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ABSTRACT
We investigate the design of algorithms resilient to memory
faults, i.e., algorithms that, despite the corruption of some
memory values during their execution, are able to produce
a correct output on the set of uncorrupted values. In this
framework, we consider two fundamental problems: sorting
and searching. In particular, we prove that any O(n log n)
comparison-based sorting algorithm can tolerate at most
O((n log n)1/2) memory faults. Furthermore, we present one
comparison-based sorting algorithm with optimal space and
running time that is resilient to O((n log n)1/3) faults. We
also prove polylogarithmic lower and upper bounds on fault-
tolerant searching.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems—sorting and
searching ; E.1 [Data]: Data structures.

General Terms
Algorithms, reliability, theory.

Keywords
Combinatorial algorithms, sorting, searching, memory faults,
memory models.

1. INTRODUCTION
Some of today’s applications run on computer platforms

with large and inexpensive memories, which are also error-
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prone [28]. Unfortunately, the correctness of the underly-
ing algorithms may be compromised by the appearance of
memory faults. Consider for instance mergesort: during
the merge step, errors may propagate due to corrupted keys
(having value larger than the correct one). Even in the pres-
ence of very few errors, in the worst case the output can con-
tain as many as Θ(n2) inversions, where n is the length of
the input sequence. Informally, we say that an algorithm is
resilient to memory faults if, despite the corruption of some
memory values before or during its execution, the algorithm
is nevertheless able to get a correct output on the set of
uncorrupted values. Computing in the presence of mem-
ory faults seems important in many practical scenarios: for
instance, sorting data in faulty memories is a common prob-
lem in search engines [12]. In this paper we investigate the
design of algorithms resilient to memory faults, and present
upper and lower bounds for two basic problems: sorting and
searching.

1.1 Faulty-memory model
We have amemory faultwhen the correct value that should

be stored in a memory location gets altered because of a
soft failure [28]. In particular, the content of a location can
change unexpectedly, i.e., faults may happen at any time:
real memory faults are indeed highly dynamic and unpre-
dictable [14]. Faulty values may be everywhere in memory,
i.e., faults may happen at any place. Furthermore, since
an entire memory bank may undergo a failure, more than
one fault can be introduced at the same time, i.e., faults
may happen simultaneously. We model this with a faulty-
memory random access machine, i.e., a random access ma-
chine [1] whose memory locations may suffer from memory
faults and thus may possibly corrupt the values they con-
tain. We observe that in this model corrupted values are in-
distinguishable from correct ones. We will assume that the
algorithms can exploit O(1) reliable memory words, whose
content gets never corrupted: this is not restrictive, since
at least registers can be considered fault-free. In particu-
lar, we assume throughout the paper that moving variables
around in memory is an atomic operation: i.e., whenever we
read some memory location and we copy it somewhere else
immediately afterwards, the read operation will store that
value in reliable memory, so that the written value equals
the read value.

1.2 Related work
The problem of computing with unreliable information
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has been investigated in a variety of settings. In the liar
model, started by Ulam–Rényi’s game [26, 27], an algorithm
asks comparison questions answered by a possibly lying ad-
versary. Many works address the problem of searching with
lies [2, 5, 11, 13, 16, 21, 22, 23]. Even when the number
of lies grows proportionally with the number of questions
(linearly bounded model), searching is easy: Borgstrom and
Kosaraju [5], improving over [2, 11, 22], design an O(log n)
searching algorithm. Problems such as sorting and selection
have instead drastically different bounds. Lakshmanan et
al. [17] prove that Ω(n log n+k·n) comparisons are necessary
for sorting when at most k lies are allowed. The best known
O(n log n) algorithm tolerates only O(log n/ log log n) lies,
as shown in [25]. In the linearly bounded model, an exponen-
tial number of questions is necessary even to test whether a
list is sorted [5]. Feige et al. study a probabilistic model and
present a sorting algorithm correct with probability ≥ 1− q
that requires Θ(n log(n/q)) comparisons [13]. Lies are well
suited at modeling transient ALU failures, such as compara-
tor failures. Since memory data get never corrupted in the
liar model, fault-tolerant algorithms may exploit query repli-
cation strategies. We remark that this is not the case in our
faulty-memory model.
Other faults that have been considered in the literature

are destructive faults, which have been first investigated in
the context of fault-tolerant sorting networks [3, 18, 19,
29]. In this model, comparators may be faulty and possi-
bly destroy one of the input values. Assaf and Upfal [3]
present an O(n log2 n)-size sorting network tolerant (with
high probability) to random destructive faults; this bound
is tight, as proved later by Leighton and Ma [18]. We note
that the Assaf-Upfal network makes Θ(log n) copies of each
item, using fault-free data replicators. Using data repli-
cation is indeed a natural approach to protect against de-
structive memory faults: e.g., Aumann and Bender [4] use
pointer redundancy to make pointer-based data structures
resilient to memory faults. Redundant arrays of inexpen-
sive disks (RAID) are another typical application of data
replication [6].
Parallel models of computation with faulty memories have

also been studied, e.g., in [7, 8, 9, 15]. Differently from this
paper, these works assume the existence of a special fault-
detection register that makes it possible to recognize mem-
ory errors upon access to a memory location. The aim is to
design fast simulations of the fully operational parallel mod-
els on the faulty ones: the simulations described in [7, 8, 9,
15] are either randomized or deterministic, and operate with
constant or logarithmic slowdown, depending on the model
(PRAM or Distributed Memory Machine), on the nature of
faults (static or dynamic, deterministic or random), and on
the number of available processors.

1.3 Our results
In the faulty-memory model considered in this paper, if

each value were replicated k times, by majority techniques
we could easily tolerate up to (k− 1)/2 faults; however, the
algorithm’s overhead in terms of both space and running
time would also be Θ(k). This would imply, for instance,
that in order to be resilient to O(

√
n ) faults, a sorting algo-

rithm would require O(n3/2 log n) time and O(n3/2) space.
The space may be improved using error-correcting codes,
but at the price of a higher running time.
In general, using data replication can be very inefficient

when the objects to be sorted are large and complex, such as
large database records or long strings: copying such objects
can indeed be very costly, and in some cases we might not
even know how to do it. For instance, common libraries of
algorithmic codes (e.g., the LEDA Library of Efficient Data
Types and Algorithms [20] or the Standard Template Li-
brary [24]) typically implement sorting algorithms by means
of indirect addressing methods: the objects to be sorted are
accessed through pointers, which are moved around in mem-
ory instead of the objects themselves, and the algorithm
relies on user-defined comparator functions. In these cases,
the implementation of the sorting algorithm assumes neither
the existence of ad hoc functions for data replication nor the
definition of suitable encoding mechanisms to maintain a
reasonable storage cost.
It seems thus natural to ask whether it is possible to design

algorithms that do not exploit data replication in order to
achieve resilience to memory faults: i.e., algorithms that
do not wish to recover corrupted data, but simply to be
correct on uncorrupted data, without incurring any time
or space overhead. E.g., is it possible to sort the correct
data in O(n log n) time and O(n) space in the presence of
polynomially many memory faults?
We affirmatively answer this question. Let δ ≤ n denote

an upper bound on the number of memory faults that may
occur throughout the algorithm execution (note that δ may
be a function of the input size n). We consider the following
problems.

Fault-tolerant sorting. We are given a set of n keys that
need to be sorted. The value of at most δ keys can be
arbitrarily corrupted (either increased or decreased)
during the sorting process. A sorting algorithm is
fault-tolerant if it correctly orders the set of uncor-
rupted keys. We remark that this is the best we can
achieve in the presence of memory faults: if keys get
corrupted at the very end of the algorithm execution,
we cannot prevent them from occupying wrong posi-
tions in the output sequence.

Fault-tolerant searching. We are given a set of n keys on
which we wish to perform membership queries. The
keys are in increasing order, but up to δ keys may
be corrupted and thus occupy wrong positions in the
sequence. Let s be a key to be searched for. A fault-
tolerant searching algorithm works as follows: (1) if
there is a correct key equal to s, it answers yes return-
ing the index of s; (2) if there is no key (either correct
or faulty) equal to s, it answers no. Note that, if there
is a faulty key equal to s, the answer may be either yes
or no.

One of the main difficulties in designing efficient fault-tolerant
sorting and searching algorithms derives from the fact that
positional information is not necessarily reliable in the pres-
ence of memory faults: for instance, in searching it may be
possible that keys to the left (right) of a faulty key x are
larger (smaller) than x.
We say that a sorting or searching algorithm is [f(n)]-

resilient if it can tolerate at most O(f(n)) memory faults.
The main results of this paper can be summarized as follows.

• We prove that any O(n log n) comparison-based sort-

ing algorithm can be at most [(n log n)1/2]-resilient to
memory faults.
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• We present an O(n log n) comparison-based sorting al-

gorithm that is [(n log n)1/3]-resilient to memory faults.

Both our lower and upper bounds are in fact more general,
as we will show in Sections 3 and 4. We also prove polyloga-
rithmic lower and upper bounds on fault-tolerant searching
(Section 5). All our algorithms are deterministic, do not
make use of data replication, and use only O(1) reliable
memory. We remark that a constant-size reliable memory
may be even not sufficient for a recursive algorithm to work
properly: parameters, local variables, return addresses in
the recursion stack may indeed get corrupted. This is not
a problem if the recursion can be simulated by an iterative
implementation using only a constant number of variables.
The algorithms presented in this paper have this property,
and we will thus use their iterative implementation. For the
sake of simplicity, however, in the course of the analysis we
will sometimes refer to their recursive counterpart. Due to
lack of space, many details are omitted from this extended
abstract.

2. PRELIMINARIES
Given a sequence S, we denote by S[i; j] the subsequence

{S[i], S[i + 1], ... , S[j]}. The following definitions will be
useful throughout.

Definition 1. A sequence is faithfully ordered if its un-
corrupted keys are sorted.

Definition 2. A sequence is k-unordered if k is the min-
imum number of keys whose removal makes the remaining
subsequence sorted.

Note that each faithfully ordered sequence is k-unordered
for some k ≤ δ, where δ ≤ n is the upper bound on the
number of memory faults.

Definition 3. A sorting or merging algorithm is strongly
fault tolerant if it produces a faithfully ordered sequence, i.e.,
it correctly sorts all of the uncorrupted keys.

Definition 4. A sorting or merging algorithm is k-weakly
fault tolerant if it produces a k-unordered sequence, i.e., if
it correctly sorts all but k keys.

Note that a strongly fault tolerant algorithm is δ-weakly
fault tolerant. On the contrary, a δ-weakly fault tolerant
algorithm is not necessarily strongly fault tolerant, as un-
corrupted keys may not be sorted in the output sequence.

2.1 Naive fault-tolerant sorting and searching
A fault-tolerant algorithm that sorts all the correct keys

in O(δ ·n log n) worst-case time can be easily obtained from
mergesort. At each merge step, instead of taking the mini-
mum among two keys, we take the minimum among 2δ + 2
keys, δ+1 per sequence; since there can be at most δ errors,
at least one correct key per sequence is considered. An im-
plementation of this approach would require time O(δ ·n) to
merge sequences of length n. Furthermore, in order to avoid
problems in the recursion stack, we use the standard itera-
tive bottom-up implementation of mergesort, sorting all the
sequences of length 2i before any sequence of length 2i+1, for
i = 1 up to 
log n�. In this way we only need to maintain in
O(1) reliable memory words the length of the subsequence

being sorted and the position of its left boundary. We will
call Naive-Mergesort this iterative sorting algorithm that
uses the fault-tolerant merging described above as a subrou-
tine. The running time of Naive-Mergesort is O(δ ·n log n)
in the worst case, and it becomes O(δ · n) when δ = Ω(nε),
for some ε > 0.
Similarly to sorting, a single fault-tolerant search step can

be easily implemented in O(δ) time by using a majority
argument, i.e., by following the search direction suggested
by the majority of 2δ + 1 consecutive keys. We will refer
to this subroutine as FT-SearchStep. Performing O(log n)
fault-tolerant search steps yields a fault-tolerant algorithm
that answers membership queries in O(δ log n) time.

2.2 Purifying k-unordered sequences
In this section we describe a fault-tolerant algorithm, that

we call Purify, for extracting a faithfully ordered subse-
quence from a k-unordered sequence X of length n. The
algorithm hinges upon the Cook-Kim division [10].

Algorithm Purify. While we scan sequence X from left
to right, we build a stack and a list of discarded keys as
follows. We maintain the top of the stack and the index i
that scans X in the O(1)-size reliable memory. At the i-th
step, if X[i] is larger than or equal to the top, we push it
onto the stack. Otherwise, we add both the top and X[i]
to the list of discarded keys, pop the stack, compute the
maximum of the topmost δ + 1 keys, and move it to the
top. The reason for computing the maximum is that keys
below the discarded top may have been corrupted since they
were pushed onto the stack: the possible implications on the
correctness of the algorithm will become apparent shortly.
Finally, we return the stack and the list of discarded keys.

Analysis. We first show that algorithm Purify maintains
the following stack invariant:

Invariant 1 (Stack Invariant). Throughout the al-
gorithm, the key on the top is larger than or equal to all
the keys that have not been corrupted since they were pushed
onto the stack.

Proof. We remark that the top of the stack is fault-free,
because it is stored in reliable memory. The proof proceeds
by induction on the value of index i. The base step, with the
stack containing just one element, trivially holds. Assume
that the invariant holds at the beginning of the i-th step. If
X[i] ≥ top, X[i] is pushed onto the stack and the invariant
remains satisfied by transitivity. If X[i] < top, the stack is
popped and the invariant may be no longer satisfied if the
key below the discarded top got corrupted (namely, if its
value was decreased). In this case, let m be the maximum
of the topmost δ + 1 keys: we choose m as the new top.
Note that at least one of the δ+1 considered keys is correct:
let x be any such correct key. At the time when x was at
the top, the invariant was true by inductive hypothesis, and
therefore x is still larger than or equal to all the uncorrupted
keys below its position. Since m ≥ x, the new top satisfies
the invariant with respect to the entire stack.

Lemma 1. Algorithm Purify computes a faithfully ordered
subsequence S of a k-unordered sequence X of length n in
O(n+ δ · (k+α)) worst-case time, where α ≤ δ is the actual
number of memory faults introduced during the execution of
Purify. S has length ≥ n − 2(k + α), and only the keys
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corrupted during the execution of Purify may be unordered
in S.

Proof. By Invariant 1, the stack S contains a faithfully
ordered subsequence of X at the end of the execution, be-
cause only keys corrupted after they have been pushed onto
the stack may be unordered. If t is the number of pop op-
erations, it is easy to see that the running time of Purify is
O(n+t·δ) and that the final stack has size at least n−2t. To
prove that t ≤ k+ α, we observe that pop operations corre-
spond to inversions in X and that elements in the inversions
are all distinct. Thus, we have t disjoint inverted pairs of
keys: to get a sorted subsequence, at least one key from each
pair must be eliminated. Assuming t > k + α would there-
fore contradict either the hypothesis that X is k-unordered
or the hypothesis that at most α keys are corrupted during
the execution of Purify.

3. STRONGLY FAULT-TOLERANT SORT-
ING

In this section we describe a δ-resilient strongly fault-
tolerant sorting algorithm with O(n log n+α ·δ2) worst-case
running time, where α is the actual number of keys cor-
rupted during the sorting process. In particular, this yields
an O(n logn) time algorithm that is [(n log n)1/3 ]-resilient
to memory faults. The algorithm is based on mergesort, and
we first present two fault-tolerant merging subroutines with
quite different characteristics: the first one requires time lin-
ear in the length of the sequence, but it may be unable to
sort faithfully all the correct keys; the second one is slower,
yet strongly fault-tolerant. We will use both subroutines as
building blocks for our strongly fault-tolerant sorting algo-
rithm.

3.1 Weakly fault-tolerant merge
Let A and B be the sequences to be merged. We assume

that A and B are faithfully ordered and we denote by α their
total number of corrupted values, with α ≤ δ. We count in
α the values corrupted both at the beginning and during the
merging process. Our weakly fault-tolerant merging, called
WFT-Merge, resembles the classical merging algorithm with
the following modifications.

Algorithm WFT-Merge. Let i and j be the indices to
arrays A and B, respectively. At each step, in addition
to comparing A[i] and B[j] and advancing one of the two
indices, the algorithm updates two additional variables, re-
spectively called waitA and waitB , initialized to 0: waitA
(resp. waitB) counts the number of increments of index j
(resp. i) since the last increment of index i (resp. j). If A[i]
is added to the output sequence, waitA is reset and waitB is
incremented by 1; otherwise, if B[j] is added to the output
sequence, waitB is reset and waitA is incremented. We let
the wait variables increase up to value 2δ + 1. If this value
is reached by either of them (without loss of generality, say
waitA), we reset it and we count the number t of values in
the window W = A[i + 1; i + 2δ + 1] that are smaller than
A[i]: if t ≥ δ + 1, we output A[i] and increment index i by
1. The situation when W contains less than 2δ + 1 values
(i.e., we are almost at the end of sequence A) can be eas-
ily handled: we omit the details in this paper. The case
waitB = 2δ + 1 is symmetric. Indices, wait variables, and
counter t are all stored in the O(1)-size reliable memory.

Analysis. At any time one of the two wait variables is zero.
The merging process is thus divided into a sequence of A-
bursts and B-bursts: during an A-burst, waitA = 0 while i
and waitB are incremented (B-bursts are symmetric). The
bursts have length ≤ 2δ + 1, and this is crucial in proving
that the algorithm is O(α · δ)-weakly fault-tolerant. With a
slight abuse of notation, in the remainder of this paper we
will say that a sequence is O(f(δ))-unordered, for some func-
tion f , to indicate that it is k-unordered for k = O(f(δ)).
Similarly, we will refer to O(f(δ))-weakly fault-tolerant al-
gorithms.

Lemma 2. Given two faithfully ordered sequences of total
length n, algorithm WFT-Merge merges the sequences in O(n)
time and returns an O(α · δ)-unordered sequence, where α ≤
δ is the number of corrupted keys at the end of the algorithm
execution.

Proof. It is easy to see that the running time is O(n).
At each step we spend constant time, except when one of
the wait variables gets value 2δ + 1: in this case we spend
time O(δ), which can be amortized over the time spent to
output the last 2δ +1 elements. We now show that at most
α · (2δ + 1) keys can be in the wrong position in the output
sequence. We charge the errors introduced during merging
over corrupted keys. We analyze B-bursts only (the analysis
of A-bursts is symmetric). Consider the end of a B-burst,
i.e., the time when waitA is reset. Notice that A[i] may have
prevented some elements of sequence A from being placed
correctly in the output sequence only if A[i] is corrupted and
has a value larger than the correct one. If this is the case,
there are two possibilities:

� waitA < 2δ + 1. In this case A[i] < B[j]. The keys
of B that have been added to the output sequence in
the last waitA steps may appear in the wrong position
in the output sequence: those errors can be charged over
the corrupted value A[i].

� waitA = 2δ + 1. Recall that t is the number of values
in the window W = A[i+ 1; i+ 2δ + 1] that are smaller
than A[i].

If t ≥ δ + 1, at least one of the keys of W that are
smaller than A[i] must be correct, and the algorithm can
deduce that A[i] is corrupted. A[i] is therefore output
immediately – in spite of the fact that it may be in a
wrong position – so as not to introduce further errors.
As in the previous case, the keys from sequence B (at
most 2δ + 1) that will eventually be in a wrong position
can be charged over the corrupted value A[i].

If t ≤ δ, the algorithm cannot decide whether A[i] is
corrupted or not; however, there must be at least one
element of W , say x, that is larger than A[i] and it is
correct. Since A[i] ≤ x, by transitivity the keys of B
that have been output during the burst are all smaller
than x, and thus they will appear in the output sequence
in the correct position with respect to x and to all the
keys of sequence A that are ≥ x. Hence, A[i] may have
prevented at most δ keys of sequence A (those smaller
than A[i]) from being output at the right time, and in
that case we can charge these possible errors over A[i]
itself.

This shows that each corrupted key is charged at most 2δ+1
errors, concluding the proof.
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Figure 1: The merging algorithm.

3.2 Strongly fault-tolerant merge
Let A and B be two faithfully ordered sequences of length

n1 and n2, respectively, containing α corrupted values, with
α ≤ δ. Without loss of generality assume that n2 ≤ n1.
Our strongly fault-tolerant merging, called SFT-Merge, re-
peatedly extracts a key from the shorter sequence B and
places it in the correct position w.r.t. the longer sequence
A.

Algorithm SFT-Merge. Let i and j be pointers to ar-
rays A and B, respectively. At each step, we extract the
minimum in B[j; j + δ]: let b = B[h] be such minimum, for
j ≤ h ≤ j + δ. We shift right all the keys in B[j; h − 1],
move b to B[j], and increase index j by 1. We scan A left to
right, starting from position i, and add the keys of A to the
output sequence until we find a key such that A[i] > b. Since
A[i] may be corrupted, returning b just before A[i] may be
wrong: we therefore count the number t of keys smaller than
A[i] in the window W = A[i + 1; i + 2δ + 1]. If t ≥ δ + 1,
we continue scanning A (A[i] is certainly corrupted). Other-
wise, we partition the window W into two groups: the keys
≤ b and the keys > b. We rearrange W so that keys ≤ b
appear before keys > b, while the relative order of any two
keys in the same group is maintained. We add to the output
sequence the keys of W that are ≤ b, followed by b itself,
and start a new step.

Lemma 3. Let A and B be two faithfully ordered sequences
of length n1 and n2, respectively, with n2 ≤ n1. Algorithm
SFT-Merge faithfully merges the sequences in O(n1 + (n2 +
α) · δ) time, where α ≤ δ is the number of corrupted keys at
the end of the algorithm execution.

Proof. We first prove that the output sequence is faith-
fully ordered. In spite of possible faults, the correct keys
of B are extracted in increasing order, because the element
b extracted at each step is certainly smaller than or equal
to the minimum correct key in B[j;n2]. The choice of the
proper position of b with respect to sequence A is also fault-
tolerant: when b is added to the output sequence, at least
δ+1 elements from W are larger than A[i], and thus at least
one of them must be correct. Keys smaller than b are re-
turned before b itself, and the fact that their relative order
is maintained guarantees that no error is introduced. We
now discuss the running time. Extracting b, analyzing W ,
and rearranging it, can all be implemented in time O(δ).
Note that if A[i] is corrupted, we may continue scanning A,
and therefore more than one window may be analyzed be-
fore adding b to the output sequence: we charge the analysis
of all these windows over the corrupted element A[i] associ-
ated with each of them. Since at most α elements are faulty,
this contributes O(α · δ) to the total running time. All the
remaining operations require time O(n1 + n2 · δ).

3.3 Sorting in the presence of memory faults
In this section we present and analyze a strongly fault-

tolerant mergesort-based sorting algorithm, that we call SFT-

Mergesort. As in Section 2.1, we assume an iterative bottom-
up implementation in order to avoid problems due to a non
fault-tolerant recursion stack. The merging algorithm used
by SFT-Mergesort is described in Figure 1.
The input sequences, A and B, are first merged using the

linear-time subroutine WFT-Merge. The output sequence, C,
may not be faithfully ordered, i.e., some correct elements
may be in a wrong position. Such errors are recovered by
the combined use of Purify and SFT-Merge. Note that the
crux of this merging algorithm is to use the slower strongly
fault-tolerant subroutine SFT-Merge on two unbalanced se-
quences, the shorter of which has length proportional to the
actual number of corrupted keys (as we will see later). It
is easy to see that the entire algorithm is strongly fault-
tolerant.

Analysis. Let  be the total length of the faithfully ordered
sequences A andB to be merged. Let in and thru denote the
number of keys corrupted in the input and during merging,
respectively, and let α = in+thru. By Lemma 2, WFT-Merge
returns an O(α · δ)-unordered sequence in time O( ). By
Lemma 1, the list D of keys discarded by Purify has length
O(α · δ). The running times of Purify and SFT-Merge are
both O( + α · δ2) by Lemmas 1 and 3, respectively. Since

|D| = O(α ·δ), then δ = Ω(|D|1/2) and Naive-Mergesort on
the setD requires time O(|D|·δ) = O(α·δ2) (see Section 2.1).
Thus we can conclude:

Lemma 4. The merge step takes time O( + α · δ2) to
merge two sequences of length  containing α corrupted keys.

We remark that the sequence S returned by Purify is
faithfully ordered; more precisely, only keys corrupted dur-
ing the execution of Purify may be unordered in S (see
Lemma 1). A similar consideration holds for the sequence
E returned by Naive-Mergesort. Hence, the propagation of
errors satisfies the following property:

Lemma 5. The merge step returns a faithfully ordered se-
quence in which only the keys corrupted while merging may
be unordered.

Theorem 1. Algorithm SFT-Mergesort faithfully sorts n-
length sequences in O(n log n+α ·δ2) worst-case time, where
α ≤ δ is the total number of memory faults.

Proof. Without loss of generality assume that n is a
power of 2. Consider the recursion tree of SFT-Mergesort.
Let x be any node of this tree at level k, for 0 ≤ k <
log n. Let ink(x) be the number of errors contained in the
sequences to be merged at node x, and let thruk(x) be the
number of errors introduced while merging at node x. By
Lemma 4, the time required for merging at node x satisfies
the following equation:

Tk(x) = O
“ n

2k

”
+ (ink(x) + thruk(x)) δ

2

By Lemma 5, ink(x) = thruk+1(x1) + thruk+1(x2), where
x1 and x2 are the children of node x in the recursion tree.
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Since α is the total number of memory faults, we havePlog n
k=0

P2k

x=1 thruk(x) ≤ α. Thus, if we sum up the fault
dependent contributions (ink(x)+ thruk(x))δ

2 on the entire
recursion tree, we obtain O(α·δ2). With standard techniques
we can then conclude that the running time of algorithm
SFT-Mergesort is O(n log n+ α · δ2).

A crucial point in the running time analysis is that the
slowdown of the merge step depends only on the actual num-
ber of faults in the sequence: the fewer the corrupted val-
ues, the faster is merging and thus sorting. We remark that
algorithm SFT-Mergesort can actually work without knowl-
edge of a tight upper bound on the number of faults: choos-
ing δ = O((n log n)1/3) yields an O(n log n) strongly fault-

tolerant sorting algorithm that is [(n log n)1/3 ]-resilient to
memory faults. Moreover, by Lemma 5, if no key is cor-
rupted during the last merge step (i.e., at the root of the
recursion tree), both correct and corrupted keys will be or-
dered in the output sequence.

4. LOWER BOUND ON FAULT-TOLERANT
SORTING

In this section we prove lower bounds on strongly fault-
tolerant merging and sorting in the comparison model. We
will assume that the basic comparisons are of the form “x <
y?”: the results can be easily generalized to other kinds
of comparisons, such as “x ≤ y?” or “x > y?”. We first
show that Ω(n + δ2−ε) comparisons are necessary to merge
two faithfully ordered sequences of length n containing up
to δ faulty values when δ ≤ n2/(3−2ε), for any ε, 0 ≤ ε ≤
1/2. To prove this, we use an adversary-based argument.
A merging algorithm asks comparison questions that the
adversary should answer consistently: if challenged at any
time, the adversary must exhibit two input sequences and at
most δ memory faults such that all her answers are correct
(i.e., consistent with the memory image at the time when
the comparison was asked). Both algorithm and adversary
know the fault upper bound δ.

Adversary’s strategy. Let A and B be two faithfully or-
dered sequences of length n that need to be merged. With-
out loss of generality we assume that n mod δ = 0. We
divide A and B into δ subsequences of n/δ consecutive ele-
ments, called A1, . . . Aδ andB1, . . . Bδ, respectively. Namely,
Ai = A[(i − 1)n/δ; i(n/δ) − 1], for 1 ≤ i ≤ δ. Bi is defined
similarly. The adversary answers the algorithm’s questions
as if the sorted sequence were:

S = A1 B1 A2 B2 . . . Bδ−1 Aδ Bδ

Analysis. We build a comparison graph G(V,E) as follows:
V consists of 2n vertices, one for each element of A and B;
two vertices are connected by as many edges as the number
of times the corresponding elements have been compared.
The vertices are grouped into 2δ clusters associated with
the subsequences Ai and Bi defined above. To prove the
lower bound, we will show that if this comparison graph
has less than (δ2−ε/2) edges, then there must be at least
two possible orderings of the input sequences that are both
consistent with all of the adversary’s answers.
We say that two clusters Ai and Bj are consecutive if ei-

ther j = i or j = i − 1. A sequence of consecutive clusters

is called sparse if the elements in the clusters induce a sub-
graph with less than δ/2 edges. We first prove two lemmas
about sparse sequences.

Lemma 6. If the algorithm performs less than δ2−ε/2 com-
parisons, for some ε, 0 ≤ ε ≤ 1/2, then there exists at least
one sparse sequence of length 2δε.

Proof. There are 2δ/(2δε) = δ1−ε disjoint subsequences
of 2δε consecutive clusters. If none of them is sparse, the
number of comparisons should be ≥ δ1−ε(δ/2) = δ2−ε/2,
which is a contradiction.

Lemma 7. Let δ ≤ n2/(3−2ε), for some ε, 0 ≤ ε ≤ 1/2.
Let Y be a sparse sequence of length 2δε. Then Y must
contain two clusters Ai and Bj such that at least one pair
of elements a ∈ Ai and b ∈ Bj has not been compared by the
algorithm.

Proof. Assume by contradiction that each element of Ai

is compared with each element of Bj , for each Ai and Bj

in Y . Recall that |Ai| = |Bj | = n/δ and that Y consists
of δε clusters Bj and δε clusters Ai. Thus, each Ai must
have degree ≥ δε(n/δ)2 and the total number of edges in
the subgraph induced by Y must be ≥ n2δ2ε−2. Since by
assumption δ ≤ n2/(3−2ε), we have n2δ2ε−2 ≥ δ3−2εδ2ε−2 =
δ. Since Y is sparse, it should be also n2δ2ε−2 < δ/2, which
is clearly a contradiction.

Lemma 8. Given any ε, 0 ≤ ε ≤ 1/2, any strongly fault-
tolerant merging algorithm requires in the worst-case Ω(n+
δ2−ε) comparisons to merge two faithfully ordered sequences

of length n when up to δ ≤ n2/(3−2ε) values may be cor-
rupted.

Proof. We consider only the case where δ > n1/(2−ε),
since if δ ≤ n1/(2−ε) the lower bound trivially holds. Let δ >
n1/(2−ε) and assume that the algorithm has asked less than
δ2−ε/2 comparison questions. By Lemma 6, there must be
a sparse sequence, say Y = AkBkAk+1 . . . Ak+δε−1Bk+δε−1,
of length 2δε. By Lemma 7, let a ∈ Ai and b ∈ Bj , for some
k ≤ i, j < k + δε, be two elements of Y that have not been
directly compared by the algorithm. We analyze only the
case when i ≤ j (the analysis when i > j is similar). We will
show that both the order in which a precedes b and the order
in which b precedes a are consistent with the adversary’s
answers. The former case is easy, since it holds when no
value has been corrupted. In the latter case, consider the
sequence of comparisons asked by the algorithm. Let “x <
y?” be any such question: as far as a and b have been
chosen, neither “a < b?” nor “b < a?” was asked. The
adversary claims that:

1. If either x �∈ Y or y �∈ Y , the question has been con-
sistently answered without introducing memory faults:
the sequences A and B can be stretched so that, for
any t < k, elements in At and Bt are smaller than
elements in Y . Similarly for t ≥ k + δε.

2. If x = a, b and y ∈ Y , then y is corrupted (note that
y �= b, a).

3. If y = a, b and x ∈ Y , then x is corrupted (note that
x �= b, a).

4. If x ∈ Y , y ∈ Y , and none of them coincides with a or
b, both x and y are corrupted.
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Figure 2: Intervals used in the proof of Theorem 3.

Note that, if the comparison involves at most one element
of Y (case 1), there are no memory faults; otherwise (cases
2–4), at most two values are corrupted. Since Y is sparse,
the number of faults is at most δ. Let Y ′ ⊆ Y be the
subset of uncorrupted elements: Y ′ �= ∅, as it contains at
least a and b. The adversary claims that the elements in
Y ′ ∩ B appear before the elements in Y ′ ∩A in the correct
output sequence: these elements have not been compared
against each other – otherwise they would be considered as
corrupted – and the comparisons with elements outside Y
cannot be used to get information regarding their relative
order by transitivity. Thus, the adversary can prove that
she always answered consistently all of the questions and
the algorithm cannot decide which of the two orders (a < b
or b < a) is correct. We remark that neither a nor b is faulty,
and thus both orders are faithful.

Theorem 2. Given any ε, 0 ≤ ε ≤ 1/2, any strongly
fault-tolerant sorting algorithm requires in the worst-case
Ω(n log n+ δ2−ε) comparisons to sort a sequence of length n

when up to δ ≤ n2/(3−2ε) values may be corrupted.

Proof. If δ ≤ (n log n)1/(2−ε), the lower bound trivially

holds. Otherwise, if (n log n)1/(2−ε) < δ ≤ n2/(3−2ε), the
lower bound on sorting follows from Lemma 8. Indeed, if
Theorem 2 were not true, using a sorting algorithm in order
to solve the merging problem would contradict the lower
bound of Ω(δ2−ε) that derives from Lemma 8.

We can now characterize the resilience to memory faults of
comparison-based strongly fault-tolerant sorting algorithms
with optimal running time.

Theorem 3. Any O(n log n) comparison-based strongly

fault-tolerant sorting algorithm can be at most [(n log n)1/2 ]-
resilient to memory faults.

Proof. By Theorem 2, Ω(n log n+δ2−ε) is a lower bound

on strongly fault-tolerant sorting when δ ≤ n2/(3−2ε), for any
ε, 0 ≤ ε ≤ 1/2. We consider three different choices for ε:

• ε = 1/2: this gives the weakest lower bound, i.e.,

Ω(n log n+ δ3/2), that holds for each δ ≤ n.

AnO(n log n) algorithm cannot therefore be δ-resilient,

with δ ∈
“
(n log n)2/3, n

i
.

• ε = 1/6: this gives a lower bound of Ω(n log n+ δ11/6)

that holds for each δ ≤ n3/4.

AnO(n log n) algorithm cannot therefore be δ-resilient,

with δ ∈
“
(n log n)6/11, n3/4

i
.

• ε = 0: this gives the strongest lower bound, i.e.,
Ω(n log n+ δ2), that holds for each δ ≤ n2/3.

AnO(n log n) algorithm cannot therefore be δ-resilient,

with δ ∈
“
(n log n)1/2, n2/3

i
.

As shown in Figure 2:“
(n log n)1/2, n2/3

i
∪
“
(n log n)6/11, n3/4

i
∪

∪
“
(n log n)2/3, n

i
=
“
(n log n)1/2, n

i
Any optimal comparison-based sorting algorithm can thus
be at most [(n log n)1/2]-resilient.

5. FAULT-TOLERANT BINARY SEARCH
In this section we consider the fault-tolerant binary search

problem. Let X be a faithfully ordered sequence of length
n containing at most δ corrupted keys, and let s be a key
to be searched for in X. We first describe a fault-tolerant
searching algorithm with O(log n+α ·δ2) query time, where
α is the total number of faulty keys in X, and then we
show how to improve the query time to O(log n + k · δ ·
log(δ/k)), where k is the actual number of faulty keys on the

search path to s. This yields a [(log n)1/2 ]-resilient searching
algorithm that requires O(log n) time in the worst case. We
also prove that any comparison-based searching algorithm
with optimal O(log n) time can be at most [log n]-resilient
to memory faults.

5.1 The query algorithm
In this section we describe a fault-tolerant searching algo-

rithm, called FT-BinSearch, with O(log n+α·δ2) query time,
where α is the total number of faulty keys in X. The al-
gorithm proceeds in a non fault-tolerant way, checking from
time to time if it did some error. If this is the case, it back-
tracks and corrects the search direction by scanning part
of the search path using a (slow) fault-tolerant approach.
We present a recursive implementation of FT-BinSearch:
similarly to sorting, the recursion can be easily unrolled by
storing a few array indices in O(1) words of reliable mem-
ory. Let a and b denote the left and right indices of the
array to be searched for at a generic step. The recursive call
FT-BinSearch(X, a, b) works as follows.

Step 1. If a = b, return yes if and only if s = X[a] and exit
the algorithm. Otherwise, starting from X[(a+ b)/2],
perform h steps of non fault-tolerant binary search.
Let  and r be the left and right indices of the interval
I identified by this search.

Step 2. Let N� and Nr be two (2δ+1)-size neighborhoods
of X[ ] and X[r], respectively: i.e., N� = X[ − 2δ;  ]
and Nr = X[r; r + 2δ]. If s ∈ N� ∪Nr, return yes and
exit the algorithm.

Step 3. If N� contains at least δ + 1 keys larger than s
or Nr contains at least δ + 1 keys smaller than s,
restarting from X[(a+ b)/2], perform at most h fault-
tolerant binary search steps (using FT-SearchStep of
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Figure 3: Fault-tolerant binary search with h = 5 and correspondence with a binary search tree: ai’s and bi’s
are the left and right boundary nodes, respectively.

Section 2.1), until the first difference from the search of
Step 1 is found (this can be deduced by comparisons
with the values  and r, which are stored in reliable
memory). Update  and r to delimit the new interval
identified by this search.

Step 4. Return the result of FT-BinSearch(X,  , r).

The value h at which we place checkpoints will be deter-
mined in the analysis. The boundary cases where  < 2δ
or r > n − 2δ can be easily handled, e.g., by extending ar-
ray X: before starting the algorithm, we add 2δ keys with
value −∞ to the left of X[0] and 2δ keys with value +∞
to the right of X[n − 1]. At the first invocation, we call
FT-BinSearch(X, 2δ, n+ 2δ − 1).

Analysis. Note that, if there were no faults, at the end of
Step 1 the search should continue in interval I = X[ ; r].
The test in Step 3 simulates two fault-tolerant search steps
on X[ ] and X[r], respectively, using a majority argument.
It is easy to see that we have taken a wrong search direction
at some point during Step 1 if and only if either the fault-
tolerant search step at X[ ] would continue the search to the
left or the fault-tolerant search step at X[r] would continue
the search to the right.

Lemma 9. Given a faithfully ordered sequence X of length
n, algorithm FT-BinSearch correctly answers membership
queries on X in O(log n + α · δ2) worst-case time, where
α ≤ δ is the total number of corrupted keys at the end of the
algorithm execution.

Proof. The algorithm answers yes only if it finds an in-
dex i such that the searched key s = X[i]. Thus, to show
its correctness, we just need to prove that in case of a nega-
tive answer there exists no correct key equal to s. This may
be false if the algorithm has taken at some point a wrong
search direction. However, if the search in Step 1 is not cor-
rect, this is detected by the test in Step 3 and the search is
then repeated in a fault-tolerant way. This guarantees that
the values  and r in the recursive call in Step 4 are always
correct.
We now discuss the running time. It is easy to see that

Steps 1, 2, and 3 require time O(h), O(δ), and O(h · δ),
respectively. Each time we perform a fault-tolerant search
in Step 3, we eliminate at least one error from the interval
in which the search continues, and thus we can execute it
at most α times. Counting the running time for Step 3
and for the uncorrect searches in Step 1 separately, we get
O(α · h · δ) total time. If the search in Step 1 is correct, the
interval on which we recurse in Step 4 has length (b−a)/2h,
and thus the running time for the remaining steps is given

by the recurrence T (n) = T (n/2h) + O(δ + h) = O((1 +
δ/h) log n). This yields a total of O((1+ δ/h) log n+α ·h ·δ)
time. Choosing h = δ, we get that FT-BinSearch answers
membership queries in O(log n+α · δ2) worst-case time.

5.2 Improving the query time
A careful implementation and analysis of Step 3 of algo-

rithm FT-BinSearch improves the running time to O(log n+
k · δ · log(δ/k)), where k is the actual number of faulty keys
on the search path to s.
Note that the keys considered during the non fault-tolerant

search of Step 1 naturally correspond to the nodes of a
binary search tree (see Figure 3). Call ai’s and bi’s the
nodes where we turn right and left during the search, respec-
tively (also called left boundary and right boundary nodes).
Clearly, a0 = a and b0 = b. For brevity, we call a value
misleading if it is faulty and guides the search to a wrong
direction during Step 1. Let us assume that there exists a
misleading left boundary node, say aj (this is detected in
Step 3 by the simulation of the fault-tolerant search step on
X[ ]). The search should then continue to the left of aj ,
all ak with k ≥ j are faulty, and all bi are not misleading
(they might be faulty, though). In order to find the first
misleading aj encountered in Step 1, which is the upmost
in the binary search tree and leftmost in the array, we can
therefore use a fault-tolerant binary search on the set of the
ai’s. However, it is not possible to store the ai’s in reli-
able memory, as the required size would not be constant:
instead, we can recompute the ai’s on the fly by simulating
the O(h)-time search in Step 1. (We defer the details to the
full paper.) The case of a misleading bi is symmetric. This
implementation of Step 3 costs O((δ+ h) log h) = O(δ log δ)
time, decreasing the total query time to O(log n+α ·δ log δ).
We can further refine the algorithm and its analysis proving
the following result:

Theorem 4. Given a faithfully ordered sequence X of
length n containing at most δ faulty values, we can correctly
search in X in O(log n+ kδ log δ

k
) worst-case time, where k

is the number of faulty values on the correct search path.

Proof. Let aj be the leftmost misleading left boundary
node. Let t be the number of left boundary nodes to the
right of aj (all of them must be faulty). Starting from the
rightmost left boundary node (i.e.,  ) and using doubling
until we find a non misleading ai, we can identify aj in
time O((δ + h) log t). Let k be the total number of faulty
values on the correct search path to s: in the worst case all
such values are misleading. On the i-th misleading value,
we spend time O((δ + h) log ti) = O(δ log ti) to eliminate ti
faulty keys, and exactly one of these keys is on the correct
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search path to s. Summing up the running times of all the
fault-tolerant binary searches (at most k), we get
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Hence, the total query time is O(log n+ kδ log(δ/k)) when
the search path contains k faulty values.

We remark that O(log n + kδ log δ
k
) = O(log n + δ2) in

the worst case. Hence, choosing δ = O((log n)1/2) yields a
searching algorithm with optimal O(log n) query time that

is [(log n)1/2 ]-resilient to memory faults.

5.3 Lower bound
A simple adversary-based argument shows that Ω(log n+

δ) comparisons are necessary to answer membership queries
on a faithfully ordered sequence of length n containing up
to δ faulty keys. We limit to prove that every fault-tolerant
search algorithm needs Ω(δ) comparison questions. Combin-
ing this with the classical Ω(log n) lower bound (absence of
faults), gives the desired result. We will show an adversary’s
answering strategy that leaves at least two possible correct
answers if the searching algorithm asks less than (δ/2) ques-
tions.

Adversary’s strategy. Let X be a faithfully ordered se-
quence of length n. Let xi, for 1 ≤ i ≤ n, denote the i-th
element of X, and let s be the key to be searched for. The
algorithm may ask two possible kinds of comparisons: either
“s < xi?” or “xi < xj?”, for 1 ≤ i, j ≤ n. If the question
is of the former type, the adversary always answers yes. If
the question is of the latter type, the adversary answers yes
if i < j, and no otherwise.

Analysis. Assume that the searching algorithm asks less
than (δ/2) comparisons. Let C ⊆ X be the set of elements
involved in at least one question. Note that |C| < 2(δ/2) = δ,
because at most two elements per question are used. Since
δ ≤ n, the subsequence X \C is not empty, and the compar-
isons provide no information about it. Based on this, the
algorithm cannot decide whether the answer should be yes
or no. Indeed, the adversary can exhibit either a correct
sequence not containing s or a faulty sequence containing s.
This faulty sequence can be obtained as follows. Let xk be
any element in X \ C: the adversary claims that xk = s, all
the keys in C are corrupted, and all of them are larger than
the keys in X \ C. In both cases, all of the adversary’s an-
swers have been consistent with the sequence X. Thus, any
fault-tolerant searching algorithm requires in the worst-case
Ω(log n + δ) comparisons to search in a faithfully ordered
sequence of length n when up to δ values may be corrupted.
We therefore have the following theorem:

Theorem 5. Any comparison-based searching algorithm
with optimal O(log n) query time can be at most [log n]-
resilient to memory faults.
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