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Problem # Points 
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NOTES: 

• PUT YOU NAME/UNIQUENAME ON EVERY PAGE TO ENSURE CREDIT! 
• Can refer to the ARM Assembly Quick Reference Guide 
• Can use a basic/scientific calculator (but not a phone, PDA, or computer) 
• Don’t spend too much time on any one problem.   
• You have 80 minutes for the exam. 
• The exam is 7 pages long, including the cover sheet. 
• Show your work and explain what you’re doing.  Partial credit w/o this is rare. 
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Name: ____________________________________    Uname: _____________ 
 
1) Fill-in-the-blank or circle the best answer. [20 points, -2 per wrong or blank answer]  

a) An N-bit SAR ADC requires 1 / lg(N) / N approximation cycles to produce a result. 

 

b) A DRAM / SRAM / PROM is non-volatile.  DRAM most commonly uses a 1T / 4T / 6T 
cell.  SRAM most commonly uses a 1T / 4T/ 6T cell. 
 

c) A 100 MHz clock with a duty cycle of 25% is high for _______________ ns per cycle. 

 

d) An EABI-compliant procedure could use registers / stack / both / neither to receive 

arguments from the caller, and the callee should never / sometimes / always save and 

restore the registers it uses. 

 

e) The I2C bus is most commonly used to connect chips on a board / devices in a rack / 

computers and modems. 

 

f) The SPI bus is most commonly used to connect one / two / many master device(s) to  

one / two / many slave device(s). 

 

g) You would expect that I2C / SPI would be able to support the higher data rate. 

 

h) Differential signaling over a twisted pair of wires is used in a number of modern buses to 

reduce the impact of external noise / make it easier to not have a shared clock / 

implement Manchester encoding / increase the speed of the data lines.       

 

i) Multiple devices can usually share an edge / level triggered interrupt line. 
 

j) The RESET interrupt is maskable / non-maskable.   
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Name: ____________________________________    Uname: _____________ 
 
2) Consider the following 3-bit ADC.  Draw the conversion transfer function (binary output vs 

input voltage) on the top graph.  Draw the quantization error transfer function (error voltage 
vs input voltage) on the bottom graph.  Make sure the transition points are clear.  Assume 
Vref is 5V. [15] 

 
 
 

  
 
 
3) Assume you have a 3-bit SAR ADC.  The analog input is 0.35 V and the Vref is 1V.  Show 

how the SAR would approximate the analog input over three cycles.  Label the cycles on the 
x-axis and show the approximation as a meandering stair-step line on the graph. [10] 
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Name: ____________________________________    Uname: _____________ 
 
4) ARM assembly [15] 

 
a) Write ARM assembly code that sets bits 4, 5, and 6 of register r0 to “1s” without 

changing any other bits in that register.  Use as few lines of assembly as you can. [5] 
 
 
 
 
 
 
 
 
 
 
b) After running the following code snippet, the value of r2 at done is _________.  Show 

how your arrived at this conclusion. [5]  
 

... 
start: 
 movs r0, #1 
 movs r1, #1 
 movs r2, #1 
 subs r0, r1 
 bne  done 
 movs r2, #2 
done: 
 b    done 
... 
 

c) Write an ARM assembly language procedure that implements the following function in 
an EABI-compliant manner and conforms to the following signature.  Identify which 
register holds which argument. [5]  

 
f(x,y,z) = x+y-z 
int32_t func(int32_t x, int32_t y, int32_t z); 
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Name: ____________________________________    Uname: _____________ 
 
5) Assume you have a memory-mapped register location REG_FOO on a 32-bit architecture.  

Modify main to add 7 to REG_FOO’s value.  Your code should compile without any 
warnings. [10] 
 

#include <stdio.h> 
#include <inttypes.h> 
 
#define REG_FOO 0x40000140 
 
main () { 
  // Your code here to declare reg and  
  // add 7 to REG_FOO’s value. 
 
 
 
 
  printf(“0x%x\n”, *reg); // Prints out new value 
} 

 
 
 
 

6) Say your code writes the value 0x76543210 to memory location 0x20000604, on an 
ARM Cortex-M3.  Assume this memory location sits in an SRAM with no access delay (i.e. 
a zero wait state).  If you could attach a logic analyzer to the AHB bus, draw a timing 
diagram that shows what you would expect to see on the logic analyzer for this write 
operation.  Make sure the actual values being transferred on the bus are clearly labeled. [10] 

 
 
AHB Bus 
    _____  _____  _____  _____  _____   
   FCLK | |_____^ |_____^ |_____^ |_____^ |____  
 
 HADDR[31:0] | 
 
      HWRITE | 
 
     HWDATA[31:0] | 
 
 HREADY(OUT) | 
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Name: ____________________________________    Uname: _____________ 
 
7) Imagine that you want to attach an LED to the ARM Advanced Peripheral Bus (APB).  

Sketch out the glue logic needed to interface a D flip-flop (DFF) to the APB.  Assume that 
the PSEL line is the peripheral select (i.e. it goes high when the processor is addressing the 
DFF) and that the DFF will be attached to data bits (PWDATA[0] and PRDATA[0]), perhaps 
through tri-state drivers.  You should be able to change the value of the DFF by writing the 
memory location corresponding to the PSEL and read the current value of the DFFs by 
reading the location.  Assume that the DFF has an enable (ENA) line that, when not asserted, 
ignores any inputs (e.g. D and CLK) but continues to drive Q and Q#.  The APB signals 
available to you are: PCLK, PADDR, PWRITE, PSEL, PENABLE, PWDATA, and 
PRDATA. [10] 
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Name: ____________________________________    Uname: _____________ 
 
 

8)  Write a C function void enable_interrupts(int x) that enables interrupt x.  You 
need not check to validate that x is a legal interrupt number.  The table below might be useful. 
[10] 

 
 
 
void enable_interrupts(int x) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 


