
Abstract
Hierarchies of diverse storage levels have been analyzed
extensively for their ability to achieve both good perfor-
mance and low cost. This position paper argues that we
should view hierarchies also as a way to achieve both
good reliability and low overhead. After discussing the
design of a reliability hierarchy, we suggest two metrics to
use in evaluating the overall reliability of a reliability
hierarchy: mean time to data loss (MTTDL) and data loss
rate. These and other metrics allow researchers to evalu-
ate the reliability/performance tradeoffs quantitatively for
new storage devices and hierarchies. We use this frame-
work to evaluate how the Rio file cache affects the mean
time to data loss and data loss rate of an existing storage
hierarchy. Rio improves MTTDL over a standard delayed-
write file cache by an order of magnitude and can be used
with a long write-back delay without increasing data loss
rate. Rio fills in the reliability gap between ordinary mem-
ory and disk by providing a storage level with high perfor-
mance and intermediate reliability.

1. Introduction

Users and system builders are accustomed to thinking
of storage system reliability in absolute terms. A common
perception is that data is either safe on stable storage, or
not safe at all, at least to a first-order approximation. Text-
books often draw a sharp dividing line between non-stable

and stable storage [Mullender93], as though one were
absolutely unsafe and the other absolutely safe.

In reality, systems are composed of several types of
storage, each with different degrees of reliability. For
example, a typical user in the Michigan EECS Department
stores files in a DRAM file cache, on disk, and on backup
tape. There are obvious reasons for using a combination of
storage devices with different reliability and performance.
For example, DRAM is not typically reliable enough (nor
cheap enough) to store all files, and backup tape is not fast
enough to serve as the sole on-line storage medium.

Most past research in storage hierarchies has focused
on improving the performance of memory and storage
hierarchies [Smith82]. Some have focused on reliability
and performance but have concentrated on a single storage
level in isolation [Gibson91]. To our knowledge, none
have investigated or quantified in a systematic way the
overall reliability of a hierarchy of storage levels.

Our position is that we should view a hierarchy of
reliability levels in much the same way that we now view
hierarchies for performance. We describe different aspects
of designing reliability hierarchies, and we propose two
simple metrics for quantifying the reliability of a given
hierarchy. These and other metrics will help system
designers to quantitatively evaluate tradeoffs between per-
formance and reliability. We also show how the Rio file
cache [Chen96] could fit into a reliability hierarchy, and
we describe how to provide Rio for current PCs (a plat-
form that presents several difficulties for the original
approach).

2. Designing and analyzing reliability
hierarchies

The basic scheme of memory hierarchies to improve
performance is well known. As one proceeds down a per-

Reliability Hierarchies

Peter M. Chen and David E. Lowell

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
{pmchen,dlowell}@eecs.umich.edu

http://www.eecs.umich.edu/Rio

This research was supported in part by NSF grant MIP-9521386
and Intel Corporation. Peter Chen was also supported by an NSF
CAREER Award (MIP-9624869).

1999 Workshop on Hot Topics in Operating Systems (HotOS)

formance hierarchy,cost per bit improves andoverhead
(time to access data) worsens (Figure 1a). One can depict a
hierarchy of reliability levels in much the same way (Fig-
ure 1b). As one proceeds down a reliability hierarchy,reli-
ability improves andoverhead worsens. While overhead in
a performance hierarchy always refers to performance
(e.g. time to access data), the definition of overhead in a
reliability hierarchy depends on the application domain.
For example, overhead may refer to:
• performance: e.g. backup tape is slower than magnetic

disk.
• cost: e.g. mirrored disks (RAID Level 1) are twice as

expensive as non-redundant disks (RAID Level 0).
• power: e.g. it takes more power to write data to mag-

netic disks than to memory.
Many aspects of performance hierarchies have analo-

gous aspects in reliability hierarchies. For example, one
metric must improve monotonically as one proceeds down
the hierarchy (cost/bit or reliability), and the other metric
must worsen monotonically (overhead). In either hierar-
chy, some applications may choose to bypass certain lev-
els. For example, applications that exhibit poor locality
may bypass an upper level in a performance hierarchy.
Similarly, applications that demand a minimum reliability
may bypass an upper level in a reliability hierarchy. Both
types of hierarchy have similar design dimensions: which
levels to include, the size of each level, the policy of when
to transfer data between levels (write-back vs. write-
through, replacement algorithms, prefetching, etc.).

Transfer policy is particularly important for reliability
hierarchies, because it directly affects the reliability of the
overall hierarchy. A straightforward policy is to write
through to the lowest, most reliable level. While this yields
the good reliability of the lowest level, it also suffers from

the high overhead of the lowest level. Always writing
through to the lowest level essentially reduces the reliabil-
ity hierarchy to a single level. Most systems use a variety
of levels because a single level does not suit the needs of
varying applications [Lampson83]. Not all applications
require the highest reliability, so they should not be forced
to pay the high overhead associated with that high reliabil-
ity.

Instead, most applications choose to sacrifice some
reliability to achieve lower overhead. One common trans-
fer policy is based on time. For example, transfer from a
DRAM file cache to disk after 15 seconds, and transfer
from disk to tape backup after 1 day. LetdelayL be the age
of the data before it leaves level L and is written to level
L+1. Note thatdelayL is monotonically increasing with L.
Of course, other transfer policies are possible, such as
transferring after creating a certain amount of data. To
simplify the discussion, we will assume a policy based on
time for the remainder of this paper; other policies can
often be mapped to time if the workload is known.

Transfer policy represents a tradeoff between over-
head and reliability. Longer delays lead to less data being
written to the lower level, because locality of reference
allows some data to be written multiple times to one level
before being propagated to the next level. Longer delays
also allow more data to be transferred at a time, which
increases transfer efficiency. However, longer delays
reduce reliability, because data lives longer on a less reli-
able level.

Evaluating these types of tradeoffs requires metrics
that quantify the overall reliability of a hierarchy. One
straightforward metric is MTTDL (mean time to data loss

Figure 1: Hierarchies for Performance and Reliability. Combining multiple storage levels into a hierarchy can
be used to improve performance or reliability. Performance hierarchies trade off cost for performance; reliability
hierarchies trade off overhead for reliability. Overhead in a reliability hierarchy can refer to many things, such as
performance, cost, or power consumption.

main memory

L2 cache

L1 cache

swap disk

Better cost
Worse performance

on-site tape backup

disk

memory

remote backup

Better reliability
Worse overhead

(a) Performance hierarchy (b) Reliability hierarchy

for the overall hierarchy). MTTDL for a hierarchy of n
levels can be computed as follows:

whereMTTFL is the mean time to failure of level L. Note
that MTTDL is limited by the reliability of the least reli-
able level.

MTTDL is the relevant metric when losing any
amount of data is equally significant. However, MTTDL is
too simplistic for applications that distinguish between
different amounts of lost data. For example, MTTDL does
not distinguish between a large loss of data due to a disk
crash and a small loss of data due to a memory error.

We propose a second metric for evaluating reliability
hierarchies:data loss rate. Data loss rate is the fraction of
data lost over time due to failures in the storage hierarchy.
Data loss rate is analogous to the average access time used
to evaluate performance hierarchies. Average access time
for a performance hierarchy of n levels is computed as a
weighted average of access times:

Similarly, data loss rate for a reliability hierarchy is
computed as a weighted sum of the duration of data lost
when a level fails:

delayn is a special case, as there is no lower level to
which to transfer data. One way to handle this is to assume
the lowest level has an MTTF of infinity, then use a stor-
age technology that approaches this ideal (relative to the
reliability of other levels). Another way is to setdelayn to
the amount of useful data that would be lost if level n
failed. For example, perhaps only the last year of data is
valuable in a closet of backup tapes.

Both these metrics fall in the general class:

wherefL denotes thevalue of the data that would be lost
when level L fails. Other definitions offL are possible. For
example,fL could be set to a sub-linear function ofdelayL,
so that new data would be weighted more heavily than old
data.

The above analysis does not account for correlated
failures. If a failure (such as a flood) affects multiple lev-
els, the formulas must be adjusted to factor in a fault type
exactly once. Otherwise, a single fault would lower the

MTTF of multiple levels and affect the MTTDL and data
loss rate multiple times. One way to correct for correlated
failures is to compute metrics by summing over fault types
rather than reliability levels:

(EQ 1)

(EQ 2)

whereMTTFF is the mean time to occurrence of fault type
F anddamageF is the duration of data lost when fault type
F occurs.

3. Examples

In this section, we describe examples of the types of
faults that occur in computer systems and storage devices
commonly found in a reliability hierarchy. Table 1 summa-
rizes the storage levels and faults and shows an example
MTTF for each fault type.

3.1. Fault categories

We consider the following fault categories: operating
system, file system, power, motherboard, media, and
catastrophe.

Operating system: The frequency of operating sys-
tem crashes varies widely depending on the operating sys-
tem. Mature operating systems can have an MTTF
measured in months, while newer operating systems may
crash every few days. Unfortunately, the most common
operating system in use today is reputed to fail every few
days [Carreira97].

File system: A small percentage of operating system
crashes corrupt permanent file system data [Chen96,
Ng99]. We use a separate category for these crashes
because they can affect file system data on all on-line stor-
age devices.

Power: North American power may fail once every
few months. An uninterruptible power supply (UPS) can
increase the MTTF to 5-50 years [APC97].

Motherboard : This category includes hardware fail-
ures in the processor, memory, and motherboard systems.
Field data and common experience indicate that hardware
faults are much rarer than software faults [Gray91]. In par-
ticular, design faults in hardware are rare and can cause
quite a stir when discovered (e.g. Intel’s FDIV bug). Most
hardware faults are due to physical phenomena such as
wear-out and environmental conditions (overheating).
These types of faults are relatively easy to guard against
by using redundant hardware. In contrast, design faults in

MTTDL
1

1
MTTFL

L 1=

n

∑
------------------------------=

hitRateL accessTimeL×
L 1=

n

∑

data loss rate
delayL

MTTFL

L 1=

n

∑=

f L

MTTFL

L 1=

n

∑

MTTDL
1

1
MTTFF

all fault types F
∑

---=

data loss rate
damageF
MTTFF

all fault types F

∑=

large software packages are the expected norm, and are
difficult to guard against with simple replication.

Media: Disks are quite reliable, with most carrying
warranties of 5 years. MTTF for disks are probably signif-
icantly longer, though most manufacturers have stopped
publishing MTTF data.

Catastrophe: This category includes rare events such
as fire, floods, and war.

There are also other important types of errors, such as
user errors (e.g. accidentally deleting a file) and applica-
tion bugs. The analysis below considers only system-level
errors. Surviving user and application errors can be done
with techniques such as saving recently deleted files and
automatic checkpointing.

3.2. Reliability levels

Storage hierarchies may include a wide variety of lev-
els, such as processor/memory, magnetic disk, redundant
disk arrays, on-site tape backup, and remote backup.

Processor/memory forms the top level of most reli-
ability hierarchy and includes processor registers, CPU
caches, and memory. These devices are often not consid-
ered part of the hierarchy for permanent storage. However,
all modern operating systems include a file or buffer
cache, which caches permanent file data in this level. This
level typically loses data during operating system crashes,
file system crashes, power outages, motherboard failures,
and catastrophes.

Magnetic disk is the mainstay of current reliability
hierarchies. Disks survive most operating system crashes,
power outages, and motherboard failures. However, they

do not survive file system crashes, media failures (such as
head crashes), or catastrophes.

Redundant disk arrays enhance reliability using a
variety of error correction codes. To a first-order approxi-
mation, disk arrays survive all faults except file system
crashes and catastrophes.

On-site tape backup represent another form of redun-
dancy. Backup tapes survive most types of faults except
site-wide catastrophes. Note that tapes themselves are not
very reliable; however they are needed only in the infre-
quent case of disk crashes (or user errors).

Remote backups are used to store long-term, critical
data such as financial records. These off-site vaults of stor-
age survive essentially all faults (and if they don’t, nobody
will be around to debate the point).

3.3. Example hierarchy

A typical file server in the Michigan EECS Depart-
ment has a UPS and a 3-level reliability hierarchy: mem-
ory, magnetic disk, and on-site tape backup.

Table 2 shows the values for our reliability metrics for
this hierarchy. We compute the MTTF for a level by taking
the harmonic sum of the MTTF for all faults that affect
that level (applying Equation 1 for a single-level hierar-
chy). We compute the MTTDL for the overall hierarchy
using Equation 1, because several of the fault types affect
multiple levels. The overall MTTDL of the hierarchy is 1.8
months and is dominated by the frequency of operating
system crashes.

To compute data loss rate, we assume a transfer policy
that moves data from memory to disk 15 seconds after the

Table 1: Examples of Fault Categories and Storage Devices.

Fault Category
Example
MTTF

Storage Devices Affected by Fault

processor/
memory

disk
redundant
disk array

on-site tape
backup

remote-site
backup

operating system 2 months ✔

file system 5 years ✔ ✔ ✔

power
2 months (no UPS)

10 years (UPS) ✔

motherboard 5 years ✔

media 5 years ✔

catastrophe 50 years ✔ ✔ ✔ ✔

data is created (a 15-second delayed-write file cache), then
moves data to tape backup after 1 day. We approximate the
MTTF of tape as infinity. Applying Equation 2, the result-
ing data loss rate is 0.0011, or about 10 hours of data per
year. Whereas MTTDL is dominated by the frequency of
operating system crashes, data loss rate is dominated by
the infrequency of backing data up to tape. This transfer
policy between disk and tape is necessitated by the slow
speed and high management overhead of tape backup.

4. Rio’s place in the reliability hierarchy

4.1. Effect on reliability

The Rio file cache enables data in memory to survive
operating system crashes as well as disks do [Chen96]. As
shown in Table 3, this improves the MTTF of memory by
12x (1.9 years). Rio removes the dominant component of
MTTDL in the example hierarchy in Section 3.3, improv-
ing MTTDL from 1.8 months to 1.4 years (a factor of 9x).
Data loss rate in the example is dominated by the disk-tape
boundary, so Rio does not improve this significantly.

While Rio does not improve data loss rate signifi-
cantly, it does allow the system to use a much lazier policy
for transferring data from memory to disk without increas-
ing data loss rate. With Rio, data can stay in memory for 5
minutes and still maintain the same data loss rate as a non-
Rio system would have with a 15-second delay. Remem-
ber that changing transfer policies does not affect MTTDL
for the hierarchy as a whole.

Rio provides a new storage level with a unique set of
characteristics. Rio fills in the “reliability gap” between
ordinary memory and disk by providing a storage level
with high performance and intermediate reliability (much
more reliable than memory, though not as reliable against
all faults as disk). We have found this new storage level to
be very useful in our work on lightweight transactions,
checkpointing, and distributed recovery.

4.2. Implementing Rio on PCs

The original Rio prototype was implemented on Digi-
tal Alpha workstations running Digital Unix. This imple-
mentation usedwarm reboot, which wrote file cache data
to disk during reboot. Unfortunately, several aspects of PC
hardware require a different approach than warm reboot.
First, some PC console (BIOS) firmware clears memory
during the initial phase of boot. Second, the PC reset but-
ton (if it exists) often erases memory. Third, the CPU
cache uses a write-back policy and is also reset at the
beginning of boot.

We have re-implemented Rio on PCs using the
FreeBSD 2.2.7 operating system [Ng99]1. The key new
technique is calledsafe sync. Whereas warm reboot writes
the file cache to disk during reboot, safe sync writes the
file cache to disk during the last phase of the crash.
Because this takes place before the system resets, this
avoids the problems mentioned above. Unix kernels
already try to sync data when they panic, but this fails 40%
of the time on FreeBSD [Ng99]. Rio’s safe sync uses sev-
eral techniques to improve the probability of success.
First, we minimize the use of kernel state and machine
resources during safe sync. For example, we keep a sepa-
rate registry that tracks the contents of the file cache, and
we run safe sync on a pre-allocated stack in physical mem-
ory. Second, we modify the low-level interrupt handler to
trigger a panic if it sees a special key sequence. This
allows the operator to initiate safe sync even if the system
deadlocks. Our interrupt handler operates below the soft-
ware interrupt mask used by FreeBSD, so safe sync can be
triggered even while interrupts are masked. This keyboard
interrupt serves a similar purpose to the reset button on
Alphas, which injects a software halt instruction into the
Alpha pipeline.

After implementing these techniques, FreeBSD-Rio
achieves a corruption rate of 1.9%. FreeBSD-Rio loses

1. FreeBSD-Rio is available at http://www.eecs.umich.edu/Rio.

Table 2: Reliability of an Example Hierarchy.

MTTFmemory 1.8 months

MTTFdisk 2.4 years

MTTFtape backup 50 years

overall MTTDL 1.8 months

data loss rate 0.0011

Table 3: Reliability of a Hierarchy with Rio.

MTTFmemory 1.9 years

MTTFdisk 2.4 years

MTTFtape backup 50 years

overall MTTDL 1.4 years

data loss rate 0.0011

data during operating system crashes less frequently than
even a disk-based, write-through file system (3.1%).

5. Conclusions

Hierarchies of diverse storage levels have been ana-
lyzed extensively for their ability to achieve both good
performance and low cost. This position paper argues that
we should view hierarchies also as a way to achieve both
good reliability and low overhead. We have suggested two
metrics to use in evaluating the overall reliability of a reli-
ability hierarchy: mean time to data loss and data loss rate.
These and other metrics allow researchers to evaluate the
reliability/performance tradeoffs quantitatively for new
storage devices and hierarchies.

We use the Rio file cache to illustrate how a new stor-
age device affects the mean time to data loss and data loss
rate of an existing storage hierarchy. Rio improves
MTTDL over a standard delayed-write file cache and can
be used with a long delay interval without increasing data
loss rate. Rio fills in the reliability gap between ordinary
memory and disk by providing a storage level with high
performance and intermediate reliability.

6. Acknowledgments

The ideas in this paper were developed in discussions
with Subhachandra Chandra, George Dunlap, Wee Teck
Ng, and Brian Noble.

7. References

[APC97] Measuring High Availability Power Protection
Systems - The Power Availability Index (PA

Index). Technical report, American Power
Conversion, 1997. http://www.apcc.com/en-
glish/prods/dcent/symme/.

[Carreira97] Joao Carreira, Diamantino Costa, and
Joao Gabriel Silva. WinFT: Software Imple-
mented Fault Tolerance for Win32 Applica-
tions.Byte, February 1997.

[Chen96] Peter M. Chen, Wee Teck Ng, Subhachandra
Chandra, Christopher M. Aycock, Gurushan-
kar Rajamani, and David Lowell. The Rio File
Cache: Surviving Operating System Crashes.
In Proceedings of the 1996 International Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems
(ASPLOS), pages 74–83, October 1996.

[Gibson91] Garth Alan Gibson.Redundant Disk Arrays:
Reliable, Parallel Secondary Storage. PhD the-
sis, University of California at Berkeley, De-
cember 1991. also available from MIT Press,
1992.

[Gray91] Jim Gray and Daniel P. Siewiorek. High-Avail-
ability Computer Systems.IEEE Computer,
24(9):39–48, September 1991.

[Lampson83] Butler W. Lampson. Hints for Computer Sys-
tem Design. InProceedings of the 1983 Sympo-
sium on Operating System Principles, pages
33–48, 1983.

[Mullender93] Sape Mullender, editor.Distributed Systems.
Addison-Wesley, 1993. Chapter 6.

[Ng99] Wee Teck Ng and Peter M. Chen. The System-
atic Improvement of Fault Tolerance in the Rio
File Cache. InProceedings of the 1999 Sympo-
sium on Fault-Tolerant Computing (FTCS),
June 1999.

[Smith82] Alan J. Smith. Cache Memories.Computing
Surveys, 14(3), September 1982.

