Electrical Engineering and Computer Science EECS373 - Design of Microprocessor-Based Systems

SIXAXIS Quadcopter
George Allen, Mark Alitawi, Cory Gordinier
\{geoallen, malitawi, cgordini\}@umich.edu

Introduction: Quad-motor vehicle controlled with PlayStation SIXAXIS controller

- Quadcopter: Rotorcraft propelled by four rotors
- SIXAXIS: PS3 controller with built-in single-axis gyroscope and three-axis accelerometer, analog and digital buttons. Communicates over Bluetooth or USB.
- Combined: Non-autonomous quadcopter controlled with Bluetooth radio

Problem Description: Making vehicles fly is hard!!

- Flight controls are very difficult to implement
- Over-compensated feedback from PID controller can lead to crashing
- PS3 controller solely designed for communicating with a PS3 console

PS3 controller solely designed for communicaing with a PS3 console

Proposed Solution: Open source flight controls

Hardware:

- Pololu MinIMU-9 v2
- Inertial Measurement Unit
- Provides aircraft data for maintaining stable flight
- Bosch BMP085
- Barometric pressure sensor
- Provides altitude readings
- ArduPilot Mega v1
- Arduino microcontroller
- Programmed to manage stabilization and navigation of aircraft

Software:

- Supplied Code:
- Ardupilot flight controls
http://code.google.com/p/arducopter/
- Our Code:
- AP_InertialSensor_MinIMU9
- AP_Compass
- Altered configuration files to allow for operation with our sensors

Conclusion: Issues integrating our sensors

ArduPilot Mega

- 16MHz ATMega 2560
- ATMega 328
- 16 Analog Inputs (ADC on each)
- 40 Digital Inputs/Outputs
- 256K Flash
- 8K SRAM
- 4k EEPROM
- Supplied ArduPilot flight controls are pre-configured to work with specific components
- Difficulty in integrating our code into existing program to operate with our devices

