
Exam #:

EECS 373 Practice Midterm / Homework #3
Fall 2014

Name: ____________________________________ Uniquename: _____________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Problem # Points
1 /10
2 /10
3 /15
4 /20
5 /15
6 /10
7 /10
8 /10
Total /100

NOTES:

• PUT YOU NAME/UNIQUENAME ON EVERY PAGE TO ENSURE CREDIT!
• Can refer to the ARM Assembly Quick Ref. Guide and 1 page front/back cheat sheet
• Can use a basic/scientific calculator (but not a phone, PDA, or computer)
• Don’t spend too much time on any one problem.
• You have 80 minutes for the exam.
• The exam is 9 pages long, including the cover sheet.
• Show your work and explain what you are doing. Partial credit w/o this is rare.

 2/9

Name: ____________________________________ Uname: _____________

1) Fill-in-the-blank or circle the best answer. [10 pts, all or no points for each question]

a) The ARM EABI specifies that the first parameter of a function call should be stored in
register ____ and the return address is stored in register ____.

b) The ARM Thumb-2 instruction set has 16-bit / 32-bit / 16- and 32-bit encodings.

c) A 40 MHz clock with a 20% duty cycle is high for _______________ ns per cycle.

d) An ARM EABI-compliant procedure that calls another procedure should always /

sometimes / never save and restore the lr register.

e) The SPI bus does / does not support flow control using the ACK bit.

f) A UART / SPI / I2C is an asynchronous communications interface.

g) I2C bus transfers are asynchronous / synchronous and use dedicated chip select lines /

addresses embedded in frames.

h) In the Verilog hardware description language, an @(posedge clock) block would be

used when implementing a mux / adder / flip-flop / priority encoder.

i) If multiple devices share a single interrupt line and generate interrupts at the same rate,
then processor workload remains constant / grows linearly / grows quadratically with
the number of devices.

j) The RESET vector and initial stack pointer goes in the .text / .data / .bss section.

 3/9

Name: ____________________________________ Uname: _____________

2) Assembly, C, and the ABI. Consider the following program. [10]

/**
 * Print an int.
 */
void printint(int a) { printf("%d\n", a); }

/**
 * Sum the first n elements of array a.
 */
int add(int a[], int n) {
 int i, sum=0;
 for (i = 0; i < n; i++)
 sum+=a[i];
 printint(sum);
 return(sum);
}

/**
 * Test program. Should print out 10.
 */
main () {
 int x[] = {1, 2, 3, 4, 5};
 add(x, 4);
}

Rewrite only the add function in ARM assembly, and make sure that your code conforms to the
EABI for both the callee part (saving the registers, handing input parameters, etc.) and the caller
part (passing parameters for the printint call, etc.). Do not use recursion to implement your
code. The assembly code should assemble without errors. Write clearly and comment the code.

 4/9

Name: ____________________________________ Uname: _____________

3) ARM Assembly Language. [15]

a) Assume you wrote the ARM assembly language instruction: add r9, r9, r11

What is the machine encoding of this instruction in hex? Use the table below. [5]

Machine Code: _____________________________

b) Assume that r3=0xaabbccdd and r1=0x00001000, and all other registers and

memory are initialized to zero. After running the following code, what are the values of
registers r1, r3, and r5? Annotate each line of code to show your partial results. [5]

str r3, [r1, #1]
ldrb r5, [r1], #2
orr r5, r5, #0x0f
strh r3, [r1, #-4]!
ldr r3, [r1]

r1 = _____________________________
r3 = _____________________________
r5 = _____________________________

c) Convert the following 16-bit, two’s complement hex numbers into signed decimal. [5]

Hex Decimal
====== =======

0x1000 _______

0xfffc _______

0xffff _______

 5/9

Name: ____________________________________ Uname: _____________

4) Memory-Mapped I/O. [20]

a) Assume you have a memory-mapped register location REG_FOO on a 32-bit

architecture. Modify main to add 7 to REG_FOO’s value. Your code should compile
without any warnings. [10]

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
 // Your code here to declare reg and
 // add 7 to REG_FOO’s value.

 printf(“0x%x\n”, *reg); // Prints out new value
}

b) Sketch the glue logic needed to interface a D flip-flop (DFF) to the APB. The PSEL line
is the peripheral select (i.e. it goes high when the processor is addressing the DFF). The
DFF will be attached to data bits zero (PWDATA[0] and PRDATA[0]), perhaps through
tri-state drivers. You should be able to change the value of the DFF by writing the
memory location corresponding to the PSEL and read the current value of the DFFs by
reading the location. Assume that the DFF has an enable (ENA) line that, when not
asserted, ignores any inputs (e.g. D and CLK) but continues to drive Q and Q#. The APB
signals are: PCLK, PADDR, PWRITE, PSEL, PENABLE, PWDATA, PRDATA. [10]

 6/9

Name: ____________________________________ Uname: _____________

5) Serial Buses. [15]

a) I2C. The standard-mode I2C specification uses open-drain logic. Under this scheme, bus

devices drive the SCL and SDA bus lines low (to 0 V) but rely on a shared, external pull-
up resistor (typically 10 kΩ) to send a high bit (at 3.3V or 5V) by “pulling-up” the bus
line. How long will a low-to-high transition take, after the SDA line has been at 0V for a
long time, if low is 0 V, VCC is 3 V, a “high” is 80% of VCC (e.g. 2.4 V), the aggregate
bus capacitance is 50 pF, and a 10 kΩ pull-up resistor is used? Show your work. [8]

b) Assume you have four devices connected to a microcontroller over a shared I2C bus that
is running at 400 kHz and using standard addressing. If the microcontroller reads one
data byte from each of the four devices sequentially, what is the maximum data transfer
rate in bits/second possible from each device? You analysis should report the useful data
that are delivered per unit time. Note that “time” includes both the time required to send
useful data and the time required for communication overhead (e.g. any start/stop/ack
bits, addressing bytes, etc.). Show your work. [7]

 7/9

Name: ____________________________________ Uname: _____________

6) Logic Design. Design a digital circuit that takes an input clock of 100 MHz clock (CLKIN)

and converts it into an output clock of 5 MHz with a 30% duty cycle (CLKOUT). You may
use synchronously resettable D flip-flops and n-bit binary counters (make sure to specify the
value of n). You may express combinational logic as Boolean expressions or using standard
logic gates. Label things and write neatly. [10]

 8/9

Name: ____________________________________ Uname: _____________

7) Say your code writes the value 0x76543210 to memory location 0x20000604, on an

ARM Cortex-M3. Assume this memory location sits in an SRAM with no access delay (i.e.
a zero wait state). If you could attach a logic analyzer to the AHB bus, draw a timing
diagram that shows what you would expect to see on the logic analyzer for this write
operation. Make sure the actual values being transferred on the bus are clearly labeled. [10]

AHB Bus
 _____ _____ _____ _____ _____
 FCLK | |_____^ |_____^ |_____^ |_____^ |____

 HADDR[31:0] |

 HWRITE |

 HWDATA[31:0] |

 HREADY(OUT) |

 9/9

Name: ____________________________________ Uname: _____________

8) Write a C function void enable_interrupts(int x) that enables interrupt x. You

need not check to validate that x is a legal interrupt number. The table below might be
useful. [10]

void enable_interrupts(int x) {

}

