
CoreSPI v3.0

Handbook

http://www.actel.com/survey/rating/?f=CoreSPI_HB.pdf

Actel Corporation, Mountain View, CA 94043

© 2008 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 51700089-1

Release: January 2008

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Overview . 5

Key Features . 5

Supported Device Families . 6

Device Utilization and Performance . 6

1 Functional Block Descriptions . 9
APB Interface . 9

μController Interface . 9

SPI Master . 9

SPI Slave . 9

2 Tool Flows . 11
Licenses . 11

CoreConsole . 11

Importing into Actel Libero IDE . 12

Simulation Flows . 12

Synthesis in Actel Libero IDE . 12

Place-and-Route in Actel Libero IDE . 12

3 Interface Description . 13
Parameters . 13

Signals . 13

Interface Definitions . 15

4 Register Map . 17
APB Register Map . 17

Register Descriptions . 17

Software Interface Flow . 21

5 Testbench Operation and Modification . 23
User Testbench . 23

Verification Testbench . 24

6 System Operation . 25
Use with CoreMP7 . 25

Use with Core8051s . 26

Use with CoreABC . 27

A Testbench Support Routines . 29
VHDL Support . 29

Verilog Support . 30
v2.1 3

Table of Contents CoreSPI v3.0
B List of Document Changes . 31

C Product Support . 33
Customer Service . 33

Actel Customer Technical Support Center . 33

Actel Technical Support . 33

Website . 33

Contacting the Customer Technical Support Center . 33

Index . 35
4 v2.1

Introduction

Core Overview
The Serial Peripheral Interface (SPI) bus allows high-speed synchronous serial data transfer between microprocessors/
microcontrollers and peripheral devices. CoreSPI implements SPI and can operate as either a Master or a Slave. When
operating in Master mode, the core generates the serial data clock (m_sck) and selects the Slave device that will be
accessed. When operating in Slave mode, another Master device generates s_sck and activates the Slave select input of
the core in order to communicate.

The SPI Slave was carefully designed to provide the most reliable communication possible. To achieve a design with a
single clock domain, the s_sck line is sampled and synchronized with the system clock. This has the added benefit of
increased tolerance on s_sck line noise and glitches.

The design is fully synchronous and has one clock domain, the system clock. This leads to more reliable, trouble-free
synthesis and implementation of the core. No special technology features are used, so the source HDL code can be easily
transferred to any technology.

Other features incorporated in the core include support for eight Slave select lines used to access up to eight devices
when working as a Master, and the ability to select the transfer order of the bits (MSB first or LSB first), which saves
valuable time by not implementing this function in software. Figure 1 below shows the CoreSPI block diagram.

Figure 1 · CoreSPI Block Diagram

Key Features
• Full-duplex, synchronous, 8-bit serial data transfer

• High bit rates

• Master or Slave mode

• Bit rates generated in Master mode: fPCLK ÷ 2, ÷ 4, ÷ 8, ÷ 16, ÷ 32, ÷ 64, ÷ 128, ÷ 256

• Bit rates supported in Slave mode: fPCLK ≤ fPCLK ÷ 2

• 8 Slave select lines

• MSB-first or LSB-first data transfer

• Fully synchronous design with one clock domain

SPI
Master

µController
I/F

From
Master

m_miso

Control

SPI
Slave

Control

m_mosi

m_ss[7:0]
m_sck To Slave

Status Signals

s_ss
s_sck

s_mosiFrom
Slave

Status Signals

s_miso To
Master

APB Slave I/F Signals

PSEL

PENABLE

PWRITE

PADDR[3:0]

PWDATA[7:0]

PRDATA[7:0]

PCLK

PRESETN

A
PB In

terface
v2.1 5

Introduction CoreSPI v3.0
Supported Device Families
Fusion

IGLOO™

IGLOOe

ProASIC®3L

ProASIC3

ProASIC3E

Device Utilization and Performance
CoreSPI can be implemented in any Actel device. A summary of CoreSPI utilization and performance for various
devices is listed in Table 1 through Table 3. Speed grades used for layout were as follows: IGLOO: STD, Fusion: –2,
ProASIC3/E: –2, ProASICPLUS®: STD, Axcelerator®: –2, RTAX-S: –1.

Table 1 · CoreSPI Device Utilization and Performance (combined mode)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device Total

Fusion 109 221 330 AFS600-2 2.4% 131 MHz

IGLOO 109 218 327 AGL600-STD 2.4% 80 MHz

ProASIC3/E 109 221 330 M7A3P250-2 5.4% 134 MHz

ProASICPLUS 109 300 409 APA075-STD 13.3% 85 MHz

Axcelerator 107 152 259 AX250-2 6.1% 190 MHz

RTAX-S 107 152 259 RTAX250S-1 6.1% 136 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/
generics were set as follows: MASTER_MODE = 1, SLAVE_MODE = 1.

Table 2 · CoreSPI Device Utilization and Performance (Master-only mode)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device Total

Fusion 81 182 263 AFS600-2 1.9% 131 MHz

IGLOO 81 181 262 AGL600-STD 1.9% 86 MHz

ProASIC3/E 81 182 263 M7A3P250-2 4.3% 126 MHz

ProASICPLUS 78 237 315 APA075-STD 10.3% 87 MHz

Axcelerator 79 127 206 AX250-2 4.9% 188 MHz

RTAX-S 79 127 206 RTAX250S-1 4.9% 138 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/
generics were set as follows: MASTER_MODE = 1, SLAVE_MODE = 0.
6 v2.1

CoreSPI v3.0 Device Utilization and Performance
Table 3 · CoreSPI Device Utilization and Performance (Slave-only mode)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device Total

Fusion 94 100 194 AFS600-2 1.4% 196 MHz

IGLOO 94 102 196 AGL600-STD 1.4% 107 MHz

ProASIC3/E 94 100 194 M7A3P250-2 3.2% 202 MHz

ProASICPLUS 50 134 184 APA075-STD 6.0% 144 MHz

Axcelerator 50 66 116 AX250-2 2.8% 292 MHz

RTAX-S 60 66 116 RTAX250S-1 2.8% 207 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/
generics were set as follows: MASTER_MODE = 0, SLAVE_MODE = 1.
v2.1 7

v2.1 9

1
Functional Block Descriptions

CoreSPI is primarily a state machine used to interface the Serial Peripheral Interface to the Advanced Peripheral Bus
(APB) interface. Figure 1 on page 5 shows the block diagram for CoreSPI. The following sections describe each block’s
function.

APB Interface
CoreSPI supports the APB interface compatible with the Actel Cortex™-M1, Core8051s, and CoreMP7 processor
cores and the CoreABC generic state machine control core (for simple FSM applications). This interface provides direct
access to the core’s internal registers (see “Register Map” on page 17).

µController Interface
The μController interface block is used to translate APB read and write commands to SFR (special function register)
reads and writes, as well as to provide control logic for the SPI Master and SPI Slave blocks.

SPI Master
The SPI Master block is the state machine that keeps track of, and updates, the status of the CoreSPI Master functions.
It contains an SPI interface to the Slave it is controlling, including a clock line (sck) and a data line (ss).

SPI Slave
The SPI Master block is the state machine that keeps track of, and updates, the status of the CoreSPI Slave functions. It
contains an SPI interface to the Master that is controlling it, including a clock line (sck) and a data line (ss).

2
Tool Flows

Licenses
CoreSPI is licensed in three ways. Depending on your license, tool flow functionality may be limited.

Evaluation
Pre-compiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated
within Actel Libero® Integrated Design Environment (IDE) as described below. The design cannot be synthesized, as
source code is not provided.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated with CoreConsole, and simulation,
synthesis, and layout to be performed in Libero IDE. The RTL code for the core is obfuscated.1

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreSPI is preinstalled in the CoreConsole IP Deployment Platform (IDP). To use the core,2 simply drag it from the IP
core list into the main window. The core can then be configured using the configuration GUI within CoreConsole, as
shown in Figure 2-1. The CoreConsole project can be exported to Libero IDE at this point, providing access only to
CoreSPI; or other IP blocks can be interconnected, allowing the complete system to be exported from CoreConsole to
Libero IDE.

Figure 2-1 · CoreConsole Configuration of CoreSPI

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names have been replaced

with random character sequences.

2. A CoreSPI license is required to generate the design for export to Libero IDE for simulation and synthesis.
v2.1 11

Tool Flows CoreSPI v3.0
Importing into Actel Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, the required testbench flow must be selected within CoreConsole and Save & Generate must be run
from the Generate pane. Select the required testbench through the Core Testbench Configuration GUI. Two simulation
testbenches are supported with CoreSPI:

• Simple CoreSPI user testbench (VHDL and Verilog)

• Full CoreSPI verification testbench (VHDL and Verilog)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run either the
simple application or the full verification environment, simply set the design root to the CoreSPI instantiation in the
Libero IDE design hierarchy, and click the Simulation icon in the Libero IDE Design Flow window. This will invoke
ModelSim® and automatically run the simulation.

Synthesis in Actel Libero IDE
Having set the design root appropriately, click the Synthesis icon in Libero IDE. The synthesis window appears,
displaying the Synplicity® project. Set Synplicity to use the Verilog 2001 standard if Verilog is being used. To run
synthesis, click the Run icon.

Place-and-Route in Actel Libero IDE
Having set the design root appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
CoreSPI requires no special place-and-route settings.
12 v2.1

3
Interface Description

Parameters
CoreSPI has parameters (Verilog) and generics (VHDL) for configuring the RTL code (Table 3-1). All parameters and
generics are integer types. These parameters/generics are mapped to configuration options in the CoreConsole
configuration window.

Signals
The port signals for the CoreSPI macro are defined in Table 3-2 on page 14 and illustrated in Figure 3-1. All signals are
designated either “Input” (input-only) or “Output” (output-only). The combined Master and Slave implementation of
CoreSPI has 42 I/O signals.

Figure 3-1 · CoreSPI I/O Signal Diagram

Table 3-1 · CoreSPI Configuration Parameters

Parameter Values Description

FAMILY 0 to 99

Must be set to match the supported FPGA family:

11 – Axcelerator

12 – RTAX-S

14 – ProASICPLUS

15 – ProASIC3

16 – ProASIC3E

17 – Fusion

20 – IGLOO

21 – IGLOOe

USE_MASTER 0, 1 If 1, SPI Master logic is instantiated; otherwise, SPI Master logic is omitted.

USE_SLAVE 0, 1 If 1, SPI Slave logic is instantiated; otherwise, SPI Slave logic is omitted.

PENABLE
PSEL

PWRITE

M_MISO
S_SCK

S_SS
S_MOSI

PADDR[3:0]
PWDATA[7:0]

PRESETN
PCLK

RX_DATA_READY
INTERRUPT

M_MOSI
M_SCK

M_SS[7:0]
S_MISO

TX_REG_EMPTY
PRDATA[7:0]

ENABLE_SLAVE
ENABLE_MASTER

CoreSPI
(Master + Slave)
v2.1 13

Interface Description CoreSPI v3.0
Table 3-2 · CoreSPI I/O Signals

Name Type Description

PCLK Input APB system clock; reference clock for all internal logic

PRESETN Input APB active low asynchronous reset

PWDATA[7:0] Input APB write data

PRDATA[7:0] Output APB read data

PADDR[3:0] Input APB address bus. This port is used to address internal CoreSPI registers.

PENABLE Input APB strobe. Indicates the second cycle of an APB transfer.

PSEL Input APB Slave select. Selects CoreSPI for reads or writes on the APB.

PWRITE Input
APB write/read select signal. If HIGH (logic 1), a write will occur when an APB transfer to CoreSPI
takes place. If LOW (logic 0), a read from CoreSPI will occur.

ENABLE_MASTER Output Master mode enable static signal. If active, CoreSPI is operating in Master mode.

ENABLE_SLAVE Input Slave mode enable static signal. If active, CoreSPI is operating in Slave mode.

TX_REG_EMPTY Output
Microcontroller interface interrupt output: transmit register is empty. This pin will become active
(logic 1) when the transmit data register is empty and can be written with the next character to be
transmitted.

RX_DATA_READY Output
Microcontroller interface interrupt output: received data is ready. This pin will become active (logic 1)
when the received data register contains recently received data and must be read.

INTERRUPT Output
Microcontroller interface interrupt output. If interrupts are enabled (by software control), this pin will
become active (logic 1) when either tx_reg_empty or rx_data_ready is active.

M_MISO Input Master input / Slave output; serial data from external Slave to internal Master

M_MOSI Output Master output / Slave input; serial data from internal Master to external Slave

M_SCK Output
Master serial clock reference from internal Master to external Slave; used as reference for all ports with
“m_” prefix

M_SS[7:0] Output Master Slave select lines (active low); used for selecting up to eight external Slave devices

S_SCK Input
Slave serial clock reference from external Master to internal Slave; used as reference for all ports with
“s_” prefix

S_SS Input
Slave select line (active low chip select). External Master drives this line LOW to select the internal
Slave device.

S_MOSI Input Master output / Slave input; serial data from external Master to internal Slave

S_MISO Output Master input / Slave output; serial data from internal Slave to external Master

Note: All signals active high (logic 1) unless otherwise noted.
14 v2.1

CoreSPI v3.0 Interface Definitions
Interface Definitions
CoreSPI includes the following interfaces:

• APB (Slave) register interface

• SPI interface

APB Register Interface
The CoreSPI APB Slave interface conforms to the standard AMBA APB version 2.0 specifications. Figure 3-2 and
Figure 3-3 depict typical write cycle and read cycle timing relationships relative to the system clock.

Figure 3-2 · APB Data Write Cycle

Figure 3-3 · APB Data Read Cycle

SPI Interface
Figure 3-4 shows a typical serial byte transfer with different values of CPHA and CPOL.

Figure 3-4 · CoreSPI Interface Signals for CPHA = 0 (left) and CPHA = 1 (right)

PCLK

PSEL

PWRITE

PENABLE

PADDR[3:0]

PWDATA[7:0]

Register Address

Register Data

PCLK

PSEL

PWRITE

PENABLE

PADDR[3:0]

PRDATA[7:0]

Register Address

Register Data

SCK (CPOL = 0)

SCK (CPOL = 1)

MISO

MOSI

SS

MSB

MSB

LSB

LSB

6 5 4 3 2 1

6 5 4 3 2 1

SCK (CPOL = 0)

SCK (CPOL = 1)

MISO

MOSI

SS OUT

MSB

MSB

LSB

LSB

6 5 4 3 2 1

6 5 4 3 2 1
v2.1 15

4
Register Map

APB Register Map
The internal register address map and reset values of each APB-accessible register for CoreSPI are shown in Table 4-1.
Type designations: “R” for read-only, “W” for write-only, and “R/W” for read/write.

Register Descriptions
The following sections and tables detail the APB-accessible registers within CoreSPI.

SPI Data Register
When the SPI Data Register is read, the contents of the RX Data Register are returned. The contents of the RX Data
Register should be read as soon as possible when the Rx_Data_Ready status bit is activated so that a newly received
character does not overwrite it.

Writing to the SPI Data Register accesses the TX Data Register and initiates data transmission when SPI is enabled.
The TX Data Register should be written when the Tx_Register_Empty status bit is activated; otherwise, an unsent
character is overwritten.

Table 4-1 · CoreSPI Internal Register Address Map

PADDR (hex) Type Reset Value (hex) Brief Description

0x00 R/W 0x00
SPI Data Register: Read receive data register / write transmit data register to/from
serial interface.

0x04 R/W 0x00 Control Register 1: Used to configure the core.

0x08 W 0x00 Control Register 2: Used to enable the core and check for errors.

0x08 R 0x00 Status Register: Read-only values that yield the current status of the core.

0x0c R/W 0x00
Slave Select Register: Used only in Master mode to select currently addressed Slave
devices.

Note: Each of the above registers is 8 bits wide.
v2.1 17

Register Map CoreSPI v3.0
Control Register 1
A CPU can read from and write to this 8-bit, APB-addressable SFR via the APB Slave interface. Table 4-2 describes
the function of each bit of the Control Register.

Table 4-2 · Control Register 1

Bit(s) Name Function

7 interrupt_enable

Interrupt enable signal

When this bit is set to logic 1, the interrupt pin will become logic 1 when the TX_REG_EMPTY or
RX_DATA_READY internal flag is activated. When this bit is cleared to logic 0, the interrupt pin will
remain at logic 0. The operation of the TX_REG_EMPTY and RX_DATA_READY interrupt pins is not
affected.

6 mode_select

Master/Slave mode select

Selects whether CoreSPI is operating in Master or Slave mode. This bit sets CoreSPI to Master mode when
set to logic 1 and to Slave mode when reset to logic 0. If Master mode or Slave mode is disabled, this bit does
not affect core operation, but is still read/writable.

5 order

Order of data transfer

Sets the order of data transfer. When this bit is logic 1, the LSB is transmitted first. When this bit is logic 0,
the MSB is transmitted first.

4 cpha

Sets the clock phase. When this bit is logic 1, the serial data is delayed 90° in relation to M_SCK and S_SCK.
Refer to Figure 3-1 on page 13 for details. Note that in Figure 3-1 on page 13, SCK refers to either M_SCK
or S_SCK. Likewise, MISO, MOSI, and SS refer to M_MISO, M_MOSI, and M_SS[7:0], respectively, for
Master mode; and S_MISO, S_MOSI, and S_SS, respectively, for Slave mode operation.

3 cpol
Sets the clock polarity. When this bit is logic 1, the M_SCK line remains HIGH in an idle state between
frames; if this bit is 0, the M_SCK line remains LOW when idle.

2:0 scks

When operating in Master mode, bits 2 to 0 select the serial data clock frequency of the M_SCK signal,
which defines the data transfer rate. In Slave mode, these bits are ignored.

[2:0] SCK Frequency [2:0] SCK Frequency

000: fPCLK ÷ 2 100: fPCLK ÷ 32

001: fPCLK ÷ 4 101: fPCLK ÷ 64

010: fPCLK ÷ 8 110: fPCLK ÷ 128

011: fPCLK ÷ 16 111: fPCLK ÷ 256
18 v2.1

CoreSPI v3.0 Register Descriptions
Control Register 2
Bit 7 and bit 0 of this register are write-accessible via the CoreSPI APB Slave interface. The rest are either unused or
reserved for read-only use. Table 4-3 describes the function of these two bits.

Status Register
The Status Register is read-only. Table 4-4 describes each bit of the CoreSPI Status Register.

Table 4-3 · Control Register 2

Bit(s) Name Function

7 enable

SPI enable bit

Used as a synchronous enable for CoreSPI. The SPI interface ports are activated when this bit is set to logic 1. When
this bit is cleared to logic 0, all SPI interface ports (S_*, M_*) are either in input or inactive output states.

6:1 Unused Unused

0 error

Error bit

If this bit is at logic 1, it indicates that a character has been received before the previous character has been read from
the RX data register.

Table 4-4 · Status Register

Bit(s) Name Function

7 enable Indicates that CoreSPI is enabled. If this bit is set to logic 1, CoreSPI is currently enabled.

6:4 Unused Unused

3 busy
Indicates that the Master is busy. If this bit is at logic 1, the CoreSPI Master is currently transferring data.
This status bit is used to check if the SPI Master is busy before disabling it.

2 tx_register_empty
tx_register_empty flag. New data for transmission can be written to the Transmit Data Register when this
bit is at logic 1.

1 rx_data_ready
rx_data_ready flag. When this bit is at logic 1, the RX Data Register must be read before the next character
is received.

0 error
If this bit is at logic 1, it indicates that a character has been received before the previous character has been
read from the RX Data Register.
v2.1 19

Register Map CoreSPI v3.0
Slave Select Register
This register acts as a mask for activating a Slave select line. This is used only when CoreSPI is operating in Master
mode. A logic 1 in a particular bit position enables communication with the SPI Slave device connected to the respective
M_SS[7:0] line.

Table 4-5 outlines the bit use of the Slave Select Register.

Table 4-5 · Slave Select Register

Bit(s) Name Function

7 Slave select line 7 1 = Enable, 0 = Disable

6 Slave select line 6 1 = Enable, 0 = Disable

5 Slave select line 5 1 = Enable, 0 = Disable

4 Slave select line 4 1 = Enable, 0 = Disable

3 Slave select line 3 1 = Enable, 0 = Disable

2 Slave select line 2 1 = Enable, 0 = Disable

1 Slave select line 1 1 = Enable, 0 = Disable

0 Slave select line 0 1 = Enable, 0 = Disable
20 v2.1

CoreSPI v3.0 Software Interface Flow
Software Interface Flow
A typical communication flow, using interrupts, is shown in Figure 4-1. Boxes with dashed lines are used only when
CoreSPI operates in Master mode.

Figure 4-1 · Typical Communication Flow with a Host Processor/Microcontroller

RX_data_ready = 1

TX_reg_empty = 1

Read Status Reg.

Interrupt = 1

Finish
Communication with
Current Slave Device?

(Master only)

Read SPI Data Reg.
(RX Data Reg.)

Write SPI Data Reg.
(TX Data Reg.)

Read SPI Data Reg.
(RX Data Reg.)

RX_data_ready = 1

SPI Master
Disabled

Write Control Reg. #2
(in Master mode only)

Master Busy = 1

Read Status Reg.
(in Master mode only)

Disable SPI

Yes

No
Yes

No

Yes

No

Yes

No

Yes

No

No

Write Control Reg. #1

Write Control Reg. #2

Ready for
Communication

Write Slave Select Reg.
(in Master mode only)

Enable SPI
Clear Error Bit That May Be Previously Set

Select Master or Slave Mode
Enable Interrupts
Select Clock Phase and Polarity
Select Order of Data Transfer
Select Transfer Rate (Master only)
v2.1 21

5
Testbench Operation and Modification

User Testbench
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of CoreSPI. The user
testbench is provided in precompiled ModelSim format for the Evaluation release. The Obfuscated and RTL releases
provide the precompiled ModelSim format and the source code for the user testbench to ease the process of integrating
the CoreSPI macro into a design and verifying it. A block diagram of the example user design and testbench is shown in
Figure 5-1.

Figure 5-1 · CoreSPI User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to integrate CoreSPI
into their own designs. RTL source code for the example design and user testbench shown in Figure 5-1 is included in
the user directory for all releases of the core. The example design source files and user testbench are listed in Table 5-1.

Conceptually, as shown in Figure 5-1, two instantiations of the CoreSPI macro are connected via SPI. One instantiation
acts as a Master-only device (USE_MASTER = 1, USE_SLAVE = 0), and the other acts as a Slave-only device
(USE_MASTER = 0, USE_SLAVE = 1). Typical use of the core is emulated by doing various reads and writes via the
APB of each CoreSPI device. Data is verified by comparing sent and received data.

To run the user testbench, refer to “Simulation Flows” on page 12.

Table 5-1 · CoreSPI User Testbench RTL Files

Verilog VHDL

coreconsole/ccproject/CORESPI/rtl/vlog/test/user/

• tb_user_corespi.v

coreconsole/ccproject/CORESPI/rtl/vhdl/test/user/

• tb_user_corespi.vhd

• corespi_pkg.vhd

Behavioral µController

APB

User Testbench

CoreSPI
(Master)

CoreSPI
(Slave)

APB
v2.1 23

Testbench Operation and Modification CoreSPI v3.0
Verification Testbench
Included with the Obfuscated and RTL releases of CoreSPI is a verification testbench that verifies operation of the
CoreSPI macro. A simplified block diagram of the verification testbench is shown in Figure 5-2.

The verification testbench instantiates the DUT (design under test), which is the CoreSPI macro, as well as the test
vector modules that provide stimuli sources for the DUT and perform comparisons for expected values throughout the
simulation process. A procedural testbench controls each module and applies the sequential stimuli to the DUT.

Figure 5-2 · Simplified CoreSPI Verification Testbench Block Diagram

The source code for the verification testbench is only available with the CoreSPI RTL release. A compiled ModelSim
simulation is available with the Obfuscated and RTL releases.

To run the verification testbench, refer to “Simulation Flows” on page 12.

Verification Tests
CoreSPI is verified through various tests that stimulate program control words, transmission and reception sequences,
and loopback tests. CoreSPI is verified for the Master and Slave combined core, as well as for the Slave-only and
Master-only implementations. Behavioral microcontroller sequences (APB writes and reads) are used in the verification
testbench to emulate the behavior of controlling CoreSPI via internal register reads and writes and by monitoring of the
various interrupt flags.

Procedural
Testbench

Test
Vector
Stimuli

Test
Vector

Compare

CoreSPI
24 v2.1

6
System Operation

This chapter provides various hints to ease the process of implementing CoreSPI into your own design.

Use with CoreMP7
CoreSPI can also be used with CoreMP7, the Actel soft IP version of the popular ARM7TDMI-S™ microprocessor
that has been optimized for the M7 Fusion Flash-based FPGA devices. To create a design using CoreMP7, internal
flash memory, and CoreSPI, use CoreConsole IDP. Refer to the CoreConsole documentation for information on
creating your CoreMP7-based design. Figure 6-1 gives an example design.

Figure 6-1 · Example System Using CoreMP7 and CoreSPI
v2.1 25

System Operation CoreSPI v3.0
Use with Core8051s
CoreSPI can also be used with Core8051s. An example FPGA design using Core8051s and CoreSPI is shown in Figure
6-2.

Figure 6-2 · Example System Using Core8051s and CoreSPI
26 v2.1

CoreSPI v3.0 Use with CoreABC
Use with CoreABC
CoreSPI can also be used with CoreABC. An example FPGA design using CoreABC and CoreSPI is shown in Figure
6-3. CoreABC allows a simple set of APB read and write cycles that can be used to configure CoreSPI and then read
and compare the analog values to turn the digital outputs on and off.

Figure 6-3 · Example System Using CoreABC and CoreSPI
v2.1 27

A
Testbench Support Routines

The verification and user testbenches for the CoreSPI macro make use of various support routines, both in VHDL and
Verilog. The various support routines are described in this appendix for the VHDL and Verilog testbenches.

VHDL Support
The VHDL support routines (procedures and functions) are provided within a package. The support routines are
referenced from within the verification and user testbenches, via library and use clauses. To include these routines in a
custom testbench, add the following two lines:

library CoreSPI_lib;

use CoreSPI_lib.CoreSPI_pkg.all;

The following function simply converts hexadecimal bit_vector format into std_logic_vector format:

function hx (b: bit_vector) return std_logic_vector;

For example:

A <= hx(x”0123456789abcdef”);

The following overloaded procedure checks the given signal or vector against the expected value and prints an error to
the screen if a mismatch occurs:

procedure checksig (

d: std_logic;

sig_name: string;

v: bit;

ERRCNT: inout integer

);

procedure checksig (

d: std_logic_vector;

sig_name: string;

v: bit_vector;

ERRCNT: inout integer

);

The first parameter of the checksig procedure is the actual signal (std_logic or std_logic_vector) to check. The second
parameter is the ASCII string representation of the signal to print to the screen in the event of a signal value mismatch.
The third parameter is the expected value (bit or bit_vector) to check the actual signal value against. The fourth
parameter is an integer that represents the error count to keep track of any signal value mismatches. For example:

checksig(SINGLE_BIT_SIG, "SINGLE_BIT_SIG", '0', simerrors);

checksig(VECTOR_SIG,"VECTOR_SIG",

x"0123456789abcdef0123456789abcdef",simerrors);

The first line above checks that the value of the signal SINGLE_BIT_SIG is 0 at the current simulation time, and if it
is not, the checksig procedure increments the value of the variable integer simerrors by one. The second line above
checks that the value of the signal VECTOR_SIG is 0x0123456789abcdef0123456789abcdef at the current simulation
time, and if it is not, the checksig procedure increments the value of the variable integer simerrors by one. A printf
procedure is included with the verification and user testbenches that supports printing string, std_logic, boolean, integer,
and std_logic_vector types. The printf procedure included is similar to the printf function in the C language. However,
the format is slightly different.
v2.1 29

Testbench Support Routines CoreSPI v3.0
For example:

printf(“Hello World Decimal Vec %d Hex Vec %x String: %s”,

fmt(slv)&fmt(slv)&fmt(str1));

prints to the simulation transcript (slv is a 4-bit wide standard_logic_vector, and str1 is the string “somestring”):

Hello World Decimal Vec 15 Hex Vec F String: somestring

Verilog Support
The Verilog versions of the testbenches make use of the following task, which is included within the top-level module of
the verification and user testbenches. The checksig task is identical in functionality to the checksig procedure included
with the VHDL testbenches. It is used to check signals against expected values at the current simulation time. The task
argument list is shown below:

task checksig;

input [127:0] d;

input [8*17:1] sig_name;

input [127:0] v;

The first parameter of the checksig task is the actual signal (up to 128 bits wide) to check. The second parameter is the
ASCII string representation of the signal to print to the screen in the event of a signal value mismatch. The third
parameter is the expected value (up to 64 bits wide) to check the actual signal value against. The task uses a global
integer simerrors, declared in the top-level testbench, to keep track of the number of signal value mismatches, if any. For
example:

checksig(SINGLE_BIT_SIG, "SINGLE_BIT_SIG", 0);

checksig(VECTOR_SIG, "VECTOR_SIG",

128’h0123456789abcdef0123456789abcdef);

The first line above checks that the value of the signal SINGLE_BIT_SIG is 0 at the current simulation time, and if it
is not, the checksig task increments the value of the global integer simerrors by one. The second line above checks that
the value of the signal VECTOR_SIG is 0x0123456789abcdef0123456789abcdef at the current simulation time, and if
it is not, the checksig task increments the value of the global integer simerrors by one.
30 v2.1

v2.1 31

B
List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version

Changes in Current Version (v2.1) Page

v2.0 The “Supported Device Families” section was added. 6

The “APB Interface” section was updated to include Cortex-M1. 9

C
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v2.1 33

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support CoreSPI v3.0
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
34 v2.1

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
μController interface 9

A
Actel

electronic mail 33
telephone 34
web-based technical support 33
website 33

APB interface 9
APB registers

interface 15
map 17

B
block descriptions 9

μController interface 9
APB interface 9
SPI Master 9
SPI Slave 9

block diagram 5

C
configuration parameters 13
contacting Actel

customer service 33
electronic mail 33
telephone 34
web-based technical support 33

Control Register 1 18
Control Register 2 19
core overview 5
Core8051s, use with 26
CoreABC, use with 27
CoreConsole 11
CoreMP7, use with 25
customer service 33

D
device utilization and performance 6

E
Evaluation license 11

F
features 5
functional block descriptions 9

I
interfaces

definitions 15
APB register interface 15
SPI interface 15

descriptions 13

K
key features 5

L
Libero Integrated Design Environment (IDE)

importing into 12
place-and-route 12
synthesis 12

licenses 11

O
Obfuscated license 11

P
parameters 13
product support 33–34

customer service 33
electronic mail 33
technical support 33
telephone 34
website 33

R
registers

descriptions 17
Control Register 1 18
Control Register 2 19
Slave Select Register 20
SPI Data Register 17
Status Register 19

map 17
RTL license 11

S
signals 13
simulation flows 12
Slave Select Register 20
software interface flow 21
SPI
v2.1 35

Index CoreSPI v3.0
interface 15
Master 9
Slave 9

SPI Data Register 17
Status Register 19
system operation 25

T
technical support 33
testbenches 23

support routines 29
user 23
verification 24
verification tests 24

Verilog support 30
VHDL support 29

tool flows 11

U
user testbench 23

V
verification testbench 24

verification tests 24

W
web-based technical support 33
36 v2.1

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

51700089-1/ 1.08

	Introduction
	Core Overview
	Key Features
	Supported Device Families
	Device Utilization and Performance

	Functional Block Descriptions
	APB Interface
	µController Interface
	SPI Master
	SPI Slave

	Tool Flows
	Licenses
	Evaluation
	Obfuscated
	RTL

	CoreConsole
	Importing into Actel Libero IDE
	Simulation Flows
	Synthesis in Actel Libero IDE
	Place-and-Route in Actel Libero IDE

	Interface Description
	Parameters
	Signals
	Interface Definitions
	APB Register Interface
	SPI Interface

	Register Map
	APB Register Map
	Register Descriptions
	SPI Data Register
	Control Register 1
	Control Register 2
	Status Register
	Slave Select Register

	Software Interface Flow

	Testbench Operation and Modification
	User Testbench
	Verification Testbench
	Verification Tests

	System Operation
	Use with CoreMP7
	Use with Core8051s
	Use with CoreABC

	Testbench Support Routines
	VHDL Support
	Verilog Support

	List of Document Changes
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

