-1 parallelism is explored. 

Similarly, the fourth segment shows an additional speedup when 

all three levels of parallelism are explored.  We see that, compared 

to both solvers, the impact of low overhead task queues is almost 

unnoticeable on Level-1 parallelism and is small, between 8% and 

16%, on all three levels of parallelism. This due to the fact that 

Level-1, Level-2 and Level-3 tasks in Cholesky are much larger 

Figure 7: Scalability of forward solver 

(a) Forward solver (b) SW TaskQ + Level_12 execution profile 
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than in forward and backward solvers, and can effectively hide the 

overhead of task scheduling.   

Even when three levels of parallelism are explored in all 

datasets, the utilization is still less than 50% on 64 cores. This is 

due to the overhead of reduction operation. As shown by the 

topmost bar segment, the use of reduction hardware improves 

scalability significantly, resulting in close to linear speedup on 64 

cores in 4 out of 5 datasets.  watson scalability is still limited to 

30X.  This is due to the following reason. Our implementation 

uses shared counters, one per tree node, to keep track of 

parent/child relationship among nodes. When the child node 

updates the parent node, during cmod update operation (see 

Section  4.1), it atomically decrements the shared counter to 

register its update. When multiple children, running on different 

threads, try to simultaneously update the same counter, execution 

is serialized to ensure atomicity of updates. w atson has a 

significant number of tree nodes with many children; this results 

in substantial parallel overhead due to such serialization. For 

other datasets, the average number of children per tree node is 

much smaller than in watson, hence serialization overhead is 

negligible. 

6.4 Scalability of MMM, MVM and BLAS1 

We have also simulated three remaining kernels, MMM, 

MVM and BLAS1. MMM scales almost linearly up to 64 cores 

for all datasets. Partitioning MMM into the blocks of non-zero 

elements, as described in Section  4.4, creates many large tasks. 

This results in good load balance and high parallel scalability.  

MVM and BLAS1 exhibit more modest scalability from 16X 

to 40X across all datasets.  These routines have little amount of 

data reuse within a single iteration of IPM, while their working set 

does not stay resident in L2 cache across consecutive iterations of 

IPM, due to large memory footprint required by sparse linear 

solver. As a result, memory bandwidth limits scalability of these 

two kernels. 

6.5 Scalability of Interior Point Method  

Figure 9 shows incremental scalability results of the entire 

IPM application. These results track the scalability of individual 

IPM kernels, most importantly the sparse linear solver.  

The bottom bar segment shows the scalability of the original 

version of IPM which uses a baseline sparse solver. The speedup 

does not exceed 8X on 16 cores and exhibits a slow-down on 32 

and 64 cores for all datasets. This behavior is expected as mod-2, 

pds-10 and world have a limited amount of Level-1 parallelism in 

the sparse solver. While Cholesky scales well with ken-18 and 

watson, IPM scalability for these two datasets is limited by a high 

overhead of task queuing in forward and backward solvers and 

parallel reduction forward solver. As indicated by the third bar 

segment, Level-1 parallelism with low overhead task queues 

significantly improves scalability in these two datasets. As 

expected, this is due to large scalability gains in forward and 

backward solvers. 

The second bar segment (from the bottom) shows that 

exploring all levels of parallelism with software task queues 

provides modest scalability improvement in mod-2, pds-10 and 

world. Exploring all levels of parallelism with low overhead task 

queues significantly improves the scalability of these three 

datasets, as shown by the fourth bar segment. Compared to 

software implementations, hardware support for low overhead 

task queues improves IPM performance 8-fold to 20-fold on 64 

cores.  

Finally, hardware support for parallel reduction improves IPM 

performance up to 2-fold compared to fine-grain locking used in 

the baseline version. As shown by the topmost bar segment, 

hardware support for low overhead task queues and parallel 

reduction enable IPM to achieve up to 48X speedup (43X on 

average) on a 64-core CMP. 

7. RELATED WORK 

Previous work on parallel IPM has been done in the context 

of shared memory or message passing multiprocessing systems. 

To our knowledge, this is the first work which parallelizes and 

analysis IPM on CMP platform using cycle accurate simulation, 

and achieves as high as 75% parallel efficiency on 64 cores. 

A number of authors [Eckstein92][Lustig92][[Gondzio04] 

have parallelized interior point methods. However, their work 

targets specially structured problems, whereas our implementation 

targets general unstructured sparse datasets.  Parallel 

implementation of IPM reported in [Karypsis94] achieves less 

than 50% parallel efficiency on 64 processors of CUBE 2 message 
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Figure 8: Scalability of backward solver and Cholesky factorization 



passing multi-processor. [Lustig96] presents results of 

parallelization of CPLEX IPM and reports up to 38% parallel 

efficiency on 32 processors of Power Challenge shared memory 

supercomputer. More recently, parallel implementation of IPM 

based on PCx [Koka04] and PARDISO report modest speedup on 

4-way SMP systems. 

There is a great body of work on parallelization of sparse 

linear solver, which is an important computational kernel of IPM.  

Solvers, such as SuperLU [Li96], WSMP [Gupta00], and 

PARDISO [Schenk00], are designed to run on shared memory 

parallel systems. Several others, such as block-oriented solver in 

[Rothberg93], MUMPS [Amestory01], and SuperLU DIST 

[Li03], are implemented using message passing to run on 

distributed memory message passing machines. None of these 

solvers has been parallelized to scale on the emerging large-scale 

CMP systems. 

To the best of our knowledge all previous implementations of 

IPM use software implementation of task queues. We are the first 

to demonstrate the significant impact of hardware support for low 

overhead task queues on scalability of IPM. Hardware support for 

parallel reduction has been proposed and studied in the past by 

many authors [Gottlieb84][Leiserson96][BlueGene02]. While 

these proposals provide a dedicated network for reduction 

operations, our work integrates parallel reduction hardware 

support into coherence protocol, and is the first to demonstrate 

how it improves IPM performance on CMP platform. 

8. CONCLUSIONS 

In this paper we describe parallelization of interior-point 

method (IPM) aimed at achieving scalable performance on large-

scale chip-multiprocessor (CMP).  We present parallelization of 

IPM computational kernels, as well as address major bottlenecks 

preventing scalability on many cores. Furthermore, we evaluate 

the impact of several hardware features to improve IPM parallel 

performance on large-scale CMP. Through our cycle accurate 

simulator, we demonstrate how exploring multiple levels of 

parallelism, with the help of hardware support for low overhead 

task queues and parallel reduction enables IPM to achieve up to 

48X speedup (43X on average) on 64-core CMP. 
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