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Abstract. The adaptive integral method is applied to electromagnetic scattering from
relatively flat, perfectly conducting surfaces. It is demonstrated that for nearly flat
scatterers, as is the case with corrugated geometries and rough surfaces, the memory
requirements and complexity of the technique are extremely low. Furthermore, for such
geometries the algorithm can be effectively parallelized without excessive effort. Several
numerical results are included, proving the accuracy and computational efficiency of the

method.

1. Introduction

Integral equation methods, such as the method of
moments (MOM) [Harrington, 1961], have been ex-
tensively applied to electromagnetic simulations. Al-
though very accurate, MOM is very difficult to use for
the analysis of electrically large problems, due to
excessive memory requirements and high computa-
tional complexity. When iterative solvers are used,
the fast Fourier transform (FFT) has been success-
fully utilized in the solution of integral equations
[Sarkar et al., 1986; Peters and Volakis, 1988; Volakis
and Barkeshli, 1991], but its three-dimensional appli-
cations are restricted to structures with special geo-
metric properties. More recently, several compres-
sion algorithms have been developed to reduce the
memory and complexity yet retain the accuracy and
generality of MOM. Among these, the adaptive inte-
gral method (AIM) [Bleszynski et al., 1994, 1996]
utilizes the Toeplitz property of the Green’s function
kernel to reduce the storage requirements of MOM
and also accelerate calculations by use of the FFT.
The method is very general and can handle arbitrary
geometries in two or three dimensions. Memory
requirements and complexity are always asymptoti-
cally lower than traditional MOM (for very large
unknown counts); however, exact storage and opera-
tion estimates strongly depend on the shape of the
scatterer. An interesting property of AIM is that
memory and CPU time requirements are dramatically
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reduced for relatively flat (but not necessarily planar)
surfaces. Examples of such scatterers include corru-
gated geometries, rough surfaces, and antenna arrays.
For such scatterers, significant speedup can be at-
tained by simply parallelizing the FFT algorithm used
in the computation of matrix-vector products. This
paper focuses on the merits of AIM as applied to to
electromagnetic scattering from nearly flat surfaces.

2. General Description of AIM

To apply AIM for scattering by perfectly conduct-
ing, relatively flat surfaces, we follow an approach
similar to that of Bleszynski et al. [1996] yet much
simplified and more rigorous. We consider an arbi-
trary, perfectly conducting (PEC) surface 2 illumi-
nated by some incident field E'. The scattered field
E® is given by

E‘= —jwA - V¢ (1)

where the magnetic potential A and electric potential
¢ are convolution integrals of the surface current and
charge densities J; and p,, respectively [Harrington,
1961].

For numerical solution of the pertinent integral
equation the surface is discretized into small triangu-
lar patches, and the unknown current J; is expanded
using a suitable set of basis functions f, (r). That is,

N
Jo(r) = 3, Infa(r) (2)
n=1

where I,, are unknown coefficients (elementary cur-
rents). A popular choice for f,(r) are the Rao-
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Figure 1. Definition of the far-field region. Here £, lies in
the near zone, whereas f,, is in the far zone of f,,.

Wilton-Glisson (RWG) basis functions defined by
Rao et al. [1982]. It must be emphasized that f, (r) is
tangential to the nth patch and vanishes outside it.
To develop the integral equation for the solution of
Js, we enforce the boundary condition
(E'+E%) - t=0

ons 3)

where t is any tangential vector on the surface or
approximately tangential to the triangular patches.
Subsequently, Galerkin's technique is employed to
cast (3) into a linear system of equations. Specifically,
(3) is tested with the mth basis function to get

fE*-fdeS=f jwa-fmdsz Vé-t,dS (4)
z b 5

m=1,-++,N

and upon introducing the expansion (2), we obtain
the linear system

[Z {1} = {V} )

The entries of the impedance matrix [Z] are double
surface integrals over 2 corresponding to the interac-
tions among the elementary currents, and

Vi =f RE i s (6)
z

Since the impedance matrix in (5) is fully popu-
lated, serious memory limitations arise when the
geometry is electrically large. Also, the required
numerical integration to evaluate the [Z] matrix en-
tries and the subsequent inversion of [Z] are both
extremely time consuming tasks. These difficulties
can be overcome by utilizing the AIM technique.

A basic AIM concept is to partition all pairs of
matrix entries into “far-field” and “near-field” ones.
A far-field threshold ry, is set according to the
desired accuracy. If the centers of two interacting
current elements mth and nth lie at a distance larger
than ry,., they are considered to be in the far-field
region of each other (see Figure 1), and their inter-
action can be modeled in an alternative way.

To describe the far-field interactions, we envision
the entire scatterer being submerged into a uniform
rectangular grid (Figure 2). We introduce an auxiliary
set of basis functions, namely, Ws,,, represented by
clusters of delta current sources located at the nodes
of the grid, namely,

MJ
Y (r) = D, 8(x = Xmg)8(Y = Ying)8(z = Zmg)
g=1

JALE S Aﬁ,qﬁ + Anal (7)

where M is equal to the expansion order and r,,, are
points on the grid surrounding the mth edge. In
Figures 2 and 3 we depict the relative position of the
nth RWG patch submerged in a grid of order M = 2.
We note, however, that (7) is only one of type of
expansion which can be used for transferring the
fields to a uniform rectangular grid.

The A coefficients are determined to ensure that
the two sets of basis functions ¥, and f, are
equivalent. However, since the s, are defined in the
whole volume, whereas each f,, is nonzero only on
the mth patch, formal equivalence can be achieved
only after a slight modification of the RWG basis
function definition. Specifically, let

£ (r) =£,,(r)8(z,;) (8)
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Figure 2. Uniform adaptive integral method (AIM) grid surrounding the scatterer.

where 8(z,, ) is a one-dimensional (1-D) delta func-
tion and z,, is the local coordinate along the normal
to the positive or negative triangles which comprise
the RWG diehedral mth patch (see Figure 4). This is
an important step to ensure the mathematical rigor of
AIM and was omitted from the original presentation
given by Bleszynski et al. [1994, 1996]. The two sets i,
and f,, can become equivalent by imposing equality of
their moments up to order M with respect to the
midpoint r, of the mth edge. These moments are
defined by

M;q:q; o f j J‘ Yo (D) (x —x)7 (y — y,) 7

(z—2,)P dxdydz

M.‘

i 2 {xmq _-ra)ql(qu _ya}q:(zmq
g=1

—Zg )Q]

t [’\fl':qi T Afan' + Arznqi] {9)

K‘::G’z‘h = f J’ j ?m(r)(x e xa)ql

(y = ya)9(z —z,)P dx dy dz (10)
where My, .. refers to the moments of the expansion
basis on the rectangular grid and M/, = refers to
those associated with the original basis. Apart from
f,, itself, the surface divergence of f,, must be
similarly approximated and independently expanded.

We will define the moments associated with V - f,, as

m nm
Dy q.q, and _DQ1QZQ.1'Im i
_ On equating M7, .. to M/, , and Dgji, ., to
D[ 4., We obtain four M3 X M> systems that yield

the A coefficients as a solution. A considerable por-
tion of our effort was focused on the efficient calcu-
lation of the moments in (10). Specifically, a fast,
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Figure 3. Grid surrounding a Rao-Wilton-Glisson basis
function.

closed-form recursive scheme was developed to cal-
culate these moments, and the mathematical details
are described in the appendix.

With the introduction of the volumetric basis
above, the integral equation (4) can be rewritten as

J‘E‘-?md“v:f joA T, d3v+J’ Vé-T,d% (11)
4 v vV

where f,,, represents the volumetric testing function in
(8). For M — =, the sets Ws,, and f,, are equivalent,
and hence in (11), ¥s,,, may be used instead of f,,. For
practical implementations, though, M must be finite,
and therefore only interactions among elements that
lie in the far zone of each other can be modeled
through the set Ws,,,. However, since the whole geom-
etry is submerged in the grid, it is inefficient to
separate near-field and far-field interactions a priori.
It is preferable to calculate all possible interactions
using the auxiliary basis functions and afterward
replace the near-field interactions by their exact val-
ues. It can be shown [Bleszynski et al., 1996] that the

approximate impedance matrix for the whole geometry
calculated via the auxiliary basis functions is given by

4
(21558 = > [LOIGILD)”

i=1

(12)

where [L)] are sparse matrices containing scaled
versions of the equivalence coefficients A in (7) and
[G)‘ is a matrix with Toeplitz properties. Since the
[L®)] matrices map the original RWG mesh onto the
rectangular grid, we will refer to them as “mapping
matrices,” whereas [G] can be referred to as the
“Green’s function matrix.” To introduce the exact

matrix values, we split [Z]\5%] in two parts, as

[Z)30 = [Z155% + [Z]55

where [Z] A%} is sparse and contains only the entries
associated with elements separated by a distance r <
Tthr- The exact impedance matrix in (5) can be split in
a similar manner as

(13)

[Z] = [Z]™* + [Z]™ (14)

On the basis of the above discussion, [Z]™ = [Z] ),
and thus the impedance matrix in (5) can be approx-
imated as

[2] = [Z]™* - [Z]55% + (2]

4
=[S]+ E [LOYGILNT

(15)
i=1
Vertex 2+

< Vertex 3+

T+ Pointa
y-
z
Vertex 1+ e a.

Figure 4. Local coordinate systems for the triangles T+
on the scatterer surface.
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where [S] is a sparse matrix corresponding to the
difference between the exact and the AIM-modeled
near-field interactions. Of most importance in the
formulation of the impedance matrix is that [G] is
Toeplitz and thus the FFT algorithm can be used to
significantly accelerate the calculation of matrix-vec-
tor products required for iterative solution of the
linear system.

3. Application to Relatively Flat Surfaces

Computational cost estimates show that the mem-
ory requirements and complexity of the algorithm
depend both on the original number of unknowns N
and the total number of grid points N,. For large N
our double precision implementation has a memory
requirement of

memory = (368 + 32M7)N + 314N, + 16N ¢y, bytes

(16)

and assuming a symmetric biconjugate gradient
(BiCG) algorithm employing a radix-2 FFT, the num-
ber of complex multiplications per iteration is

Nomuie = 8M>N + 540N, + 120N, logz Ny + Nocar  (17)

In this, N, is the number of nonzero entries in [S],
and its value depends on the geometry of the scat-
terer. For rectangular surfaces it has been shown
[Bleszynski et al., 1996] that N, is asymptotically
proportional to N a2 However, N, is, in general,
highly dependent on the geometry. To observe this,
let us consider a scatterer of rectangular form whose
sides are denoted as a, b, c. If the grid step is chosen
as h, then

abc
Ne=73 (18)
Assume that the surface of the scatterer is discretized
by equilateral triangles of edge length [. The area of
each triangle is therefore S+ = V/31%/4, and the
number of triangles over the whole surface is

8 '\II3

Np= 3?(allb + be + ca) (19)

Since the number N of RWG elements is approxi-
mately N = 3N /2, it follows that

abe

3
o~ £ —| N3¥2
[4\3(ab + be + ca)]? (h)

(20)
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Figure 5. Scatterer shape for various values of the flatness
parameter .

A similar estimate for N ., is

2
e i
\,.'37('—'“) N

Nocar = !

(21)

The above analysis, though approximate, shows
that when AIM is applied to nearly rectangular
surface problems, it has O(N 32) memory require-
ments and O(N>'? log, N) complexity. Therefore, for
a large number of unknowns N, it always performs
more favorablg than MOM (with an iterative solver),
which has O(N~) complexity and memory requirements.

To demonstrate the dependence of N, on the
relative dimensions of the rectangular scatterer, let
¢ = ya = b, where vy is defined as the “flatness”
parameter of the rectangle (see Figure 5). As shown
in Figure 5 for small v, the rectangle is relatively flat
and becomes more like a plate as y — 0. The constant
in front of N¥? in (20) becomes smaller as y de-
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Figure 6. Memory required for the standard method of moments (MOM) and AIM (surface problems

with expansion order M = 3, grid step & = [, and
triangle’s edge).

creases, and it is thus important to examine the
performance of AIM for flat geometries. Perfor-
mance comparisons between AIM and the iterative
MOM for various flatness parameters # = [ and
rir = 100 are given in Figures 6 and 7. In both
implementations the BiCG solver was used, and it is
clear that AIM is much more efficient than MOM for
large N. As can be concluded from (20) the efficiency
of AIM increases with the flatness of the scatterer,
and for the chosen parameters, AIM is preferrable to
MOM in terms of memory and complexity for about
N > 1500. For larger N the improvement of AIM
over MOM cannot be overemphasized. Moreover, for
relatively flat surfaces, the AIM grid is also flat,
permitting the use of much faster, nearly two dimen-
sional FFTs, which results in a dramatic reduction of
the computational cost.

4. Parallelization of the FFT and
Numerical Results

Profiling the AIM code showed that a very large
portion (up to 75%) of the total CPU time was
consumed by the FFT. Although the AIM system
solution is faster than MOM, the major bottleneck of
the AIM algorithm is filling [S] in (15), a process

rme = 101, where [ is the length of the elementary

which may also utilize the FFT. These observations
were not unexpected and point to a need for paral-
lelization. For general cases the algorithm has been
parallelized via domain decomposition [Bleszynski et
al., 1996], an approach that is better suited for
geometries that contain large sections of free space
between the scatterer and the outer bound of the
AIM grid. As can be realized, domain decomposition
is fairly complicated and difficult to implement. Al-
ternatively, for nearly flat scatterers the FFT is almost
two dimensional, and thus there is little waste in
unknowns since the free-space region is minimal.
Consequently, speedup via parallelization can be
readily achieved by simply parallelizing the FFT
subroutines employed at each iteration step of the
solver.

Our parallelization steps for the FFT were the
following:

1. The array with dimensions n,, n,, n, is distrib-
uted into planes, equally divided among all available
processors of total number p.

2. One-dimensional FFTs are performed along
each of the two dimensions x and y, and this is done
n,/p times for each node concurrently since each
node contains n,/p planes.
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Figure 8. The jagged plate geometry.

3. The array is transposed, while still residing on
all processors.

4. One-dimensional FFTs are then performed
concurrently on all nodes along the third dimension.

5. At this point the transpose of the Fourier
transform is available, and hence an additional trans-
position is required to complete the FFT routine.

Communication time consumption for a transposi-
tion across several processors is significant, and there-
fore in an optimized code any unnecessary transposi-
tion must be avoided. If the FFT output and input
data must be in the same format, though, the data
must be redistributed after the FFT calculation, re-
sulting in a total of two transpositions.

The parallelized version of the code was tested on
the IBM SP2 for the jagged plate geometry of Figure
8. The size of the plate was 3A X 3A X 0.2, implying
a fairly flat FFT grid. We chose a rectangular grid
spacing of 0.05A for all directions and a moment
expansion order of M = 3. For this discretization the
original number of unknowns was N = 3108 and the
number of grid points was N, = 32768. The mono-
static radar cross section (RCS) for this configuration
is plotted in Figures 9 and 10 for the ¢ = 0° cut (0 =
6 = 90°) using 2° steps for both polarizations. Two
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Figure 9. Monostatic radar cross section (RCS) for the jagged plate geometry (¢ polarization).

sets of AIM results are shown: one where the near-
field threshold was ry, = 0.8\ and the other for
Fir = 0.3A. From (16), (17), and (21), both memory
and complexity increase with r,., and thus a smaller

Ty is highly desirable, provided the accuracy of the
solution is maintained. As seen from Figures 9 and 10
the smaller threshold of 0.3 leads to sufficiently
accurate results and can be used to evaluate the
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Figure 10. Monostatic RCS for the jagged plate geometry (6 polarization).
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Table 3. Memory Comparisons for the Scatterer of
Figure 8 With Nonzero Thickness

Table 1. CPU Time Comparisons for the Scatterer of
Figure 8 With Zero Thickness
Total Matrix-Vector Percent of
Number of Time, Product Time, FFT in
Processors hours s Total Time
1 (serial MOM) 22.3 542 0
1 (serial AIM) 292 5.36 70
2 304 5.64 69
4 18.7 3.12 55
8 13.8 2.04 45
16 11.2 1.48 29

performance of the AIM code. Tables 1 and 2 sum up
the CPU time and storage comparisons between AIM
and MOM, where in this case the jagged plate was
assumed to have zero thickness. In terms of memory
the AIM savings are dramatic, especially for smaller
thresholds ry,. In terms of CPU time, each matrix-
vector product of the serial AIM algorithm is compa-
rable to MOM, but significant speedup is gained as
the number of processors is increased. For small but
nonzero plate thickness, though, the advantages of
AIM over MOM become much more impressive. For
a similar jagged plate with nonzero thickness, the
number of RWG unknowns is approximately dou-
bled, resulting in quadruple memory and CPU time
requirements for MOM. On the other hand, since the
number of AIM grid points N, remains the same, the
corresponding AIM CPU time is virtually unaffected,
and even the serial AIM code becomes 4 times faster
than MOM. The AIM storage requirements are only
slightly increased (see Table 3 for the thicker plate),
whereas those of MOM grow beyond the capacity of
conventional computational platforms.

5. Summary and Conclusions

In this paper we demonstrated the use and advan-
tages of the adaptive integral method (AIM) for
scattering by perfectly conducting and relatively flat
but possibly irregular surfaces. The AIM concepts
were specifically presented in a simplified manner for
this geometry, and care was taken to justify certain

Table 2. Memory Comparisons for the Scatterer of
Figure 8 with Zero Thickness

Method Memory, Mb
MOM 71.3
AIM (ry, = 0.84) 28.94
AIM (ryp, = 0.3X) 17.19

Method Memory, Mb
MOM 309.2
AIM (ry, = 0.8)) 74.41
AIM (7, = 0.34) 27.41

mathematical assumptions and details neglected by
Bleszynski et al. [1996]. Our investigation of AIM for
relatively flat scatterers showed that the flat FFT grids
provide dramatic reduction in complexity and mem-
ory requirements, and thus AIM is particularly effi-
cient for such structures. We also developed closed-
form expressions for the CPU time and storage
requirements of AIM and included actual AIM per-
formance data for a parallel version of the AIM
scattering code.

Appendix: The Moments of the Basis

Functions

Here we will demonstrate how the moments de-
fined in (10) can be efficiently calculated using closed-
form expressions, thus avoiding time-consuming nu-
merical integrations.

Let the global coordinate system be denoted by (x,
¥, ), and the vertices i = 1, 2, 3 of a given triangle
have coordinates (x;, y;, z;). By transforming to local
simplex coordinates [Silvester and Ferrari, 1991; Anas-
tassiu, 1997], we have (r, r; are the position vectors to
these points)

r—r;=Q@né+txyn&+ (yaé+yuny

+(zné+ 231k (22)
Fr—r,=r—r;+r; —r, = (X216 +x31m + x5)%

+ (ané+ynn+ywy + CGaé+zuntz)et  (23)
where we have used the notationx,; = x, — x;, y, =

¥, — ¥s5, and z, — z,. To calculate the moments, it is
sufficient to evaluate the integral

0
£ ZJ-J- ANe+ A [T (e + nif'n + nif)dedn
To

g=0

(24)

where Q is the sum of the moment indices and T is
an isosceles triangle of unit lateral side. For example,
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to calculate the x component of M,;,, we let Q = 2 +
1+ 0=3and

;S0 0) _
Ay =221, /\({)1}_x31

rio =0, po =0, pgg =1
Bi0 = %21, By =x31, B =X (25)
u-m’ =X21, H-(‘)?i} = X311, .U-(%) =Xla
P'ﬁ]) =¥, .u.f)"i} = ¥31s H-g{us]} =VY1a

The integral J©) can be evaluated recursively in
the following way: For Q = 0 we have

o MR
i i R (26)

and since the integrand of J'©) is the polynomial

Q+1 0+1

2 2 APy

i=0 j=0

P9 = (27)

it follows that

0+1.0+1
Q) Y
E 2 Ay (1+j+2)

i=0 j=0

J = (28)

Finally, the integrand of J(¢*1) is the polynomial

PO = POE g + iy + w§Y)
0+2 Q+2
=3 3 A vgiy (29)
i=0 j=0
where
A(Q+” e A{Q’ fg‘*l} o )‘{QJ fQ"‘U = A},?)J-‘-f]gﬂj (30)
i>0,j>0
AN =0 i=0orj=<0 (31)
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