Stack Value File: Custom Microarchitecture for the Stack

Hsien-Hsin S. Lee

Advanced Computer Architecture Lab

University of Michigan
Ann Arbor, MI 48109

{linear, msmelyan, tyson} @eecs.umich.edu

Abstract

As processor performance increases, there is a correspond-
ing increase in the demands on the memory system, includ-
ing caches. Research papers have proposed partitioning
the cache into instruction/data, temporal/non-temporal,
and/or stack/non-stack regions. Each of these designs can
improve performance by constructing two separate struc-
tures which can be probed in parallel while reducing con-
tention. In this paper, we propose a new memory organi-
zation that partitions data references into stack and non-
stack regions. Non-stack references are routed to a con-
ventional cache. Stack references, on the other hand, are
shown to have several characteristics that can be leveraged
to improve performance using a less conventional storage
organization. This paper enumerates those characteris-
tics and proposes a new microarchitectural feature, the
stack value file (SVF), which exploits them to improve
instruction-level parallelism, reduce stack access latencies,
reduce demand on the first-level cache, and reduce data bus
traffic. Our results show that the SVF can improve exe-
cution performance by 29 to 65% while reducing overhead
traffic for the stack region by many orders of magnitude
over cache structures of the same size.

1. INTRODUCTION

In order to achieve ever higher performance in micropro-
cessors, we continue to see an increase in complexity of
the microarchitectural designs. To help manage this com-
plexity and achieve designs that function in more restric-
tive time constraints, processor architects have relied more
heavily on a technique of subdividing general structures
into multiple, more specialized structures, which can be
implemented more effectively. Examples include predict-
ing indirect branches using a dedicated history buffer [9]
and speculatively processing loads with good value local-
ity [16]. Memory accesses can be further partitioned into
address regions; examples of such regions include the in-
struction code, literal pool, static data, stack and heap
regions. This partitioning can then be exploited to orga-
nize the cache structure to improve performance. Separate
instruction and data caches are found in almost all proces-
sors, and recently we have seen architectures proposed that
include stack and non-stack caches [10][11], as well as tem-
poral and non-temporal caches [17]. Each of these designs
uses a conventional cache organization and achieves im-
proved performance by enabling parallel accesses to two
cache structures and/or reducing contention in cache line
allocation.

Mikhail Smelyanskiy

Chris J. Newburnt Gary S. Tyson

tPMD Architecture
Intel Corporation
Portland, OR 97124
cnewburn@ichips.intel.com

In this paper we focus on optimizing the performance of the
stack memory references. We propose a structure called a
stack value file (SVF), which is used to exploit the unique
characteristics of stack references. The SVF is a non-
architected register file containing the data near the top
of stack, which would otherwise be held in memory or the
data cache(s). All references to the stack are diverted to
the SVF instead of the L1 data cache.

The contributions of this research are threefold. First, we
perform a detailed evaluation of stack reference character-
istics, including how stack access patterns interact with
conventional cache structures in a sub-optimal manner.
We then propose a new microarchitectural extension (the
SVF) tailored to the reference patterns found in stack ac-
cesses. Finally, we evaluate the performance of our scheme
in comparison to conventional cache designs and parti-
tioned cache structures.

In Section 2, we examine the reference behavior of stack
accesses and motivate the SVF design. Implementation
issues and details of the SVF design are then provided in
Section 3. Section 4 describes the experimental approach
and benchmarks used. Experiments are then presented in
Section 5 to show the performance potential of SVF. This
work is contrasted with related approaches in Section 6.
Section 7 presents conclusions and future work.

2. STACK REFERENCES

Memory accesses fall into several different categories, ac-
cording to the region of memory they access and the ac-
cess method used. The Compaq Alpha processor allocates
memory space for the stack, growing from a system-defined
virtual address down down towards virtual address 0. The
location of the top of stack (TOS) is stored in the stack
pointer (SP) register and identifies the lowest virtual ad-
dress that may contain valid stack data. The middle ad-
dress range above the stack is allocated during compilation
and includes the read-only data region (.rdata), the code
region (.text), and the global data region (.data). Dynam-
ically allocated memory is placed in the heap, which grows
upward from just after the global data region.

With the Compaq Alpha Processor linking and OS reg-
ister conventions, the stack may be accessed by several
means: via the stack pointer, $sp, the frame pointer, $fp,
or through a general purpose register, denoted as $gpr.

Figure 1 shows the breakdown of memory references by
region and access method for the SPEC CPU2000 integer

80%

70%

EIRdata access
OHeap access
M Data thru $gpr
OData thru $gp
1 | |E Stack thru $gpr
DO Stack thru $fp
O Stack thru $sp

60%

50%

40%

30%

S S P
S ES LSS
< QCJ Q(‘U <b¢\

Figure 1: Run-time Memory Access Distribution
for SPECint2000

benchmarks on an Alpha processor. This data is normal-
ized to the total number of memory instructions for each
application. For these applications, an average of 42% of
the instructions executed access memory. Stack references
account for an average of 56% of all memory accesses, while
global data references account for only about 21% and a
majority of the remaining accesses are to the heap. $sp-
relative addressing is the dominant access method to the
stack, accounting for 82% of all accesses to the stack, or
46% of total memory accesses. 252.eon is the single excep-
tion: over 45% of its stack accesses are performed using
a 8gpr. Since stack references are so common and $sp-
relative addressing is the dominant access method to the
stack, a closer examination of the characteristics of $sp-
relative accesses is in order.

$sp-relative accesses are easily identified during instruc-
tion decode. Therefore they can be diverted, very early
in the pipeline, to specialized processing units. Removing
stack references from the general stream of references to
the L1 cache reduces the demand for L1 cache bandwidth
and may enable a reduction in the required portedness, size
and associativity of the L1 cache. Processing stack refer-
ences in parallel with conventional L1 cache references also
increases the effective memory bandwidth, enabling more
instruction-level parallelism. This has been demonstrated
for stack machine architectures in the early CRISP proces-
sor [6] and more recently for conventional architectures in
the stack cache [11].

Since $sp-relative addressing is simple and fast, the addi-
tional pipeline stage often used for complex address calcu-
lations can be avoided, enabling a shorter access latency.
This early address calculation is easily performed for those
references using $sp-relative addressing by using the tech-
niques described in [3], and [5]. While accesses to loca-
tions in a special stack structure using methods other than
$sp-relative addressing (e.g. with pointer accesses) must
be handled, their low relative frequency enables higher la-
tency access methods to be used without causing a signif-
icant performance penalty to the application.

Stack adjustments carry with them semantic assumptions
regarding liveness that can be exploited to significantly
reduce total memory bandwidth. A large fraction of the
transactions between a stack structure or first-level cache
and the second-level cache or main memory can be elimi-
nated by leveraging this semantic information. Loads caused
by writes to newly-allocated stack space can be avoided
since any data fetched is by definition uninitialized and
will be first accessed with a store. Writebacks of dirty
lines that are in the region of memory that has been deal-
located from the stack can also be eliminated since these
memory locations will not be accessed until the stack space
is reallocated with new data.

The SVF is able to rename stack addresses in the same
manner as register renaming logic renames register space,
eliminating anti-dependencies. Stack references are eas-
ier to rename for two reasons. First, the association of
memory references with locations is simple and fast: the
least significant bits of the address generated by adding
the stack pointer and offset are used to directly index into
the SVF. No associative lookups are required. Second, the
choice of which references to rename is simple, namely the
top N locations on the stack. No prediction of locality is
required. In addition, the implemented register renaming
logic for an out-of-order microarchitecture can be reused
for stack reference renaming; thus minimizing the extra
hardware required.

The first notable feature of stack references is that the
working set for almost all applications consists of a single,
contiguous address region. This enables the stack data to
be conveniently stored in a simple, fast structure, without
lots of tags and complex lookup procedures while retaining
high access (hit) rate. Changes in working set addresses are
also easily tracked by tracking explicit changes in the stack
pointer register. Decreasing $sp adds new addresses to the
expected working set, which increasing $sp not only elimi-
nates those locations from the workspace of the application
(temporarily), but more importantly kills the deallocated
values, i.e., it guarantees that the next access is a store.

The next notable feature of stack use is the relative lack
of variation in the stack address region. The top of stack
(TOS) is adjusted at least twice for each procedure invo-
cation (function call and return stack adjustments) and
perhaps more often. However, these changes exactly can-
cel each other, leaving the TOS unchanged after the re-
turn. This leaves the working address range of the stack
determined by the call depth of the application. For non-
recursive applications this is quite limited.

Data was collected for SPECint2000 benchmarks using Al-
pha binaries to show how the stack depth varies over the
lifetime of each program. The TOS address, relative to the
stack base address, was logged each time the stack pointer
is updated. Figure 2 shows graphs that map stack depth
variation over time. The x-axis is execution cycles, start-
ing at the beginning of the program. The y-axis plots the
stack depth, starting from zero (stack base). The basic
data size in the SVF is 64 bits of datal, and this is the
unit of the y-axis, so 1000 units corresponds to 8KB.

! Alpha is a 64-bit architecture.

256.bzip2 186.crafty

252.e0n 254.gap

2000

i I |

1000

500 500

b

2000

1500

1000

2000
1500
1000

i

500

e R

164.9zip 181.mcf

2000

176.gcc 197.parser

2000

1500 1500

1000 1000

500 500

|

2000

1500

1000

500

2000

1500

1000

500

300.twolf 255.vortex

2000

253.perlbmk 175.vpr

2000

2000

1500 1500

1000 1000

500 500

0 0

1500
1000

500 J

0

Figure 2: Examples of Stack Depth Variations (1 billion instructions)

Stack Offset Locality

100 v

90 [

80

70 fo

60

Culmulative percentage of stack accesses

g Sy
- .
50 CE
T -
o
e gap --o- -
40 proe - gzip.graphic ---4--- 7
- o bzip2.program
s parser
30 crafty -
‘ vpr -
gcc.integrate
- perlbmk --o-— |
20 mcf
vortex -+
10 L)) €0n.cook ---e---
10 100 1000 10000
Offset in Bytes

Figure 3: Offset Locality within a Function

There are two observations to be made from this data.
First, a cache of 1000 units is larger than the maximum
stack size for most of the applications. Even though it
seems that 256.bzip2 has some variations larger than 1000
units, we show later that these variations incur very little
overhead. Second, the stack depth is quite stable after
the initialization phase, so the stack addresses mapped to
the cache rarely change over the life of the applications.
For example, in 186.crafty, the most representative active
stack region is [200, 600], or about 400 units, requiring
only a simple (even contiguous!) cache structure to capture
almost all accesses.

Stack references also tend to be reasonably close to the
top of the stack. Figure 3 shows the cumulative distri-
bution within a function of offsets into the stack region
(with the x-axis plotted on a logio scale). Across all of the
SPECint2000 benchmarks, the average distance from TOS
for a stack reference ranges from 2.5 bytes (256.bzip2) to
380 bytes (176.gcc), and over 99% of all references (except
for 176.gcc) are within 8KB of the TOS. Thus spatial lo-

cality with respect to the TOS is excellent. No references
are beyond the top of the stack for these benchmarks. The
graphs illustrate that most stack references are in one con-
tiguous space (between 0 and 300 bytes offset from TOS),
indicating that there is no need for a mechanism flexible
enough to maintain a non-contiguous working set.

The conclusion to be drawn from this data is that an SVF
that is 8KB or less will still capture almost all the stack
references. While this may fail if the the variation in stack
depth is large, the data presented in this subsection and
later, in Section 5, suggests that potential losses due to
managing only a single contiguous region at the top of the
stack, contrasted with a more conventional cache alloca-
tion, are minimal if the SVF is adequately sized.

3. STACK VALUE FILE DESIGN

The stack value file is specifically tailored to optimize the
storage of stack references. The SVF is a register file large
enough to hold those stack locations near the TOS. Ar-
rays with thousands of registers have become reasonable
to build today. The SVF can be more area efficient than
a standard cache design since it needs almost no tag space
and can be direct-mapped instead of associative. It may
also avoid the need for dual-porting the first-level cache.

The SVF is architecturally invisible, leaving the designer
with the freedom to choose an appropriate level of sup-
port for stack references without the constraints of a large
architected register file. References to cacheable locations
allocated in the address range covered by the SVF are di-
verted from the first-level cache as described in Section 3.1,
thus reducing its bandwidth, capacity and associativity de-
mands. $sp-relative references are recognized early enough
to avoid the added latency that general address calcula-
tions require. SVF references are renamed like general-
purpose registers through the register alias table, further
reducing delays and effectively implementing data forward-
ing. Figure 4 shows our re-architected pipeline. Other

I
Fetch i Decode
I
I
i
Instr-Cache = Decoder
i
Pre-Decode 1*_»
offset E

Kl

interlock [

I I
Issue 3 Execute : Commit
- ; ;
g ‘ﬂ ZLds |,
g Q| unit ‘
o | |
S i i
)] i i
2 i i
8 i -
g L‘» Func Unit :
s |
i 1 ArchRF [—
ReOr&ier Buffer -~
I I
: P Stack
1 | Vaue
i i File

Figure 4: Microarchitecture Extension with a Stack Value File Implementation

references to locations in the SVF are detected using a
bounds check. Such references are diverted from the 1st-
level cache at a modest performance penalty, as described
in Section 3.2.

The SVF is a circular buffer, with memory locations mapped
to SVF registers according to the lowest-order address bits.
Changes to the stack pointer are detected, and lead to data
movement to and from the first-level cache as necessary.
Status bits are associated with entries in the SVF to iden-
tify dirty data that needs to be pushed onto the stack.
Valid and dirty bits minimize or delay traffic when a TOS
adjustment or a SVF access miss makes it necessary to up-
date the range of addresses mapped to the SVF. Only one
tag is needed for each of the pages that the SVF spans.
For example, an 8KB SVF needs only three tags for 4KB

pages.

The following subsections describe these new microarchi-
tectural features in greater depth.

3.1 Morphing Stack-Pointer BasedReferences

An extended pre-decode circuit in the fetch stage is used
to identify stack pointer-based memory references and to
determine their immediate offset values. A special adder in
the decode stage enables fast address calculation using this
predecoded information. Prior studies [3][4] have already
demonstrated that similar techniques are viable.

In our design, a pipeline interlock incorporated in the de-
code stage stalls instruction decoding if the stack pointer
is updated in an unexpected manner (i.e. other than in-
crements or decrements by an immediate constant value);
since almost all $sp updates are simply adjustments with
an immediate constant, we can perform these computa-
tions in the decode stage early by keeping a speculative
$sp register copy in the decode stage. All subsequent $sp-
based references fetch $sp content from this speculative
copy to index their SVF register ID. If the branch is cor-
rectly speculated, execution continues. However, if the
branch is mispredicted, then the speculative $sp copy will
be recovered with the value from the architectural $sp be-
fore the pipeline restarts at the correct branch path. All
other $sp updates require a reference to other general pur-
pose registers (except for zero register $r31 in Alpha). In

those cases, the interlock stalls decoding to prevent follow-
ing instructions from reading a stale TOS address.

Once a memory address with £IMM($sp) addressing mode
is computed in the decode stage, the address is checked
against the range of stack memory currently held in the
SVF. Clever implementations can even do the range check
in parallel with the add. If a hit is detected, the instruc-
tion is morphed into a register-move operation and dis-
patched to the reservation station. The low-order bits of
the address are used as the register ID to index into the
SVF. These architecturally-transparent register IDs can be
considered as an extension of general-purpose register IDs.
The hardware register renamer can then rename each ac-
tive SVF register into a corresponding entry in the physi-
cal registers of the reorder buffer. After the dispatch stage,
all the morphed $sp load/store instructions will have been
mapped into register space. Thus dependencies on these
SVF registers are treated just like any regular register de-
pendency.

3.2 StackMemory ReferenceDisambiguation

Since only memory references indexed by the stack pointer
are steered to the SVF, stack data references through other
means, such as the frame pointer or general purpose regis-
ters, must be disambiguated and redirected into the SVF
for data consistency.

For each stack-pointer based reference morphed into the
register move form, two micro operations (uops) are gen-
erated after instruction decoding. One uop is the con-
structed register move (this may be able to be eliminated
with renaming for a store [14]), while the other uop, com-
puting the early resolved stack address, is enqueued into
the Load/Store Queue (LSQ). The uop in the LSQ is used
for disambiguation before the morphed references are com-
mitted to the SVF. If any later load instruction collides
with these uops in the LSQ, as detected by the Memory
Order Buffer (MOB), regular store forwarding will be per-
formed.

All memory instructions that reference the stack memory
region through registers other than the stack pointer have
their addresses checked against the current stack range in
the SVF. The load/store operation is then re-routed to

SVF if a match is detected.

There is one particular circumstance in which a simple
re-routing operation cannot correctly maintain data de-
pendency. This happens because of the relative timing of
when references are determined to access the SVF. When
a store through a general-purpose register is followed by a
colliding load through stack pointer, the load can retrieve
a stale value from the SVF (since the SVF access for the
load occurs earlier in the pipeline). This condition is de-
tected in the LSQ when the store executes. A pipeline
squash, similar to the recovery from a memory ordering
violation, is invoked to avoid a chain of incorrect data de-
pendent instructions. During re-execution, this problem
can be avoided by introducing a redundant dependence
that forces the load to be executed late. The $sp-relative
load is broken into two instructions. The first, designed
to go through the execute stage, performs the address cal-
culation ($sp plus offset). The second, dependent on the
first, performs the load itself, at a time which is guaranteed
to be after the store.

3.3 SVF StatusBits

Each SVF register contains two status bits. The dirty bit
identifies the subset of all locations between the new and
old TOS that need to be written out upon a TOS adjust-
ment to maintain data coherence. The dirty bit is set when
its corresponding SVF register is written, and cleared when
the data is written back. The valid bit indicates whether
locations exposed by a TOS adjustment need to be read.
The valid bit is set when data is written in the SVF, either
upon a write from the processor core or a fill from memory.
It is cleared for locations between the new and old TOS
when the TOS is adjusted (both shrinking and growing).
If an SVF load accesses an invalid register, a load of that
element is performed.

These status bits improve performance for the SVF design
in several ways. First, the dirty bits avoid writing back
clean data. Second, the valid bits avoid a burst of unnec-
essary reads when the stack shrinks. Locations are read
only when needed, like a cache.

The granularity of these status bits is most naturally the
smallest data type that is frequently used. For the Alpha
architecture, this is 64 bits. If the granularity is larger than
this, there will be more memory traffic.

At first glance a caching scheme may seem more advanta-
geous than a contiguous scheme out of concern for penalties
on context switches, but this need not be an issue. The
use of a stack does not necessarily eliminate writebacks of
dirty data on a context switch. Any new process is likely
to displace much of the data in their stack cache. In fact,
per-word valid bits used in the SVF reduce the traffic over
a conventional cache during a context switch. If shown to
be necessary because of localized poor SVF performance,
the SVF can be dynamically disabled for a period of time.

4. EXPERIMENT AL APPROACH

The SPECint2000 benchmark programs are used in this
study. The binaries were compiled using the Compaq Al-
pha compiler with appropriate optimizations enabled. The

input files are either from reference input set or training
input set, as shown in Table 1.

Benchmark [Input |

256.bzip2 ref: graphics & program
186.crafty ref: crafty.in

252.eon cook & kajiya algorithms
254.gap ref.in

176.gcc train: cp-decl.i & ref: integrate.in
164.gzip ref: graphic & program & log
181.mcf ref: inp.in

197.parser ref.in

300.twolf ref

255.vortex ref

253.perlbmk train: scrabbl.in

175.vpr ref

Table 1: SPEC CPU2000 integer benchmark

The simulators used in this research were derived from
the SimpleScalar [8] tool suite, an execution-driven, cycle-
accurate, out-of-order superscalar processor simulator. The
processor simulated adopts a Register Update Unit (RUU)
[19] approach that combines the functionality of a Reserva-
tion Station (RS) and a ReOrder Buffer (ROB). We modi-
fied the pipeline to incorporate our stack value file design.

[Components [4-wide [8-wide [16-wide
Decode width 4 8 16
Issue width 4 8 16
Commit width 4 8 16
IFQ size 16 32 64
RUU size 64 128 256
LSQ size 32 64 128
IL1 cache 8-way 256KB | 8-way 256KB | 8-way 256KB
DL1 cache 4-way 64KB 4-way 64KB 4-way 64KB
IL1 hit 1 cpu clk 1 cpu clk 1 cpu clk
DL1 hit 3 cpu clks 3 cpu clks 3 cpu clks
Unified L2 4-way 512KB | 4-way 512KB | 4-way 512KB
L2 hit 16 cpu clks 16 cpu clks 16 cpu clks
Mem latency 60 cpu clks 60 cpu clks 60 cpu clks
CPU-Mem clk ratio 6:1 6:1 6:1
Store forwarding 3 clks 3 clks 3 clks
Int/FP ALU 16 16 16
Int/FP Mult 4 4 4

Table 2: Processor Models.

The machine models used in our experiments are summa-
rized in Table 2. It is worth noting that the store forward-
ing latency used in all of our experiments is 3 cycles. As
a result, the L1 cache hit latency is also 3 cycles. These
match our measurements of the actual latency on the Intel
Pentium III processor, including cache latency and store
forwarding delay in the pipeline. L1 cache accesses are
fully pipelined.

In order to demonstrate the performance potential of our
scheme and to reduce the performance interference from
the front-end, we use a perfect branch predictor as well as
a fairly large and fast first-level instruction cache.

5. PERFORMANCE EVALUATION

In this section, we provide data to show how the character-
istics of stack references can be effectively exploited with
a stack value file to alleviate L1 cache bandwidth conges-
tion, reduce latency for stack memory references, reduce
the memory traffic for the memory subsystem, and ulti-
mately improve execution performance.

R o &S S S &
@ F IS T F SIS Y
A SO § & ¥
F Q?q* A ¢

¢

[m4-wide m8-wide O 16-wide O 16-wide (gshare)|

Hierarchical speedup
°c o o o o =
5 &§ 8 & & &
< I=—————————— =g
T —
Y —
T —
e ———
e ———
e ———
e ——
e ———
e ———
e ———
e ——
e ——

=) P N & & @ ¢ &S F S
§ ef & &S S o & F Q_\c bfé‘ ¢ &S S) éq,@
& FO S & & P & RO S
% & & & Q) > X <& ¥
o8 N & & @ @Q

[mBaseline mBaseline 2x cache) Ono_addr_calc_op O 1portSVF 02portSVF M 16portSVF |

Figure 5: Speedup Potentials of Morphing All
Stack Accesses to Register Moves

5.1 Impr oving CacheBandwidth, Latency and ILP
The primary benefits of treating stack references separately

from all other memory references are the opportunities the
SVF provides for:

e exploiting more instruction-level parallelism with the
existing physical registers in the RUU and additional
SVF ports for stack references

e disambiguating stack references through existing reg-
ister alias table

e eliminating the stack references on the data cache
ports

The latency of the stack references can be reduced if the
SVF entries can be accessed like registers. The gains from
these improvements are quantified in Figure 5. This figure
demonstrates the potential performance gains from imple-
menting an SVF with infinite size and SVF ports for var-
ious generations of processors, assuming all the stack ref-
erences can be morphed into register-to-SVF moves. The
first three bars show average speedups of 11%, 19%, and
31% for a 4-wide, 8-wide and 16-wide machines respec-
tively, with a dual-ported first level data cache and a per-
fect branch predictor.

The 4-, 8 and 16-wide speedups are all relative to a base-
line with a perfect branch predictor. The last column
shows 16-wide speedups with gshare, relative to a base-
line with gshare. The average speedup is 25%. Some cases
show a greater speedup with gshare. In these cases, SVF’s
latency-shortening benefits allow branches to be resolved
early, reducing the branch misprediction penalty. However,
the more realistic branch prediction of gshare reduces the
effective basic block size, reducing the potential stack par-
allelism and leading to a smaller average gain than for the
perfect prediction case.

5.2 Progressve Performance Analysis

Figure 6: Progressive Performance Analysis

To understand the performance gain in a quantitative man-
ner, Figure 6 shows progressive performance improvements
under different constraints for a 16-wide machine. Starting
from the baseline machine model described in Table 2, we
relax the machine constraints for each bar in the figure.

First, the L1 data cache size is doubled (from 64KB to
128KB?) without increasing the access latency. As shown
in Figure 6, the speedups from enlarging L1 size for all
the SPECint2000 benchmarks are negligible. In the next
configuration, we remove address computation instructions
for all stack references (denoted as no_addr_cal op in the
graph), thereby eliminating their dependencies. This de-
pendency reduction benefits some benchmarks such as 256.
bzip2, which improves by 11%. Since our processor model
supports out-of-order execution with a 256-entry RUU, the
address calculation can be easily hidden by other indepen-
dent instructions, and the overall speedup is only 3%. This
observation concurs with the results reported in [4] where
their zero-cycle load technique posted significant gains only
for in-order machines.

Most of the performance boost comes from the implemen-
tation of the stack value file, posting an additional improve-
ment of 28% for a 16-port SVF. We show the speedups of
a SVF with 1, 2 and 16 ports. A dual-ported SVF on a
16-wide machine (which gives an incremental gain of 27%)
performs almost on par with a 16-ported SVF for most of
the SPECint2000 benchmarks. This suggests that a lim-
ited number of ports covers most of the potential gain,
except for 252.eon and 176.gcc. These two benchmarks
seem to have many more clustered stack references that
lie on the critical path of the performance. A larger num-
ber of SVF ports accommodates this bursty stack reference
parallelism.

5.3 SVFvs. Stack Cache

5.3.1 Performance
A related approach, the decoupled stack cache [11], is com-
pared against our SVF scheme along with the baseline

For the rest of the configurations in Figure 6, the L1 data
cache size remains at 64KB.

180

160

1.40

1.20 4] 7—" - S ,— 1
1.00 1ol H H
050 {lilH H H
o060 1IH H H
040 {lIH H H
020 {ilH H H
000 LTI T TR .
&

CEP I L LPFILPF S P T8
& & d§. & O?Q&,bé@ Q&\\@Q\.QS\&& @Qé -@‘A&@@Q@@Q}ég

N

§ RN ¢
M AR A

|Z Basdline (2+0) W StackCache (2+2) O SVF (2+2) MISVF (2+2) no_squash 0 Baseline (4+0) |

Orerouted_svf_st
M rerouted_svf_ld
Ofast_svf_st
Wfast_svi Id

Figure 7: Comparison of different cache implemen-
tations

microarchitecture. The stack cache is implemented as a
direct-mapped cache and has the same capacity (8KB) as
our stack value file (1024 entries x 8 bytes). Figure 7
shows the comparison of the SVF, stack cache and base-
line approach with different port combinations. The (R+S)
symbol represents the configuration with “R” regular L1
cache ports and “S” SVF or stack cache ports. The (4+0)
configuration uses a longer data cache hit latency (4 cy-
cles instead of 3 cycles) than (2+8S)’s because of the larger
number of ports. The performance numbers of the SVF
scheme were generated by an actual implementation de-
scribed in Section 3.

The baseline (4+0) might be expected to outperform the
(2+2) because the four universal L1 data cache ports in
(440) can service four concurrent memory references, no
matter which memory regions these references are going to,
whereas two memory references out of the (2+2) must be
from stack, otherwise the ports are left unused. However,
in several cases, the SVF scheme outperforms the more
flexible configuration, yielding a 4% improvement overall.
One reason is the longer latency in (4+0). The other is
that input data of instructions on the critical path can be
directly read from the physical registers in the RUU, in-
dexed through the register alias table. Even though the
store-forwarding mechanism exists in a conventional mi-
croarchitecture, yet it will take some cycles (3 in our case)
to poll for a hit in the LSQ.

There is one anomaly, 253.perlbmk, where the stack cache
(242) runs a little bit slower than the baseline (2+0). We
found that the stack cache misses dominate the critical
path and the working set of stack data does not fit into the
stack cache although it fits into L1 cache for the baseline
architecture.

Figure 7 also shows that the (2+2) SVF implementation
outperforms the (2+2) stack cache scheme with one excep-
tion, 252.eon. In eon, we found that a large number of load
squashes occur due to stores through $gpr followed by loads
through $sp where these references map to the same stack
addresses. As discussed in Section 3.2, these squashing

Figure 8: Breakdown of SVF Reference Types

activities can be eliminated using a different code genera-
tor tailored for the SVF implementation. By applying this
optimization, represented by the no_squash bars, we can
greatly improve the performance of the 252.eon, making it
outperform the stack cache scheme by over 30%. Without
the no_squash code optimization, the SVF outperforms the
stack cache by roughly 9%, and with the no_squash feature
the average is 14%.

Figure 8 shows the breakdown of the SVF references. The

fast SVF loads and stores are the references that were di-
rectly morphed in the front-end pipeline. References that
are not $sp-relative need to be rerouted into the SVF after
their addresses are calculated. On average, around 86%
of stack references can be directly morphed into register
moves in the front-end, while 14% of them are re-routed
into the SVF.

5.3.2 MemoryTraffic

The main performance difference between the SVF and a
stack cache arises from the exploitation of the semantic in-
formation inherent in adjustments to the stack pointer. Be-
cause the region of memory contained in the SVF is guar-
anteed to be contiguous, some assumptions can be made
that cannot be made for a stack cache:

1. Allocations: A new allocation made as the stack grows
down for a SVF implies that the data must be invalid.
No such assumption can be made for a stack cache,
since the data may have already been written and
replaced. Thus a stack cache must read the rest of
the line before data can be written.

2. Dirty Replacements: When locations are replaced as
the stack shrinks for the SVF, they are semantically
guaranteed to be dead, and need not be written back.
No such assumption can be made for a stack cache,
and the line must be written back.

Table 3 summarizes the in (read) and out (write) memory
traffic incurred for our SVF design and a stack cache de-
sign, for different SVF and cache sizes. The stack cache’s

size 2KB /KB 3KB

Quad Words In__ | Quad-Words Out Quad Words In_| Quad Words Out Quad-Words In__| Quad Words Out
Benchmark Stack § | SVF | Stack § [SVF Stack § | SVF | Stack § | SVF Stack § | SVF | Stack § | SVF
bzip2.graphic 1350700 41 403604 | 14355 452848 3 101124 | 14333 744 3 0 0
bzip2.program 770608 44 289096 8558 434992 3 109684 8536 756 3 0 0
crafty.ref 45811024 5 6634372 31 572 5 72 0 556 0 0 0
eon.cook 85730448 0 | 37119416 101 677452 0 16180 32 1568 0 532 0
eon kajiya 33019440 0 | 23431164 101 | 12512884 0 | 11544940 32 905544 0 446440 0
gap.ref 103148 66 175880 4905 130148 115 125564 5832 118232 48 116344 0
gce.cp-decl 17523908 520 | 11472364 | 85939 | 13323984 520 8756656 | 30949 6783056 520 5274116 | 1177
gce.integrate 30826224 91 | 20421952 | 56969 | 27320584 01 | 18086172 | 22152 | 22657988 01 | 15272032 | 2382
gzip.graphic 296 38 176 0 144 0 0 0 144 0 0 0
gzip.log 296 38 176 0 144 0 0 0 144 0 0 0
gzip.program 324 41 200 0 148 0 0 0 148 0 0 0
mcf.inp 220 19 40 0 204 0 0 0 204 0 0 0
parser.ref 76980 | 15876 76108 13 592 0 80 0 592 0 0 0
twolf.ref 2989324 233 2762202 0 652 25 188 0 564 0 0 0
vortex.ref 088 53 712 0 488 53 44 0 480 0 0 0
perlbmk.scrabbl 99116 55 89508 | 49377 89948 36 81112 | 49429 79312 36 78812 0
vpr.ref 1432 0 1104 652 0 152 0 644 0 0 0

Table 3: Memory Traffic for Stack Cache and SVF schemes

memory traffic is caused by compulsory, capacity, and con-
flict misses, along with dirty writebacks, which generate
traffic between the stack cache and the L2. The SVF’s
traffic to the L1 only occurs on demand, for dirty and
live data. For instance in 256.bzip2 with a 2KB stack
cache, about 1.35 million quad-words were allocated into
the stack cache and 0.49 million quad-words were evicted
due to dirty replacements. In contrast, the SVF read in
only 41 quad-words and wrote out 14,355 quad-words. In
most of the scenarios, the SVF dramatically reduces traffic
by many orders of magnitude. As aforementioned, this is
because the SVF transfers dirty data in a finer granularity
and requires no load on write misses. In addition, the SVF
does not write the deallocated stack frame out to memory
as data on deallocated stack frame are semantically dead.

5.3.3 Contet Switdhes

Upon a context switch, there is likely to be an increase
in memory traffic for either a stack cache or the SVF, be-
cause both have to write back dirty data as the new process
displaces the current process’s data. Since both the stack
cache and the stack value file are small, a large percent-
age of their locations are likely to be replaced soon after
the context switch. One might then anticipate significant
writeback traffic soon after the context switched occurred.

2.60

DI l

> & o b & & £ & LN &
F IS IFFT R ITFSIS &S 3
S & E pry &S TS TS T TS é«"‘&@‘
97 R & & T e <
& @QW ¢ &

‘El(l+l]/(l+0) W (1+2)/(1+0) O(2+2)/(2+0) W(2+3)/(2+0) D[2+4]/(2+0]‘

Figure 9: Performance Improvements over Base-
line Microarchitecture

The SVF has less traffic to the L1 on a context switch than

[Benchmark | Stack Cache | Stack Value File |

256.bzip2 83 33
186.crafty 1040 201
252.eon 7053 740
254.gap 830 64
176.gcc 4235 188
164.gzip 3 1
181.mcf 477 153
197.parser 1253 66
300.twolf 727 248
255.vortex 7 2
253.perlbmk 571 134
175.vpr 800 87

Table 4: Memory Traffic on Context Switches

a stack cache has to the L2. This is because the SVF in-
validates deallocated stack frames, leaving fewer valid and
dirty bytes to write back. Furthermore, the SVF’s dirty
bits have a finer granularity than those of the stack cache.
The SVF’s contiguity eliminates the need for a tag on each
line, and more dirty bits can be used instead. Thus while
a stack cache needs to write back a whole line when one
word is dirty, the SVF writes back only a 64-bit block.
Table 4 quantifies the bytes of traffic for both stack cache
and stack value file, averaged over total number of context
switches with the context switch period of 400000 instruc-
tions. Writeback traffic for the stack cache in the case
of eon is about 7000 bytes per context switch on average,
which is about 10 times more then in the case of stack
value file. The table illustrates that write back traffic for
the stack value file is 3 to 20 times smaller than the write-
back traffic for the stack cache.

5.4 SVF Performance

Finally, the speedups measured for the actual SVF im-
plementation versus a baseline machine are illustrated in
Figure 9. The execution speedup measured for both single-
ported and dual-ported data caches are shown. The aver-
age performance improvement for adding a single-ported
SVF to a single-ported data cache is 50%. Most cur-
rent processors incorporate dual-ported data cache designs.
However, low-cost/low-power or embedded processor de-
signs may leverage a large single-ported data cache with a
small double-ported stack value file to reduce both cost and
power dissipation while improving overall performance.

When the SVF is dual ported, improvement climbs to

65%. For most of the benchmarks, performance is satu-
rated when two SVF ports are supported, except for 252.eon,
which continues to improve its performance as the num-
ber of SVF ports are increased. Improvements are lower
for cache designs supporting dual-ported first level data
caches since port contention is reduced; however, adding
an SVF still yields significant additional improvement. For
a reasonable configuration with a dual-ported SVF added
to a dual-ported data cache, performance improves by an
average of 24% over a conventional microarchitecture with
a maximum performance improvement of 84% for 252.eon.

6. RELATED WORK

Techniques for fast procedure calls [15] were broadly stud-
ied in the 1980’s when CISC machines were still in the lime-
light. The overheads of saving and restoring the register
file associated with each procedure call were rather signif-
icant [13]. Many prior commercial and research micropro-
cessors had tried to address this issue at extra hardware
cost.

The HP3000 Series II [7], a stack-oriented architecture de-
signed by Hewlett-Packard in the late 70’s, used a 4-entry
top-of-stack (TOS) cache as an extension to stack mem-
ory. The CRISP [12] and Hobbit [2] processors, developed
at Bell Labs adopted a complete memory-to-memory in-
struction set architecture with few addressing modes to
avoid the overheads of procedure calls. The design off-
loads the burden of register allocation on the top of the
stack from the compiler to the hardware by incorporating
a small stack cache (32 entries). The processors index the
stack cache on-the-fly using the low-order bits of the ref-
erenced address. The stack cache was the processors’ only
data cache.

Register windows [21] or the register stack engine (RSE) [1]
are used in some of today’s high-performance microproces-
sors to eliminate the overhead of procedure calls and re-
turns. Extra instructions may be needed, e.g. save and
restore in SPARC-V9 or alloc in TA-64. This general ap-
proach is part of the architecture, not just the implemen-
tation.

There have been several proposals for early address res-
olution to improve memory instruction latencies. These
techniques enable our SVF design by providing a mecha-
nism for early address resolution. Austin, Pnevmatikatos
and Sohi [3] introduced a fast address resolution scheme by
predicting effective addresses early in the pipeline. They
found that with simple compiler and linker support, the
prediction accuracy ranges from 62 to 99%. In [4], Austin
and Sohi proposed and evaluated pipeline designs to sup-
port zero-cycle loads. Although the speedups are encour-
aging for in-order processors, the speedups for latency-
tolerant out-of-order processors are generally less than 10%.
In [5], Intel researchers proposed a technique dubbed regis-
ter tracking for early memory address resolution for opera-
tions of the form reg+imm in the front-end pipeline. They
demonstrated that this technique reduces load-to-use la-
tencies to the data cache by experimenting a deep pipeline
which contains 8 stages between decode and execution.

The number of cache ports becomes more crucial as pro-

cessors’ issue widths get wider and they have more aggres-
sive and accurate multiple branch prediction mechanisms.
In more recent work [11], Cho, Yew and Lee proposed a
data-decoupled architecture that partitions memory refer-
ences into different streams and feeds them through de-
coupled memory pipelines for execution. They studied the
performance impact of decoupling local variables allocated
on the run-time stack [11]. They concluded that a small
2KB local variable cache (LVC) achieves a 99% hit rate for
most of the SPEC95 benchmark programs and as a result,
leave more headroom for data cache bandwidth. In their
follow-up work [10], they introduced the notion of access
region locality and proposed an access region prediction ta-
ble (ARPT) in the fetch stage to predict which region an
instruction is referencing. In the decode stage, the memory
operation is directed into the predicted region pipeline for
future processing.

Tyson and Austin [20] devised a mechanism that performs
memory renaming dynamically to reduce memory traffic.
A memory dependency predictor is used to predict the re-
lationship of a producer (stores) and a consumer (loads).
The predictor uses this information to index a non-architected
value file for loads. They employ a confidence mechanism
to control the prediction. Their simulation shows 16% per-
formance improvement in average.

Rivers et al. [18] identified limitations of existing multi-
ported cache designs and proposed a Locality-Based Inter-
leaved Cache (LBIC) that multi-ports a line buffer instead
of the entire cache bank to exploit the spatial locality of a
cache line while reducing the cost of building a true multi-
ported cache.

7. CONCLUSIONS

In this paper, we perform a detailed analysis of stack refer-
ence behavior identifying several unique characteristics in
how the stack is accessed. These characteristics led us to
propose a new microarchitectural enhancement, the stack
value file, designed to optimize the stack references induced
by high-level language conventions.

The contributions of this research are threefold:

1. We identify several characteristics of stack references
that differ from general data references. These in-
clude: a single contiguous access region (eliminating
the need for tags), a much higher percentage of first
reference store operations (making per word valid
bits attractive), frame deallocation invalidates dirty
data above the new TOS (making writebacks unnec-
essary), and most references use a single $sp-relative
address mode (making fast address calculation feasi-
ble).

2. We propose a new microarchitectural structure, the
SVF, to exploit those characteristics and show how
it can be integrated into existing processor pipelines
to improve cache access latency and reduce memory
traffic requirements.

3. We evaluate our scheme, comparing it to the best-
performing previous cache-oriented approaches to par-
titioning stack references. These results show that a

SVF can obtain a 24% average improvement for con-
ventional microarchitectures, while significantly re-
ducing memory overhead traffic over split stack/non-
stack caches.

Furthermore, our microarchitecture design transforms stack-
pointer based memory accesses into moves between reg-
isters. This increases exploitable instruction-level paral-
lelism by adding ports, off-loading bandwidth from the
first-level data cache, and reducing the latency of the ac-
cess. For a 16-wide machine, this increases performance
by an average of 31% for an SVF of infinite size and ports
for the SPECint2000 benchmarks.

Overall, these performance results make the stack value file
an attractive design option, boosting performance without
significant increases in area or complexity. The die area
allocated to the SVF can be reallocated from space that
otherwise would’ve gone to a larger first-level cache. The
SVF is direct-mapped, can be single-ported, and can easily
be banked. It uses almost no tag area, unlike its cache
counterpart.

The additional complexity for the SVF is quite limited.
$sp-relative stack references are identified easily, and re-
quire little special handling. References to the stack with-
out an $sp-relative addressing mode are infrequent, so the
added recovery cost is reasonably amortized. Cache tag
space is eliminated in preference to a per word valid bit,
resulting in little or no additional data storage overhead
relative to a stack cache implementation.

For a deeper pipelined processors, our technique should de-
liver increasing performance gain as the value of early ad-
dress computation is increased. Our next research project
will be to extend this analysis to the x86 architecture with
its increased reliance on the stack region and its use of
partial word references.

8. ACKNOWLEDGEMENTS

This work was supported by NSF Career Grant MP-9734023,
an Intel Foundation Fellowship and grants from IBM.

9. REFERENCES
[1] TA-64 Application Developer’s Architecture Guide. Intel
Literature Centers, 1999.

[2] P.V. Argade, S. Aymeloglu, A.D. Berenbaum, M.V.
DePaolis, R.T. Franzo, R.D. Freeman, D.A. Inglis,
G. Komoriya, H. Lee, T.R. Little, G.A. MacDonald, H.R.
McLellan, E.C. Morgan, H.Q. Pham, and G.D. Ronkin.
Hobbit: A High-Performance, Low-Power Microprocessor.
In Proceedings of COMPCON Spring, 1993.

[3] Todd M. Austin, Dionisios M. Pnevmatikatos, and
Guri S. Sohi. Streamlining Data Cache Access with Fast
Address Calculation. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
1995.

[4] Todd M. Austin and Guri S. Sohi. Zero-cycle Loads:
Microarchitecture Support for Reducing Load Latency. In
Proceedings of the 28th Annual International Symposium
on Microarchitecture, 1995.

[5] Michael Bekerman, Adi Yoaz, Freddy Gabbay, Stephan
Jourdan, Maxim Kalaev, and Ronny Ronen. Early Load
Address Resolution Via Register Tracking. Proceedings of

(14]

(15]

(16]

(17]

18]

the 27th International Symposium on Computer
Architecture, 2000.

A. D. Berenbaum, D. R. Ditzel, and H. R. McLellan. An
Introduction to the CRISP Architecture. In Proceedings
of the Spring COMPCON, 1987.

Russell P. Blake. Exploring a Stack Architecture. IEEE
Computer Magazine, May 1977.

Doug C. Burger and Todd M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical Report 1342, Computer
Science Department, University of Wisconsin-Madison,
1997.

Po-Yung Chang, Eric Hao, and Yale Patt. Target
Prediction for Indirect Jumps. In Proceedings of the 30th
Annual International Symposium on Computer
Architecture, 1997.

S. Cho, P-C. Yew, and G. Lee. Access Region Locality for
High-Bandwidth Processor Memory System Design. In
Proceedings of the 32nd International Symposium on
Microarchitecture, 1999.

S. Cho, P-C. Yew, and G. Lee. Decoupling Local
Variables Accesses in a Wide-Issue Superscalar
Processors. In Proceedings of the 26th International
Symposium on Computer Architecture, 1999.

David R. Ditzel and H. R. McLellan. Register Allocation
for Free: The C Machine Stack Cache. In Proceedings of
1st International Symposium on Architectural Support for
Programming Languages and Operating Systems, 1982.

Joel Emer and Doug Clark. A Characterization of
Processor Performance in the VAX-11/780. In Proceedings
of the 11th Annual International Symposium on
Computer Architecture, 1984.

S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and
A. Yoaz. A Novel Renaming Scheme to Exploit Value
Temporal Locality through Physical Register Reuse and
Unification. In Proceedings of 81st Annual International
Symposium on Microarchitecture, 1998.

Butler W. Lampson. Fast Procedure Calls. In Proceedings
of 1st International Symposium on Architectural Support
for Programming Languages and Operating Systems,
1982.

Mikko H. Lipasti, Chris B. Wilkerson, and John Paul
Shen. Value locality and local value prediction. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1996.

Jude A. Rivers and Edward S. Davidson. Reducing
Conflicts in Direct-mapped Caches with a
Temporality-based Design. In Proceedings of the 1996
International Conference on Parallel Processing, 1996.

Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, and
Todd M. Austin. On High-Bandwidth Data Cache Design
for Multi-Issue Processors. In Proceedings of the 30th
Annual International Symposium on Microarchitecture,
1997.

Guri Sohi and Sriram Vajapeyam. Instruction Issue Logic
for High-Performance Interruptable Pipelined Processors.
Proceedings of 14th Annual International Symposium on
Computer Architecture, 1987.

Gary Tyson and Todd Austin. Improving the Accuracy
and Performance of Memory Communication Through
Renaming. In Proceedings of 30th Annual International
Symposium on Microarchitecture, 1997.

David L. Weaver and Tom Germond. The SPARC
Architecture Manual. SPARC International, Inc., 1994.

