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What is an embedded system?
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Embedded, Everywhere - WattVision on Kickstarter
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What is driving the
embedded everywhere explosion?
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Bell’ s Law of Computer Classes:
A new computing class roughly every decade
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“Roughly every decade a new, lower priced computer
class forms based on a new programming platform,
network, and interface resulting in new usage and

o Adapted from
the establishment of a new industry. b

D. Culler



Moore’ s Law (a statement about economics):

IC transistor count doubles every 18-24 mo
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Dennard Scaling made transistors fast and low-power:
So everything got better!

Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions

ROBERT H. DENNARD, MEMBER, IEEE, FRITZ H. GAENSSLEN, HWA-NIEN YU, MEMBER, IEEE,
V. LEO RIDEOUT, MEMBER, IEEE, ERNEST BASSOUS, AND ANDRE R. LEBLANC, MEMBER, IEEE

Classic Paper

This paper considers the design, fabrication, and characteriza-
tion of very small MOSFET switching devices suitable for digital
integrated circuits using dimensions of the order of 1 .. Scaling
relationships are presented which show how a conventional MOS-
FET can be reduced in size. An improved small device structure
is presented that uses ion implantation to provide shallow sowrce
and drain regions and a nonuniform substrate doping profile. One-
dimensional models are used to predict the substrate doping profile
and the corresponding threshold voltage versus sowrce voltage
characteristic. A two-dimensional cwrrent transport model is used
to predict the relative degt« of short-channel effects for different
device p Polysili MOSFET s with
chamd lengths as short as 0.5 : were fabricated, and the device
characteristics measwred and compared with predicted values. The
performance improvement expected from using these very small
devices in highly miniaturized integrated circuits is projected.

I LisT oF SyMBOLS

w Inverse semilogarithmic slope of sub-
threshold characteristic.

D ‘Width of idealized step function pro-
file for channel implant.

Awy Work function difference between
gate and substrate.

25 Cox Dielectric constants for silicon and
silicon dioxide.

14 Drain current.

k Boltzmann's constant.

' Unitless scaling constant.

L MOSFET channel length.

Pt Effective surface mobility.

T Intrinsic camier concentration.

N, Substrate acceptor concentration.

W, Band bending in silicon at the onset
of strong inversion for zero substrate
voltage.

W, Built-in junction potential.

This paper is reprinted from IEEE JOURNAL OF SOUD-STATE CIRCUITS,
wol. SC-9, no. 5, pp. 256-268, October 1974.
Publisher Item Identiier S 0018-521(99)02196-9.

0018-9219/99$1000 @ 1999 IEEE
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Dennard Scaling...is Dead

Industrv’s ride is over Source: Joe Cross, DARPA MTO
DARPA Y
The past: Dennard’s Scaling Today: Dennard’s Scaling is dead
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And the Party’ s Over

Decades of exponential performance growth stalled in 2004
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Flash memory scaling:

Rise of density & volumes; Fall (and rise) of prices

NAND Flash: Bit Volume vs Capex
== NAND Bit Vol === Flash Capex ($M)
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Hendy’'s “Law”:
Pixels per dollar doubles annually

The Pixels per Dollar Projection
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MEMS Accelerometers:
Rapidly falling price and power
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MEMS Accelerometer in 2012

Industry’s Lowest Power
MEMS Accelerometer . e
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MEMS Gyroscope Chip




Energy harvesting and storage: R
Small doesn’ t mean powerless... ]

4.
a®

1st Annual Workshop on - . October 22,2009

MICRO POWER TECHNOLOGIES

SRS e .

RF [Intel]  cjare Solar Cell

Radisson Hotel, San Jose, CA
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Shock Energy Harvesting
CEDRAT Technologies

Piezoelectric
[Holst/IMEC]

Oscillating
weight

Oscillating
weight gear

Thermoelectric Ambient
Energy Harvester [PNNL]



Bell’ s Law, Take 2:
Corollary to the Laws of Scale

Intel® 4004 processor
Introduced 1971
Initial clock speed

108 KHz

Number of transistors

2,300

Manufacturing technology

10

Photo credits: Intel, U. Michigan

Quad-Core Intel® Xeon® processor
Quad-Core Intel® Core™2 Extreme processor
Introduced 2006

Intel® Core™2 Quad processors

Introduced 2007

Initial clock speed

2.66 GHz

Number of transistors

582,000,000

Manufacturing technology

65nm

__________

Cl Power gated

D Partially gated D Not gated

UMich Phoenix Processor
Introduced 2008

Initial clock speed

106 kHz @ 0.5V Vdd

Number of transistors

92,499

Manufacturing technology

0.18 p
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Why study 32-bit MCUs and FPGAs?



MCU-32 and PLDs are tied in embedded market share
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What distinguishes
a Microprocessor from an FPGA?



Instruction address

Interrupt address

MPU

Address register

ALU bus

32-bit

(f

re;ister bank

registers)

Instruction data

Read register

Instruction
pipeline

18 15[}

Instruction
decode

Write register
Data bus

Read register

Data address Data bus

The Cortex M3's Thumbnail architecture looks like a conventional Arm processor.The differences are found
in the Harvard architecture and the instruction decode that handles only Thumb and Thumb 2 instructions.

D Logic block

I/0 block

FPGA TIY.
CH ,
Interconnection switches
1/0 block D o
= Lot
u : -

A section of a

32019 O/I

programmed FPGA

General structure of an FPGA
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Modern FPGAs: best of both worlds!

Traditional Methods No Longer Scale =
FPGA Growing Complexity

Today’'s FPGA are SoCs!!!!

Moore's Law

26



Is the party really over?

Technology landscape: move past power limitations,
effectively utilize concurrency
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Why study the ARM architecture
(and the Cortex-M3 in particular)?



Lots of manufacturers ship ARM products
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ARM is the big player

e ARM has a huge market share

- As of 2011 ARM has chips in about 90% of the world’ s
mobile handsets

- As of 2010 ARM has chips in 95% of the smartphone
market, 10% of the notebook market

« Expected to hit 40% of the notebook
market in 2015.

- Heavy use in general embedded systems.
e Cheap to use

- ARM appears to get an average of 8¢ per device
(averaged over cheap and expensive chips).

 Flexible
- Spin your own designs.



What differentiates these
products from one another?



The difference is...
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F’ 14 Instructional Staff
(see homepage for contact info, office hours)

Prabal Matt Chris Chris Ryan Dili
Dutta Smith Fulara Heyer Wooster Hu
IA

Instructor Lab Instructor IA IA Grader



My research interests

_____________________________________

Applications
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Course goals

e Learn to implement embedded systems including
hardware/software interfacing.

e Learn to design embedded systems and how to
think about embedded software and hardware.

e Design and build non-trivial projects involving
both hardware and software.



Prerequisites

e« EECS 270: Introduction to Logic Design

- Combinational and sequential logic design
- Logic minimization, propagation delays, timing

e EECS 280: Programming and Intro Data Structures
- C programming
- Algorithms (e.g. sort) and data structures (e.g. lists)

e EECS 370: Introduction to Computer Organization
- Basic computer architecture
- CPU control/datapath, memory, 1/0
- Compiler, assembler



Topics

Memory-mapped 1/0

- The idea of using memory addressed to talk to input
and output devices.

» Switches, LEDs, hard drives, keyboards, motors

Interrupts

- How to get the processor to become “event driven”
and react to things as they happen.

Working with analog signals
- The real world isn’ t digital!

Common peripheral devices and interfaces
- Serial buses, timers, etc.



Example: Memory-mapped I/0

OxFFFFFFFF
System
DxEO100000
Private peripheral bus - Exdemnal
Dx EQ040000

Private peripheral bus - Intemal

Ox E0000000
0x440000
Peripherals (BB view 0x420000( Address | Peripheral
Extemal device 1.0GB 0x4010 (20050000 | PSEL[D]
P Fs . PGA Fab Dx4 D200S0100 | PSEL[1
FPGA Fabrit FPG rle 0x4005 (20050200 PSEL{Z

FPGA Fabric eSRAM Backdoor | FPGA Fabric eSRAM Backdoor | 0x40040001(
0x40030004
. HEa

Gx20050300 | PSEL[3]

Analog Computae Engine Analog Compute Engine 0x40020000 -
0x4001700
IAP Controller AP Controlier D400 16001
eFROM eFROM 0x400 15001
RTC RTC 0x40014

MSS GPIO MSS GPIO 0x4001 F
12C 1 2C 1 0x4001200( 0012FFF

FPGA Fabric Memory Map
Used by the APB3 Bus interface

External RAM  1.0GB

Peripheral  0.5GB SP1 1 P11 %4001 100 D01 1EFE
UART 1 UART 1 0x4001
0x40004

ipt Controiler | 0X4000

4
4

0 — 0x40007 FFF
4
!

Fabric Intertace Interrupt Controlier Fabric Imartace Intearmup
SRAM Watchdog W atchdog 0x40006000 - Dx40006FFF
Timer Timar 0x4000 DxA0D0SFFF
Peripheral DMA Peripheral DMA 0x4000 DODAFFF
Ethormot MAC Ethernet MAC Dx4000300( 003°FF
Code 12C_0 12C 0 0x4000200( 4)(1,):—11
SPI_O s 0 0x40001000 - Ox40001FFF
UART O UART 0 0x40000000 — Ox40000FFF
~ Ox 00000000 -
Cortex-M3 Memory Map SmartFusion Peripheral MM’BOI’y Map

e This is important.
- It means our software can tell the hardware what to do.
« In lab 3 you’ ll design hardware on an FPGA which will control a motor.

- But more importantly, that hardware will be designed so the software
can tell the hardware exactly what to do with the motor. All by simply
writing to certain memory locations!

- In the same way, the software can read memory locations to access data from
sensors etc...



Example: Anatomy of a timer system

Applications

Application Software

timer_t timerX;
initTimer();

startTimerOneShot (timerX, 1024);

stopTimer (timerX);

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

Software

Hardware

Low-Level Timer Subsystem Device Drivers

R/W

R/W

— Compare ﬁL Counter ﬂL)

1

Prescaler

1

Clock Driver

Xtal/Osc

R7W

Capture €

timer_tick:
ldr r0, count;
add r0, r0, #1

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
endmodule



Item Weight

Labs (7) 25%

Project 25%

Exams 35% (15% midterm; 20% final)

HW /Guest talks 10%
Oral presentation 5%

e Project & Exams tend to be the differentiators
e Class median is generally a B+



Time

e Assume you are going to spend a lot of time in
this class.

2-3 hours/week in lecture (we cancel a few classes
during project time)

- 8-12 hours/week working in lab

e Expect more during project time; some labs are a bit
shorter.

- ~20 hours (total) working on homework
- ~20 hours (total) studying for exams.
- ~8 hour (total) on your oral presentation

e Averages out to about 15-20 hours/week pre-
project and about 20 during the project...
- This is more than we’ d like, but we’ ve chosen to go

with state-of-the-art tools, and those generally have a
steep learning curve.



Labs

o Start TODAY!
o 7/ labs, 8 weeks, groups of 2
1. FPGA + Hardware Tools
MCU + Software Tools
Memory + Memory-Mapped 1/0
Interrupts
Timers and Counters
Serial Bus Interfacing
Data Converters (e.g. ADCs/DACs)

N O O AN W N

e Labs are very time consuming.

As noted, students estimated 8-12 hours per lab with one lab
(which varied by group) taking longer.



Open-Ended Project

Goal: learn how to build embedded systems
- By building an embedded system
- Work in teams of 2 to 4
- You design your own project

The major focus of the last third of the class.

- Labs will be done and we will cancel some lectures and
generally try to keep you focused

Important to start early.

- After all the effort in the labs, it’s tempting to slack
for a bit. The best projects are those that get going
right away (or even earlier)

Some project lead to undergraduate research



Sample projects from F’ 10 and their results

e Energy-harvesting sensors -

o Wireless AC Power Meter -
SURE, IPSN demo, NSF GRFP, SenSys paper, Grad School




Letters of recommendation for graduate school

Grad school apps will require supporting letters
« Faculty write letters and read “coded” letters

o Strong letters give evidence of research ability
e Strong letters can really help your case

« Weak letters are vague and give class standing
« Weak letters are useless (or even worse)

« Want a strong letter?
- Do well in this class
- Pull off an impressive project
- Continue class project as independent research in W’ 15



Homework

Start TODAY!

4-5 assignments
- A few “mini” assignments

e Mainly to get you up to speed on lab topics
- A few “standard” assignments
« Hit material we can’t do in lab.

Also a small part is for showing up to guest lectures
And a tiny bit for doing completing evaluations



Midterm and Final Exams

e Midterm (Thu, Oct 16, 2014 from 10:30am-12:00pm)

- Emphasize problem solving fundamentals

e Final (Tue, Dec 16, 2014 from 1:30-3:30pm)

- Cumulative topics w/ experience of projects
- Some small amount of material from presentations



Looking for me?

« Nominal Office Hours
- Tuesdays: 1:30-3:00pm in 4773 BBB
- Sometimes in lab sections

e Traveling next week so
- QGuest lectures on Tue 9/9 and Thu 9/11
- No office hours next week
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We are using Actel’ s SmartFusion Evaluation Kit
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A2F200M3F-FGG484ES

- 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and
additional distributed SRAM in the FPGA fabric and external memory
controller

- Peripherals include Ethernet, DMAs, 12Cs, UARTs, timers, ADCs, DACs and
additional analog resources

e USB connection for programming and debug from Actel's design tools
e USB to UART connection to UART_O for HyperTerminal examples
 10/100 Ethernet interface with on-chip MAC and external PHY

e Mixed-signal header for daughter card support

SmartFusion Device RVI - Header OLED Display
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FPGA work

MICRULUNI RULLER SUSSYSI EM
Clock Management CortexM3 EDRAM
ENVM External Memory Controller
Poa g
4 & #E
- - -
AHB Bus Matrix
L L L
f’
E 3 3 E
A PE_O APB_1
ACE POMA UART_O UART_L
LY LT
# “ s ¢ #
TDMERx2 SPI_O SPIL
" RO l RO2Q
WATCHDODG 12¢_0 2CL
- 2 — R Q RO
# z :
Reget Mansagement MAC GPIO EFROM
LR AV _RD2Q
BrE TN PAOLD_RD2Q a ™
# '_'Z
# FL
RTC
Intérrupt Mansgement l
#
Hurdwars Con gurslion
MSS IO Fabri¢ Interface
Krmrwvars Con lgurslion
? G" Mo Confliguretion
Dimbhd




“Smart Design” configurator

pga.prj - [mary_smart_design]

M Project File Edit View Tools SmartDesign Canvas “Window Help -8 %X
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B INBUF_LVDS_MCCC (mss_comps.v) #- Actel Macros
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‘ Reading file 'coreapbh3.v'.
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Reading file 'timer.wv'.
The lab5 fpga project was opened.
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Eclipse-based “Actel SoftConsole IDE”

E% C/C++ - lab5/main.c - Actel SoftConsole IDE v3.2 (=
File Edit Source Refactor

Mavigate Search Project Run Window Help
irle &Y is e RS B0 ™ EERURE R B %5 Debug |G cic+ |
[(\j Project Explorer 2 = "‘_37, ~ =18 L) main.c 52 = g) 5% outlin 2 @ Make | = =)
107 assembly_test Ao laz R b:‘; ® * =4
i 17 forCheatSheet if (status & 0x01) 5 stdioh

g:_abbazt t { e (Toversl L e, oot = drivers/mss_uvartjmss_uart
ab3_tes printf( erflow latency % nir’, O-time); = drivers/mss_watchdog/mss

g:a:: . . %f %02 = mytimer.h

L e abdagain 61 if (status & 0x02) ©®  Fabric_IRQHandler(void) :

15 labS 62 ¢ e
. » #®  main() : int

63 /i printf ("Compare latency %1ldin\r", (1<<29) - tine):;

64 }

5 if {status & 0x4)

66 {

67 printf ("Capture SYNC 31ld\n\r", sync_cap):’

] }

if {status & 0x8)

{

printf ("Capture ASYNC $1ld\n\r", async_cap):
}
NVIC_ClearPendingIRQ( Fabric IROn ):

maini)

/* Watchdog Disabling function */
MSS_UD_disable()

/% Setup MYTIMER */

MYTIMER_init():

MYTIMER_load((1<<31)): // low time

MYTIMER_compare(({1<<27)); // high tine b

// MYTIMER enable overflow():
//MYTIMER ensble compare():
MYTIMER_enable_capture():
MYTIMER enable_ puwmi):

// MYTIMER enable_ interrupts():

NVIC_EnablelIRQ(Fabric IROxn):

MYTIMER enable():

nrintF ITHR ] lannnn S by

|

v
|~
v

<
[21 Problems | v Tasks | B Console 52 = Properties | %Debug‘ # Bl-rg-=0

Mo consoles to display at this time.

U Writable Smart Insert 79.:11

/.’ start ©) Google News - Mozilla. .. . Project Manager - C:\... desktop2.bmp - Paint oy 12:21 PM




Debugger is GDB-based. Includes command line.
Works really quite well.

Isc] Debug - lab5/main.c - Actel SoftConsole IDE v3.2 [Z] @

File Edit Source Refactor Mavigate Search Project Run Window Help

C-rES @i s 0 Q- i@ (4 ¢ &0 [ %5 Debug | @ clc++
%5 Debug 52 I = i 32 @ ¥ 7 O |[69= variables | @ Breakpoints 2 . 4} Registers | B Modules & ) B&gY =0
E main.c &3 =0 EE Outline | [s1) Disassembly £2 ¥ =0

56 ~
57 if {status & 0x01)
58 {
59 printf ("Overflow latency %1ld\n\r", O-time):;
60 ¥
61 if (status & 0x02)
{
3 I printf("Compare latency %1ld\n\r", (1<<29) - time):
64 }
65 if (status & 0x4)
66 {
67 printf ("Capture SYNC %1din\r", sync_cap)’
68 )
69 if (status & 0x8)
70 {
71 printf ("Capture ASYNC $1ldin\r", async_cap)’ £ )
72 ¥
73 NVIC_ClearPendingIRQ( Fabric IROn ):
74}
75
64

/* Watchdog Disabling function */
MSS_UD_disable():

/% Serun MYTTMER */ 9
El console 22 ] Tasks | [ Problems | € Executables| @ Memory # B-r4- =0
Mo consoles to display at this time.
0¥ Writable Smart Insert | 79:1
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ARM ISA



Major elements of an Instruction Set Architecture

(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC

xPSR

Endidness

31 30 29 28 27 26

32-bits

mov ro, #4

ldr rl, [ro,#8]

v
ri=mem((re)+8)

bne loop

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM  1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

subs rz:\;z\\\\\

Code 0.5GB

Endianess

OXFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

N

Z

C

‘.’

Q

RESERVED




Assembly example

data:
.byte 0x12, 20, 0x20, -1

func:

mov r0, #O0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1drb r2, [rl],#l

add r4, rd4, r2

add r0, r0, #1

cmp r0, #4

bne top



Questions?

Comments?

Discussion?



