
1

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 10: Serial buses
October 2, 2014

Some material from: Brehob, Le, Ramadas, Tikhonov & Mahal

Announcements

•  Special Topics groups
–  Fill out Google Sheets by 10/7 (sooner is better – tiebreaker)

•  Team Members
•  Topic Preferences (3)

–  Will send out link to class email list

•  Exam will be on Thursday, October 16 in class
–  Contact me by 10/3 if you have a conflict or concern

•  HW3 will be posted later this week – for real!

2

3

Outline

•  Introduction to Serial Buses

•  UART

•  SPI

•  I2C

Fun with buses

•  A multidrop bus (MDB) is a computer bus in
which all components are connected to the same
set of electrical wires. (from Wikipedia)

–  In the general case, a bus may have more than one
device capable of driving it.

•  That is, it may be a “multi-master” bas as discussed
earlier.

How can we handle multiple (potential) bus drivers?
(1/3)

•  Tri-state devices, just have
one device drive at a time.
Everyone can read though
–  Pros:

•  Very common, fairly fast, pin-
efficient.

–  Cons:
•  Tri-state devices can be slow.

–  Especially drive-to-tristate?
•  Need to be sure two folks not driving at the same time

–  Let out the magic smoke.
–  Most common solution (at least historically)

•  Ethernet, PCI, etc.

How can we handle multiple (potential) bus drivers?
(2/3)

•  MUX
–  Just have each device generate its data, and have a

MUX select.
•  That’s a LOT of pins.

–  Consider a 32-bit bus with 6 potential drivers.
»  Draw the figure.
»  How many pins needed for the MUX?

–  Not generally realistic for an “on-PCB” design as we’ll
need an extra device (or a lot of pins on one device)

•  But reasonable on-chip
–  In fact AHB, APB do this.

How can we handle multiple (potential) bus drivers?
(3/3)

•  “pull-up” aka “open
collector” aka “wired
AND”
–  Wire is pulled high by a

resistor
–  If any device pulls the

wire low, it goes low.

•  Pros:
–  If two devices both drive

the bus, it still works!

•  Cons:
–  Rise-time is very slow.
–  Constant power drain.

•  Pros:
–  If two devices both

drive the bus, it still
works!

•  Cons:
–  Rise-time is very slow.
–  Constant power drain.

•  Sees use in I2C, CAN.

Serial peripherals

8

Atmel SAM3U

9

Outline

•  Introduction to Serial Buses

•  UART

•  SPI

•  I2C

UART

•  Universal Asynchronous Receiver/Transmitter
•  Hardware that translates between parallel and serial forms
•  Commonly used in conjunction with communication

standards such as EIA, RS-232, RS-422 or RS-485
•  The universal designation indicates that the data format

and transmission speeds are configurable and that the
actual electric signaling levels and methods (such as
differential signaling etc.) typically are handled by a
special driver circuit external to the UART.

10 Most of the UART stuff (including images) Taken from Wikipedia!

Protocol

•  Each character is sent as
–  a logic low start bit
–  a configurable number of data bits (usually 7 or 8,

sometimes 5)
–  an optional parity bit
–  one or more logic high stop bits
–  with a particular bit timing (“baud”)

•  Examples
–  “9600-N-8-1” ! <baudrate><parity><databits><stopbits>
–  “9600-8-N-1” ! <baudrate><databits><parity><stopbits>

11

Variations and fun times

•  UART is actually a generic term that includes a
large number of different devices/standards.
–  RS-232 is a standard that specifies

•  “electrical characteristics and timing of signals, the
meaning of signals, and the physical size and pin
out of connectors.

12

Signals (only most common)

•  The RXD signal of a UART is the signal receiving the data. This will
be an input and is usually connected to the TXD line of the
downstream device.

•  The TXD signal of a UART is the signal transmitting the data. This
will be an output and is usually connected to the RXD line of the
downstream device.

•  The RTS# (Ready to Send) signal of a UART is used to indicate to
the downstream device that the device is ready to receive data.
This will be an output and is usually connected to the CTS# line of
the downstream device.

•  The CTS# (Clear to Send) signal of a UART is used by the
downstream device to identify that it is OK to transmit data to
the upsteam device. This will be an input and is usually connected
to the RTS# line of the upstream device.

13

14

DB9 stuff

•  DTE vs DCE
•  Pinout of a DCE?
•  Common ground?
•  Noise effects?

Wiring a DTE device to a DCE device for communication is easy.
The pins are a one-to-one connection, meaning all wires go from pin x to pin x.
A straight through cable is commonly used for this application.
In contrast, wiring two DTE devices together requires crossing the transmit and receive wires.
This cable is known as a null modem or crossover cable.

15

RS-232 transmission example

Discussion Questions

•  How fast can we run a UART?
•  What are the limitations?
•  Why do we need start/stop bits?
•  How many data bits can be sent?

–  9600-8-N-1 is ok. Is 9600-8192-N-1 ok too?

16

17

Outline

•  Introduction to Serial Buses

•  UART

•  SPI

•  I2C

Introduction

"  What is it?
"  Basic Serial Peripheral Interface (SPI)‏
"  Capabilities
"  Protocol
"  Pro / Cons and Competitor
"  Uses
"  Conclusion

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/
SPI_single_slave.svg/350px-SPI_single_slave.svg.png

What is SPI?

•  Serial Bus protocol
•  Fast, Easy to use, Simple
•  Everyone supports it

SPI Basics

"  A communication protocol using 4 wires
"  Also known as a 4 wire bus

"  Used to communicate across small
distances

"  Multiple Slaves, Single Master
"  Synchronized

Capabilities of SPI

"  Always Full Duplex
"  Communicating in two directions at the

same time
"  Transmission need not be meaningful

"  Multiple Mbps transmission speed
"  Transfers data in 4 to 16 bit characters
"  Multiple slaves

"  Daisy-chaining possible

Protocol

"  Wires:
"  Master Out Slave In (MOSI)‏
"  Master In Slave Out (MISO)‏
"  System Clock (SCLK)‏
"  Slave Select 1…N

"  Master Set Slave Select low
"  Master Generates Clock
"  Shift registers shift in and out data

Wires in Detail

"  MOSI – Carries data out of Master to
Slave

"  MISO – Carries data from Slave to
Master
"  Both signals happen for every transmission

"  SS_BAR – Unique line to select a slave
"  SCLK – Master produced clock to

synchronize data transfer

Shifting Protocol

Master shifts out data to Slave, and shift in data from Slave
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

Diagram

Master and multiple independent
slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/
SPI_three_slaves.svg/350px-SPI_three_slaves.svg.png

Master and multiple daisy-
chained slaves
http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

Some wires have been renamed

Clock Phase (Advanced)‏
"  Two phases and two polarities of clock
"  Four modes
"  Master and selected slave must be in

same mode
"  Master must change polarity and phase

to communicate with slaves of different
numbers

Timing Diagram

Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

Pros and Cons
Pros:
"  Fast and easy

"  Fast for point-to-point connections
"  Easily allows streaming/Constant data inflow
"  No addressing/Simple to implement

"  Everyone supports it
Cons:
"  SS makes multiple slaves very complicated
"  No acknowledgement ability
"  No inherent arbitration
"  No flow control

Uses

"  Some Serial Encoders/Decoders,
Converters, Serial LCDs, Sensors, etc.

"  Pre-SPI serial devices

Conclusion

"  SPI – 4 wire serial bus protocol
"  MOSI MISO SS SCLK wires

"  Full duplex
"  Multiple slaves, One master
"  Best for point-to-point streaming data
"  Easily Supported

31

Outline

•  Introduction to Serial Buses

•  UART

•  SPI

•  I2C

What is I2C (or I2C)?

Where is it Used?

33

Basic Description

34

Electrical Wiring

35

Clock

36

A Basic I2C Transaction

37

A Basic I2C Transaction

38

Start Condition

39

Address Transmission

40

Data transmission

41

Stop Condition

42

Another look at I2C

43

Exercise: How fast can I2C run?

44

•  How fast can you run it?
•  Assumptions

–  0’s are driven
–  1’s are “pulled up”

•  Some working figures
–  Rp = 10 kΩ
–  Ccap = 100 pF
–  VDD = 5 V
–  Vin_high = 3.5 V

•  Recall for RC circuit
–  Vcap(t) = VDD(1-e-t/τ)
–  Where τ = RC

Exercise: Bus bit rate vs Useful data rate

45

•  An I2C “transactions” involves the following bits
–  <S><A6:A0><R/W><A><D7:D0><A><F>

•  Which of these actually carries useful data?
–  <S><A6:A0><R/W><A><D7:D0><A><F>

•  So, if a bus runs at 400 kHz
–  What is the clock period?
–  What is the data throughput (i.e. data-bits/second)?
–  What is the bus “efficiency”?

