
Approximate Nearest Neighbors and the Fast
Johnson-Lindenstrauss Transform

Nir Ailon
∗

Department of Computer Science
Princeton University

nailon@cs.princeton.edu

Bernard Chazelle
†

Department of Computer Science
Princeton University

chazelle@cs.princeton.edu

ABSTRACT
We introduce a new low-distortion embedding of `d

2 into

`
O(log n)
p (p = 1, 2), called the Fast-Johnson-Lindenstrauss-

Transform. The FJLT is faster than standard random pro-
jections and just as easy to implement. It is based upon
the preconditioning of a sparse projection matrix with a
randomized Fourier transform. Sparse random projections
are unsuitable for low-distortion embeddings. We overcome
this handicap by exploiting the “Heisenberg principle” of
the Fourier transform, ie, its local-global duality. The FJLT
can be used to speed up search algorithms based on low-
distortion embeddings in `1 and `2. We consider the case
of approximate nearest neighbors in `d

2. We provide a faster
algorithm using classical projections, which we then further
speed up by plugging in the FJLT. We also give a faster
algorithm for searching over the hypercube.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms

Keywords
Johnson-Lindenstrauss dimension reduction, Approximate
nearest neighbor searching, Fourier transform, High-dimensional
geometry

∗This work was supported in part by a Charlotte Elizabeth
Procter Honorific Fellowship from Princeton University.
†This work was supported in part by NSF grants CCR-
998817, 0306283, ARO Grant DAAH04-96-1-0181.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

1. INTRODUCTION
By the Johnson-Lindenstrauss lemma [25,27,31], n points

in Euclidean space can be projected down to k = O(ε−2 log n)
dimensions while incurring a distortion of at most 1 + ε in
their pairwise distances. To achieve this requires a dense
k-by-d matrix; and so mapping each point takes O(d log n)
time (for fixed ε). Is that optimal? A lower bound of Alon [3]
dashes any hope of reducing the number of rows (as a func-
tion of n), so the obvious question is whether the matrix can
be made sparse.

Achlioptas [1] has shown that the density can be reduced
by a constant factor, but one cannot go much further be-
cause a sparse matrix will typically distort a sparse vector.
To prevent this, we use a central concept from harmonic
analysis known as the Heisenberg principle (so named be-
cause it is the key idea behind the Uncertainty Principle): A
signal and its spectrum cannot be both concentrated. With
this in mind, we precondition the random projection with
a Fourier transform (via an FFT) in order to isometrically
enlarge the support of any sparse vector. To prevent the
inverse effect, ie, the sparsification of dense vectors, we ran-
domize the Fourier transform.

The result is the Fast-Johnson-Lindenstrauss-Transform:
a randomized FFT followed by a sparse projection. The
FJLT shares the low-distortion characteristics of a random
projection but with a lower complexity. It embeds `2 into
`p, for p = 1, 2. The running time of the FJLT is O(d log d+
min{dε−2 log n, εp−4 logp+1 n}), which outperforms the
O(dε−2 log n) complexity of its predecessors. Note that for
`1, the running time has the simpler form of O(d log d +
ε−3 log2 n).

The FJLT can be used to speed up search algorithms
based on low-distortion random projections. We consider
the case of approximate nearest neighbors in `d

2. Given a set
P of n points, an ε-ANN query x asks for a point p ∈ P
no more than 1 + ε times away from x than its nearest
neighbor. This problem has received considerable atten-
tion lately. There are two good reasons for this: (i) ANN
boasts more applications than virtually any other geometric
problem [24]; (ii) allowing a small error ε makes it possible
to break the curse of dimensionality. We present two new,
faster ANN algorithms. Note that both of them contain
additional improvements, independent of FJLT.

• One works for `d
2. It stores n points in Rd and answers

any ε-ANN query in O(d log d+ε−3 log2 n) time, while

using nO(ε−2) storage. The solution is faster than its
predecessors (at least for subexponential n) and con-

siderably simpler.

• The other works for the Hamming cube. It stores n
points in the d-dimensional Hamming cube {0, 1}d and
answers any ε-ANN query in O((d + ε−2 log n) log d)

time, while using d2nO(ε−2) storage. This improves on
the best previous query time of O((d log d)ε−2 log n)
[30].

1.1 Comparison with previous results
Following Johnson and Lindenstrauss’s seminal paper [27],

researchers suggested variants and simplifications of their
design and/or proof. Frankl and Maehara [18] considered
projections onto random orthogonal vectors. Independently,
Dasgupta and Gupta [14] and Indyk and Motwani [26] greatly
simplified the original proofs. Achlioptas [1] proved that, in-
stead of Gaussian matrices, random±1-matrices can be used
for JL. He also showed how to obtain a constant speedup
by making roughly a 2/3 of the matrix null. His motiva-
tion was to make random projections easier to use in prac-
tice. Bingham and Mannila [7] also considered sparse pro-
jections heuristics for dimension-reduction based algorithms,
and noticed that in practice they seem to give a consider-
able speedup with little compromise in quality. The FJLT
also relies on matrix sparsity, but to make the scheme prov-
ably work, we precondition the projection with a random-
ized Fourier transform: this is, to our knowledge, a new idea
in the context of JL embeddings.

There is an abundant literature on (approximate) nearest
neighbor searching [4–6,8,11–13,16,21,23,24,26,29,30,32,34,
35]. The early solutions typically suffered from the curse of
dimensionality, but the last decade has witnessed a flurry of
new algorithms that “break the curse” (see [24] for a recent
survey). A few milestones deserve special mention in the
context of this paper. Kleinberg [29] gave two algorithms
for ANN in `d

2. The first one runs in O((d log2 d)(d + log n))
time but requires storage exponential in d. The second one
runs in O(n+d log3 n) time, improving on the trivial O(nd)
algorithm, and requires only O(dn polylog n) space. Both
algorithms are based on the key idea of projection onto ran-
dom lines, which was used in subsequent results as well as
in this paper.

The first algorithms with query times of poly(d, log n, ε−1)
and polynomial storage (for fixed ε) were those of Indyk and
Motwani [26] and Kushilevitz, Ostrovsky, and Rabani [30].
The first reference describes a reduction from ε-ANN to ap-
proximate point location in equal balls (ε-PLEB) for `d

2 (as
well as other metric spaces). The ε-PLEB problem is that
of outputting a point p ∈ P such that ‖x − p‖2 ≤ r for
some r > 0 if such a point exists, and null if all points p
satisfy ‖x− p‖2 > (1+ ε)r. Based on a new space decompo-
sition (of independent interest), Indyk and Motwani showed
how to reduce an ε-NN query to O(log2 n) queries to an ε-
PLEB oracle, a reduction later improved to O(log(n/ε)) by
Har-Peled [19]. The PLEB reduction can be thought of as
a way of performing a binary search on the (unknown) dis-
tance to the nearest neighbor, while overcoming the possible
unboundedness of the search space (we overcome this prob-
lem by using a different, simpler technique). One approach
to PLEB is to use LSH (locality-sensitive hashing [26]),

which requires O(n1/(1+ε)) query time and near-quadratic
(for small ε) storage. Another approach is to use dimen-
sion reduction techniques: using the methods of [19,22,26],

this provides a query time of O(ε−2d log n) with nO(ε−2)

storage. We mention here that the dimension reduction
overwhelms the running time of the algorithm: to remedy
this was, in fact, the initial motivation for our work on the
FJLT. Kushilevitz et al. [30]. described an ingenious (but
intricate) reduction from `d

2 to the Hamming cube, which re-
sults in O(ε−2d2polylog n) query time and polynomial stor-
age (again, for fixed ε). Our solution is faster than its pre-

decessors (at least for n = 2O(εd)) and considerably simpler.
ANN searching over the Hamming cube does not suffer

from the “unbounded binary search” problem. Kushilevitz
et al. [30] gave a random-projection based algorithm with a
query time of O((d log d)ε−2 log n)—an extra log log d factor
can be shaved off [10]. We improve the running time of
their algorithm to O((d + ε−2 log n) log d), which is the best
to date (using polynomial storage). Again, we show how to
optimize the dimension reduction step in their algorithm,
but this time over GF (2).

2. THE FAST JOHNSON-LINDENSTRAUSS
TRANSFORM

The transform (denoted FJLT) is a random distribution
of linear mappings from Rd to Rk, where the embedding
dimension k is set to be cε−2 log n, for some large enough
constant c = c(p) Recall that p ∈ {1, 2} refers to the type of
embedding we seek: `d

2 7→ `k
p.

We may assume w.l.o.g. that d = 2m > k. We will also as-
sume that n ≥ d and d = Ω(ε−1/2) (otherwise the dimension
of the reduced space is linear in the original dimension).

A random embedding Φ ∼ FJLT (n, d, ε, p) can be ob-
tained as a product of three real-valued matrices: Φ =
PHD. The matrices P and D are random and H is de-
terministic:

• P = k-by-d matrix whose elements are independent
mixtures of 0 with an unbiased normal distribution of
variance q−1, where

q = min

Θ

„
εp−2 logp n

d

«
, 1

ff
.

More precisely, Pij ∼ N(0, q−1) with probability q,
and Pij = 0 with probability 1− q.

• H = d-by-d normalized Hadamard matrix:

Hij = d−1/2(−1)〈i−1,j−1〉 ,

where 〈i, j〉 is the dot-product of the m-bit vectors i, j
expressed in binary.

• D = d-by-d diagonal matrix, where each Dii is drawn
independently from {−1, 1} with probability 1/2.

The Hadamard matrix encodes the discrete Fourier trans-
form over the additive group (Z/2Z)d: its FFT is partic-
ularly simple and requires O(d log d) time. It follows that,
with high probability (which we make precise in Lemma 2.1),
the mapping Φx of any vector x ∈ Rd can be computed in
time O(d log d+qdε−2 log n) (all running times are expected
over the random bits of the algorithm). We now make our
statement on the FJLT precise.

Lemma 2.1. [The FJLT Lemma] Fix any set X of n
vectors in Rd, ε < 1, and p ∈ {1, 2}. Let Φ ∼ FJLT . With
probability at least 2/3, the following two events occur:

1. For all x ∈ X,

(1− ε)αp‖x‖2 ≤ ‖Φx‖p ≤ (1 + ε)αp‖x‖2 ,

where α1 = k
√

2π−1 and α2 = k.

2. The mapping Φ : Rd → Rk requires

O
`
d log d + min{dε−2 log n, εp−4 logp+1 n}

´
operations.

Note that by repeating the construction O(log(1/δ)) times
we can amplify the success probability to 1−δ for any δ > 0.
If we know X, it is possible to test for success. In the ANN
example presented in the following sections, however, it is
not possible to check if the first part of the FJLT guarantee
succeeds, because the vectors of X are not known during
construction (only the size |X| is known). However, one
can amplify the probability of success by repeating the con-
struction O(log(1/δ)) times, running the nearest neighbor
algorithm w.r.t. each construction and taking the nearest
among the outputs.

Proof. Without loss of generality, we can assume that
ε < ε0 for some suitably small ε0.

Fix some x ∈ X, and define the random variable u =
HDx = (u1, . . . , ud)T . Assume w.l.o.g. that ‖x‖2 = 1.

Note that u1 is of the form
Pd

i=1 aixi, where each ai =

± d−1/2 is chosen independently and uniformly. A Chernoff-
type argument shows that, with probability at least 1−1/20,

max
x∈X

‖HDx‖∞ = O(d−1/2
p

log n) . (1)

Indeed,

E [etdu1] =
Y

i

E [etdaixi] =
Y

i

cosh(t
√

d xi) ≤ et2d‖x‖22/2

and hence, by Markov’s inequality,

Prob[|u1| ≥ s] ≤ 2E [esdu1]/es2d

≤ 2es2d‖x‖22/2−s2d

= 2e−s2d/2 ≤ 1/(20nd)

for s = Θ(d−1/2√log n), from which (1) follows by a union
bound over all nd ≤ n2 coordinates of the vectors {HDx :
x ∈ X}.

Assume from now on that (1) holds, i.e., ‖u‖∞ ≤ s (where
u = HDx for any x ∈ X, which we keep fixed). It is conve-

nient (and harmless) to assume that m
def
= s−2 is integral.

Note that ‖u‖2 = ‖x‖2 because both H and D are isome-
tries. Let y = (y1, . . . , yk)T = Pu = Φx. By the defini-
tion of the FJLT, y1 is obtained as follows: pick random
i.i.d. indicator variables b1, . . . , bd, where each bj equals 1
with probability q, and random i.i.d. variables r1, . . . , rd

distributed N(0, q−1). Then set y1 =
Pd

j=1 rjbjuj . Let

Z =
Pd

j=1 bju
2
j . By the 2-stability of the normal distribu-

tion, (y1|Z = z) ∼ N(0, q−1z). Note that all of y1, . . . , yk

are i.i.d (given u), therefore we have corresponding random
i.i.d. variables Z = Z1, . . . , Zk. Also note that E[Z] = q.

The `1 case: We choose

q = min{1/(εm), 1} = min

Θ

„
ε−1 log n

d

«
, 1

ff
.

We now bound the moments of Z (over the random bi’s).

Lemma 2.2. For any t > 1, E [Zt] = O(qt)t, and

(1− ε)
√

q ≤ E [
√

Z] ≤ √
q .

Proof. For the case q = 1 the claim is trivial because
then Z is constant 1. So we assume q = 1/(εm) < 1. By

Jensen’s inequality, E [
√

Z] ≤
p

E [Z] =
√

q. By convex-

ity (resp. concavity), max u E [Zt] (resp. min u E [
√

Z]) is
achieved at a vertex of the polytope

P = { (u2
1, . . . , u

2
d) |u2

j ≤ 1/m∀j and ‖u‖2
2 = 1 } ,

i.e., for uj = m−1/2 (j ≤ m) and uj = 0 (else). It fol-
lows that to upper-bound E [Zt], we may focus on Z ∼
m−1B(m, q) (in words, the binomial distribution with pa-
rameters m, q multiplied by the constant m−1). Therefore,
by standard bounds on the binomial moments,

E [Zt] = O(m−t(mqt)t) = O(qt)t,

as required by the lemma. We now lower-bound E [
√

Z]:
Since

√
x ≥ 1 + 1

2
(x− 1)− (x− 1)2 for all x ≥ 0,

E [
√

Z] =
√

q E [
p

Z/q]

≥ √
q

„
1 +

1

2
E [Z/q − 1]−E [(Z/q − 1)2]

«
.

(2)

Now note that E [Z/q − 1] = 0 and

E [(Z/q − 1)2] = var(Z/q) = (1− q)/(qm)

≤ 1/(qm) = ε .

Plugging this into (2) gives E [
√

Z] ≥ √
q (1 − ε), as re-

quired.

Since the expectation of the absolute value of N(0, 1) is√
2π−1, by taking conditional expectations

E [|y1|] =
p

2/qπ E [
√

Z] ,

and by Lemma 2.2,

(1− ε)
√

2π−1 ≤ E |y1| ≤
√

2π−1 . (3)

We now show that ‖y‖1 is sharply concentrated around its
mean E [‖y‖1] = kE [|y1|]. To do this, first we bound the
moments of |y1| = |

P
j bjrjuj |. For any integer t ≥ 0, by

taking conditional expectation,

E [|y1|t] = E [(q−1Z)t/2]E [|U |t] ,

where U ∼ N(0, 1). It is well known that E [|U |t] = O(t)t/2;
therefore, by Lemma 2.2,

E [|y1|t] = O(t)t .

It follows that the moment generating function

E [eλ|y1|] = 1 + λE [|y1|] +
X
t>1

E [|y1|t]λt/t!

≤ 1 + λE [|y1|] +
X
t>1

O(t)tλt/t!

converges for any 0 ≤ λ < λ0, where λ0 is an absolute
constant, and

E [eλ|y1|] = 1 + λE |y1|+ O(λ2) = eλE |y1|+O(λ2) .

By independence,

E[eλ‖y‖1] = (E[eλ|y1|])k = eλE ‖y‖1+O(λ2k) .

By Markov’s inequality and (3),

Prob[‖y‖1 ≥ (1 + ε)E [‖y‖1] ≤ E[eλ‖y‖1]/eλ(1+ε)E [‖y‖1]

≤ e−λεE [‖y‖1]+O(λ2k)

≤ e−Ω(ε2k) ,

for some λ = Θ(ε). The constraint λ < λ0 entails that ε be
smaller than same absolute constant. A similar argument
leads to a similar lower tail estimate. Our choice of k ensures
that, for any x ∈ X, ‖Φx‖1 = ‖y‖1 deviates from its mean
by at most ε with probability at least 1− 1/20. By (3), this
mean, kE [|y1|], is itself concentrated (up to a relative error

of ε) around α1 = k
√

2π−1; rescaling ε by a constant factor
and ensuring (1) proves the `1 claim of the first part of the
FJLT lemma.

The `2 case: We now choose

q = min

c1 log2 n

d
, 1

ff
,

for a large enough constant c1.

Lemma 2.3. With probability at least 1− 1/20n,

1. q/2 ≤ Zi ≤ 2q for all i = 1, . . . , k, and

2. kq(1− ε) ≤
Pk

i=1 Zi ≤ kq(1 + ε).

Proof. If q = 1 then Z is the constant q and the claim
is trivial. Otherwise, q = c1d

−1 log2 n < 1. For any real λ,
the function

fλ(u2
1, . . . , u

2
d) = E [eλZ]

is convex. Therefore, it achieves its maximum on the vertices
of the polytope P (as in the proof of Lemma 2.2). Hence, as

argued before, E [eλZ] ≤ E [eλZ′
], where Z′ ∼ m−1B(m, q).

We conclude the proof of the first part by using standard tail
estimates on the scaled binomial Z′ derived from bounds on
its moment generating function E [eλZ′

] (e.g. [2]), and union
bounding.

For the second part, let S =
Pk

i=1 Zi. Again, the mo-
ment generating function of S is bounded above by that of
S′ ∼ m−1B(mk, q), for which it is immediate to check the
required concentration bound.

Henceforth we will assume that the premise of Lemma 2.3
holds with respect to all choices of x ∈ X. Using the union
bound, this happens with probability at least 1− 1/20. For
each i = 1, . . . , k the random variable y2

i q/Zi is distributed
χ2 with 1 degree of freedom. It follows that, conditioned on
Zi, E [y2

i] = Zi/q and the moment generating function of y2
i

is

E [eλy2
i] = (1− 2λZi/q)−1/2 .

Given any λ > 0 less than some fixed λ0, and for large
enough ξ, the moment generating function converges and
equals:

E [eλy2
i] ≤ eλZi/q+ξλ2(Zi/q)2

(we used the fact that Zi/q = O(1) from the first part of
Lemma 2.3). Therefore, by independence,

E [eλ
Pk

i=1 y2
i] ≤ eλ

Pk
i=1 Zi/q+ξλ2 Pk

i=1(Zi/q)2 ,

and hence

Prob[

kX
i=1

y2
i > (1 + ε)

kX
i=1

Zi/q]

= Prob[eλ
Pk

i=1 y2
i > e(1+ε)λ

Pk
i=1 Zi/q]

≤ E [eλ
Pk

i=1 y2
i]/e(1+ε)λ

Pk
i=1 Zi/q

≤ e−ελ
Pk

i=1 Zi/q+ξλ2 Pk
i=1(Zi/q)2 .

(4)

If we plug

λ =
ε
Pk

i=1(Zi/q)

2ξ
Pk

i=1(Zi/q)2

into (4) and assume that ε is sufficiently small, we avoid
convergence problems (using Lemma 2.3). Using Lemma 2.3
again, we conclude that

Prob[

kX
i=1

y2
i > (1 + ε)k] ≤ e−Ω(ε2k) .

A similar technique can be used to bound the left tail es-
timate. By choosing k = cε−2 log n for some large enough c,
using the union bound, and possibly rescaling ε, we conclude
the `2 case of the first part of the FJLT lemma.

Running time: Computing Dx takes O(d) time, because
D is a diagonal matrix. Computing H(Dx) takes O(d log d)
time using the Walsh-Hadamard transform. Finally, com-
puting P (HDx) takes O(|P |) time, where |P | is the number
of nonzeros in P . This number is distributed B(nk, q). It is
now immediate to verify that

E [|P |] = O(εp−4 logp+1 n) .

Using a Markov bound, we conclude the proof for the run-
ning time guarantee of the FJLT lemma.

This concludes the proof of the FJLT lemma, up to pos-
sible rescaling of ε.

2

3. ANN SEARCHING IN EUCLIDEAN
SPACE

We give a new ANN algorithm for `d
2 that differs (and im-

proves on) its predecessors in its use of handles: a bootstrap-
ping device that allows for fast binary searching. Plugging
in the FJLT automatically provides a further improvement.
Let P be a set of n points in Rd. Given x ∈ Rd, let xmin be
its nearest neighbor in P . The answer to an ε-ANN query for
x is any point p ∈ P such that ‖x−p‖2 ≤ (1+ε)‖x−xmin‖2.

The algorithm has two stages. First (part I), we compute
an answer q to an O(n)-ANN query for x. This opens the
way for a second stage, where we answer the ε-ANN query
for x within the (smaller) set Px = P ∩ B2(q, 2‖x − q‖2),
where B2(q, r) denotes the `2-ball of radius r centered at
q. The key property of Px is that it contains xmin and
the distance from x to its furthest neighbor in Px is only
O(n‖x − xmin‖2). This sets the stage for a binary search
over a bounded domain (part II). Instead of reducing the
problem to an ANN query over Hamming cube (as in [30]),
we embed P directly into a low-dimensional `1-space, which
we then discretize. We get a two-fold benefit from our use
of handles and of the FJLT.

O(n)-approximation ANN (P, x)
Choose a random unit vector v ∈ Rd.

For all p ∈ P
Compute projection π(p) = vT (p− x).

Return point xv
min = argminp∈P |π(p)|.

3.1 Part I: Linear-factor approximation
The projections { vT p | p ∈ P } are precomputed and kept

in sorted order. Given a query x, finding xv
min takes O(d +

log n) time. By repeating the procedure O(log δ−1) times
(with independently drawn vectors v) and keeping the point
xv

min nearest to x, we increase the probability of success to
the O(n)-ANN query to 1− δ.

Lemma 3.1.

E ‖x− xv
min‖2 = O(n‖x− xmin‖2) .

Proof. Let χ(p) be the indicator variable of the event
|π(p)| ≤ |π(xmin)|. Elementary trigonometry shows that

E χ(p) = O(‖x− xmin‖2/‖x− p‖2) .

Clearly, ‖x − xv
min‖2 ≤

P
p∈P χ(p)‖x − p‖2; therefore, by

linearity of expectation,

E ‖x− xv
min‖2 ≤

X
p∈P

‖xp‖2 E χ(p) = O(n‖x− xmin‖2).

3.2 Part II: Binary search with handles
Assume that the previous step succeeds in returning an

O(n)-ANN q for x. From now on, we can confine our search
within Px. Note that there are only O(n2) distinct sets Px

and, given x, Px can be found by binary search in O(d +
log n) time. If the diameter of Px is small enough, say
∆(Px) ≤ 1

2
ε‖x − q‖2, then q is a satisfactory answer to

the ε-ANN query for x. By precomputing all diameters,
we can test this in constant time and be done if the out-
come is positive. So, assume now that ∆(Px) > 1

2
ε‖x− q‖2.

The distance from x to any point of Px lies in the interval
I = [Ω(∆(Px)/n), 6ε−1∆(Px)], so a binary search will re-
quire log(n/ε) + O(1) steps. Each step t is associated with
two items, lt and pt:

1. A search radius lt ∈ I: with high probability, the t-
th step in the binary search finds out whether there
is a point in Px at distance at most (1 + ε)lt to x
(success) or whether all points are at distance at least
lt to x (failure). For initialization, we set l1 to the high
endpoint of I. For t > 1, lt = lt−1 ± 2−tl1.

2. A handle pt ∈ Px such that ‖x − pt‖2 ≤ 2lt. We set
p1 = q.

Let Φ be the (normalized) FJLT: with high probability, for
any pair of points p, q ∈ P , (1− ε)‖p− q‖2 ≤ ‖Φp−Φq‖1 ≤
(1 + ε)‖p − q‖2. As usual, k = O(ε−2 log n) denotes the
embedding dimension.

3.3 Poisson discretization
At step t, for i = 1, . . . , k, consider a random two-sided

infinite Poisson process Ψi with rate k/lt. This implies that
the number of random points in every interval [a, a+τ) obeys
a Poisson distribution with expectation τk/lt. Given u ∈
Rk, define the quantization T u of u to be the k-dimensional
integer vector, whose i-th coordinate is the signed count of
Poisson events between 0 and ui, ie,

T u
i =

(
|Ψi ∩ [0, ui)| if ui ≥ 0

−|Ψi ∩ [ui, 0)| else.

We use T to define a pseudometric D over Rd: D(x, y) =
‖TΦx − TΦy‖1. For fixed x, y ∈ Rd, D(x, y) is a Poisson
variable with rate k‖Φ(x−y)‖1/lt. The point process might
fail its purpose, so we say that p ∈ Px is reliable at step t
if either (i) ‖x − p‖2 ≤ lt and D(x, p) ≤ (1 + 2ε)k or (ii)
‖x− p‖2 ≥ (1 + 2ε)lt and (1− 2ε)k‖x− p‖2/lt ≤ D(x, p) ≤
(1 + 2ε)k‖x − p‖2/lt. By our choice of k, concentration
bounds [2] for the Poisson distribution show that, at step
t, all points of Px are reliable with high probability. When
this happens, we say that step t itself is reliable. (Note
that a randomly shifted grid also works but the proof is less
elegant.)

3.4 A pruned data structure
Step reliability ensures that all the required information

for the binary search is contained in the vector TΦx (up to
possible rescaling of ε); and so we can use that discrete vec-
tor to index a lookup table Spt,lt . The entry Spt,lt [v] stores
the nearest `1-neighbor of v ∈ {TΦp | p ∈ Px }. Assuming
that step t is reliable, then

D(x, pt) ≤ 2k(1 + 2ε) ; (5)

therefore, only the points x in the D-metric ball specified
by (5) need to be stored (say, in a pruned k-way tree).
For fixed pt, the number of vectors TΦx that satisfy (5) is
bounded by the number of integral points (n1, . . . , nk) ∈ Zk

such that n1 + · · · + nk ≤ 2k(1 + 2ε). This puts the stor-

age requirement at
`

3k
k−1

´
2O(k) = 2O(k) = nO(ε−2). If we

implement the table as a weight-balanced radix tree, the
lookup time is only O(k). The complete binary search takes
O(k log(n/ε)) = O(ε−2(log n/ε)2) time. Obviously, we may

assume ε > n−O(1) (otherwise the naive algorithm is faster),
so the binary search time is O(ε−2 log2 n). In preprocessing,
we build all possible tables Spt,lt for all steps t, all points

pt, and all Px, which requires a total of nO(ε−2) storage.

Theorem 3.2. Given a set P of n points in `d
2, for any

ε > 0, there a randomized data structure of size nO(ε−2) that
can answer any ε-ANN query in time O(d log d+ε−3 log2 n)
with high probability (over the preprocessing).

4. ANN SEARCHING OVER THE
HAMMING CUBE

Kushilevitz et al. [30] gave an algorithm for ANN queries
over {0, 1}d. Its bottleneck is the repeated multiplication of
the query point by various random matrices. Our improve-
ment is based on the observation that, although most of
these matrices are dense, by using some algebra over GF (2),

one can decompose them into a sparse part together with a
dense part that is of low complexity.

The ANN data structure of [30] consists of d separate sub-
structures, Sl (1 ≤ l ≤ d), each one meant to handle queries
whose targeted nearest neighbors are at the (unknown) dis-
tance l. To supply enough randomness so that every query
succeeds with high probability, each Sl itself is a collection of
σ similarly built data structures Sl,j . For any j = 1, . . . , σ,
Sl,j consists of: (i) a random k-by-d matrix Rl,j whose ele-
ments are chosen independently in {0, 1}, with the probabil-
ity of a 1 being 1/2l; (ii) a table Tl,j of pointers to P , indexed
by z ∈ {0, 1}k, and initialized as follows: Set all entries to∞;
then, for each p ∈ P in turn, set Tl,j [B1(z, k(µ(l)+ 1

3
ε′))] to p,

where z = Rl,jp (mod 2), B1(z, r) is the Hamming ball of ra-

dius r around z, µ(l) = 1
2
(1−(1− 1

2l
)l) and ε′ = Θ(1−e−ε/2).

Lemma 4.1. [30] Assume that n ≥ log d, and set σ =
cd log d and k = cε−2 log n, for a large enough constant c.
With high probability, the following holds true for any x ∈
{0, 1}d and any 1 ≤ l ≤ d: Given a random j ∈ {1, . . . , σ},
with high probability, the point Tl,j [R

l,jx], if finite, is at dis-
tance at most (1 + ε)l from x. Furthermore, if x’s nearest
neighbor is at distance at most l, then the point in question,
indeed, is finite.

For a random j, we say that a query point x passes the
l-test if the point Tl,j [R

l,jx] is finite. (Note that passing is
not an intrinsic property of x but a random variable.) The
test is called reliable if both of the high-probability events
in the lemma hold. Assuming reliability, failure of the test
means that x’s nearest neighbor lies at distance greater than
l, while success yields a neighbor of x at distance at most
(1 + ε)l.

This immediately suggests an ANN algorithm. Beginning
with l = dd/2e, run an l-test on x and repeat for l/2 if it
passes and 3l/2 if it fails; then, proceed in standard binary
search fashion. Suppose for a moment that all the l-tests
are reliable. Then, the binary search terminates with the
discovery of an index l and a point p ∈ P that is at most
(1 + ε)l away from x, together with the certainty that the
distance from x to its nearest neighbor exceeds l. Obviously,
the point p is an acceptable answer to the ε-ANN query.

We cannot count on the reliability of every test used in the
binary search. But, as in [30], we can overcome this problem
by using the fault-tolerant techniques of [17] for computing
with unreliable information. Note also that we may assume
from now on that n ≥ log d: Indeed, having fewer than log d
points gives us a naive (exact) algorithm with O(d log d)

query time. The storage is d2nO(ε−2) and the query time is
O(d(log d)ε−2 log n). To improve this time bound, we seek to
exploit the sparsity of the random matrices. That alone cuts
down the query time to O(dε−2 log n) in a trivial manner,
the worst case being a query x that itself belongs to P . We
call this the easy-sparse method.

Linear algebra gives room for further improvement. For
expository purposes, it is convenient to start the binary
search with a d-test, so that the first test in the search is
always successful. In general, consider the case where an
l-step is to be performed and let l′ be the last previous suc-
cessful test in the search. Note that l ≥ l′/2. The algorithm
is now in possession of a handle, ie, a point p ∈ P at distance
at most (1 + ε)l′ from x. The cost of the current l-test is
that of computing y = Rl,jx for a random j.

The main idea is to evaluate y as Rl,jx = Rl,j(x + 2p) =
Rl,j(x+p)+Rl,jp over GF (2). Here is the benefit of this de-
composition: The point x+p has at most (1+ε)l′ ones, and
obviously only the corresponding columns of Rl,j are rele-
vant in computing Rl,j(x+p). Assuming that the 1’s within
each column are linked together in a list, the time for com-
puting Rl,j(x + p) is proportional to d + k plus the number
of ones within the relevant columns. This last number is
at most k(1 + ε)l′(1/2l) ≤ 2k in expected value (over the
randomness of the matrix). By precomputing all the points
{Rl,jq | q ∈ P } in preprocessing (which adds only a factor
of n to the storage), we can retrieve Rl,jp in O(k) time. In
short, we can complete this binary search step in O(d + k)
expected time, instead of the previous O(dk) bound.

There is only one problem: The expectation of the query
time is defined over the randomness of both the query algo-
rithm and the preprocessing. To remove this dependency on
the preprocessing, we must ensure that, for any query x, the
expected running time of any binary search step is O(d+ k)
over the random choices of the index j during query an-
swering: We call this the NQLB policy (for “no query left
behind”).

It suffices to show that, for any l and any subset V ⊆
2{1,...,d} of column indices, the total number of ones within
all the columns (indexed by V) of all the matrices Rl,j (1 ≤
j ≤ σ) is O(σk|V |/l). This number is a random variable
Y =

P
1≤i≤σk|V | yi , where each yi is chosen independently

in {0, 1} with a probability 1/2l of being 1. A Chernoff
bound shows that Y = O(σk|V |/l) with probability at least

1 − 2−Ω(σk|V |/l). Summing over all l, V , we find that the
probability of violating the NQLB policy is at most

dX
l=1

dX
v=1

d

v

!
2−Ω(σkv/l),

which is arbitrary small.

Theorem 4.2. Given a set P of n points in the d-dimen-
sional Hamming cube and any 0 < ε < 1, there exists a

data structure of size d2nO(ε−2) that can answer any ε-ANN
query in time O((d + ε−2 log n) log d).

The preprocessing is randomized but succeeds with high
probability. Success implies that every query is answered
correctly with high probability. Similarly, the expectation
of the query time applies uniformly to every query.

5. FUTURE WORK
The FJLT can potentially improve other proximity-related

problems such as closest pair, furthest neighbor and cluster-
ing. The ANN application presented here suffers from the

nO(1/ε2)-space requirement, an almost insurmountable im-
plementation bottleneck for small ε. It is natural to ask if
the space and time could be traded off so that an algorithm
with running time O(ε−2d log n) (comparable to [19,26] and
[30]) uses significantly less space.

The Kac random walk. We propose an alternative
FJLT transform which we conjecture to be at least as good
as the one described in this paper, yet much more elegant.
This transform is based on the following random walk on
the orthogonal group on Rd×d, defined by Kac [28]. At
time t = 0, the random walk is at the identity matrix:

U0 = Id. At time t > 0, we choose two random coordi-
nates 1 ≤ it < jt ≤ d and a random angle θt ∈ [0, 2π),
and set Ut+1 = Rit,jt,θtUt, where Ri,j,θ is a rotation of the
(i, j)-plane by angle θ. Clearly Ut is an orthogonal ma-
trix for all t ≥ 0. The walk has the Haar measure on the
group of orthogonal matrices as its unique stationary dis-
tribution. For any fixed x ∈ Rd, computation of UT x is
extremely efficient: for t = 1, . . . , T replace xit (resp. xjt)
with xit cos θt +xjt sin θt (resp. −xit sin θt +xjt cos θt). The
Kac version of FJLT is defined as follows: compute UT x for
all vectors x ∈ X ⊆ Rd, and return the projection onto the
first O(ε−2 log |X|) coordinates of the resulting vectors as
the reduced-dimension space. How small can T be in order
to ensure the same guarantee as the original JL dimension-
reduction technique?

Kac defined this walk in the context of statistical physics
in an attempt to simplify and understand Boltzmann’s equa-
tion. Since then, much attention has been given to it from
the viewpoints of pure and applied mathematics. For exam-
ple, it can be used to efficiently estimate high-dimensional
spherical integrals [20]. Its spectral properties are by now
well understood [9, 15, 33], though spectral techniques may
not be suitable for the weak notion of mixing rate we are
seeking. Based on experiments and preliminary results, we
conjecture that T = O(d log d + poly(log n, ε−1)) steps suf-
fice, and propose this as an interesting open problem

Improvements to FJLT and lower bounds. It is
natural to ask what is the fastest randomized linear mapping
with the Johnson-Lindenstrauss guarantee. More precisely,
we pose the following question:

Question 5.1. What is the lower bound on the expected

depth of a randomized linear circuit Cn,d : Rd 7→ RO(ε−2 log n)

such that given any set X ⊆ Rd of n vectors, with probability
at least 2/3, α‖x‖2(1− ε) ≤ ‖Cn,d(x)‖p ≤ α‖x‖2(1 + ε) for
all x ∈ X, for some ε > 0, p ∈ {1, 2} and α ?

Acknowledgments
For their kind willingness to answer our numerous questions,
we wish to thank Nina Gantert, Anupam Gupta, Sariel Har-
Peled, Piotr Indyk, Elchanan Mossel, Yuval Peres, and Yu-
val Rabani.

6. REFERENCES
[1] Achlioptas, D. Database-friendly random projections:

Johnson-Lindenstrauss with binary coins, Journal of Comp.
& Sys. Sci. 66 (2003), 671–687.

[2] Alon, N., Spencer, J. The probabilistic method, John Wiley,
2nd edition, 2000.

[3] Alon, N. Problems and results in extremal combinatorics, I,
Discrete Math. 273 (2003), 31–53.

[4] Arya, S., Mount, D.M. Approximate nearest neighbor
searching, Proc. 4th Annu. ACM-SIAM Symp. Disc. Alg.
(1993), 271–280.

[5] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu,
A. An optimal algorithm for approximate nearest neighbor
searching, J. ACM 45 (1998), 891–923.

[6] Bern, M. Approximate closest-point queries in high
dimensions, Inform. Process. Lett. 45 (1993), 95–99.

[7] Bingham, E., Mannila, H. Random projection in
dimensionality reduction: applications to image and text
data, Knowledge Discovery and Data Mining (2001),
245–250.

[8] Borodin, A., Ostrovsky, R., Rabani, Y. Lower bounds for
high dimensional nearest neighbor search and related
problems, Proc. 31st STOC (1999), 312–321.

[9] Carlen, E. A., Carvalho, M. C., Loss, M. Determination of
the Spectral Gap for Kac’s Master Equation and Related
Stochastic Evolutions, Preprint arXiv:math-ph/0109003,
(2000)

[10] Chakrabarti, A., Regev, O. An optimal randomised cell
probe lower bound for approximate nearest neighbor
searching, Proc. 44th FOCS (2004).

[11] Chan, T. Approximate nearest neighbor queries revisited,
Proc. 13th Annu. ACM Symp. Comput. Geom. (1997),
352–358.

[12] Clarkson, K.L. An algorithm for approximate closest-point
queries, Proc. 10th Annu. ACM Symp. Comput. Geom. 10
(1994), 160–164.

[13] Clarkson, K.L. Nearest neighbor queries in metric spaces,
Proc. 29th Annu. ACM Sympos. Theory Comput., 1997.

[14] Dasgupta, S., Gupta, A. An elementary proof of the
Johnson-Lindenstrauss lemma, Technical Report 99-006,
UC Berkeley, March 1999.

[15] Diaconis, P., Saloff-Coste, L. Bounds for Kac’s Master
Equation, Communications in Mathematical Physics 209(3),
(2000), 729–755

[16] Farach-Colton, M., Indyk, P. Approximate nearest neighbor
algorithms for Hausdorff metrics via embeddings, Proc. 40th
FOCS (1999).

[17] Feige, U., Peleg, D., Raghavan, P., Upfal, E. Computing
with unreliable information, Proc. 20nd STOC (1990),
128–137.

[18] Frankl, P., Maehara, H. The Johnson-Lindenstrauss lemma
and the sphericity of some graphs, Journal of Combinatorial
Theory Series A, 44 (1987), 355–362.

[19] Har-Peled, S. A replacement for Voronoi diagrams of near
linear size, Proc. FOCS (2001), 94–103.

[20] Hastings, W. Monte Carlo sampling methods using Markov
chains and their applications, Biometrica 57, 97–109

[21] Indyk, P. On approximate nearest neighbors in
non-Euclidean spaces, Proc. 39th FOCS (1999).

[22] Indyk, P. High-dimensional computational geometry,
Thesis (2000), Stanford University.

[23] Indyk, P. Dimensionality reduction techniques for
proximity problems, Proc. SODA (2000), 371–378.

[24] Indyk, P. Nearest neighbors in high-dimensional spaces,
Handbook of Discrete and Computational Geometry, eds.,
J.E. Goodman and J. O’Rourke, CRC Press (2004).

[25] Indyk, P., Matousek, J. Low-distortion embeddings of finite
metric spaces, Handbook of Discrete and Computational
Geometry, eds., J.E. Goodman and J. O’Rourke, CRC Press
(2004).

[26] Indyk, P., Motwani, R. Approximate nearest neighbors:

towards removing the curse of dimensionality, Proc. 30th
STOC (1998), 604–613.

[27] Johnson, W.B., Lindenstrauss, J. Extensions of Lipschitz
mappings into a Hilbert space, Contemp. Math. 26 (1984),
189–206.

[28] Kac, M. Probability and related topics in physical science,
Wiley Interscience, N.Y.

[29] Kleinberg, J. Two algorithms for nearest neighbor search in
high dimensions, Proc. 29th STOC (1997), 599–608.

[30] Kushilevitz, E., Ostrovsky, R., Rabani, Y. Efficient search
for approximate nearest neighbor in high-dimensional
spaces, SIAM J. Comput. 30 (2000), 457–474.

[31] Matousek, J. Lectures on Discrete Geometry, Springer,
May 2002.

[32] Muthukrishnan, S., Sahinalp, S. C., Simple and practical
sequence nearest neighbors with block operations, Proc. 13th
Annual Symposium on Combinatorial Pattern Matching
(2002)

[33] Pak, I. Using Stopping Times to Bound Mixing Times,
Proc. SODA (1998)

[34] Yianilos, P.N. Data structures and algorithms for nearest
neighbor search in general metric spaces, Proc. 2nd Annual
ACM-SIAM Symp. Disc. Alg. (1993), 311–321.

[35] Yianilos, P.N. Locally lifting the curse of dimensionality for

nearest neighbor search, Proc. SODA (2000), 361–370.

