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Announcements 

•  Homework #2 
•  Where was I last week? 

–  VLCS’14 
–  MobiCom’14 
–  HotWireless’14 

Emerging Retail Environment: A Walled Garden 

•  Often have line-of-sight to lighting 
–  Groceries 
–  Drugstores 
–  Megastores 
–  Hardware stores 
–  Enterprise settings 

•  Lots of overhead lighting in retail 
•  Retailers deploying LED lighting 
•  Customers using phones in stores 

–  Surf, Scan, Share 

•  Customers installing retailer apps 
–  Maps, Barcodes, Deals, Shopping 
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Visible Light Communications and Positioning 
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Image processing extracts beacon locations and frequencies 
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Outline 

•  Announcements 

•  Review 

•  ARM AHB-Lite 



What happens after a power-on-reset (POR)? 

•  On the ARM Cortex-M3 
•  SP and PC are loaded from 

the code (.text) segment 
•  Initial stack pointer 

–  LOC: 0x00000000 
–  POR: SP ! mem(0x00000000) 

•  Interrupt vector table 
–  Initial base: 0x00000004 
–  Vector table is relocatable 
–  Entries: 32-bit values 
–  Each entry is an address 
–  Entry #1: reset vector 

•  LOC: 0x0000004 
•  POR: PC ! mem(0x00000004) 

•  Execution begins 
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!.equ !STACK_TOP,!0x20000800!
!.text!
!.syntax !unified!
!.thumb!
!.global !_start!
!.type !start,!%function!

!
_start:!

!.word !STACK_TOP,!start!
start:!

!movs!r0,!#10!
!...!

System 
Memory 
Map 
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!#define!!SYSREG_SOFT_RST_CR!!0xE0042030!
!

!uint32_t!*reg!=!(uint32_t!*)(SYSREG_SOFT_RST_CR);!
!

!main!()!{!
!!!*reg!|=!0x00004000;!//!Reset!GPIO!hardware!
!!!*reg!&=!~(0x00004000);!
!}!

!
!

Accessing memory locations from C 

•  Memory has an address and value 
•  Can equate a pointer to desired address  
•  Can set/get de-referenced value to change memory 
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Some useful C keywords 

•  const 
–  Makes variable value or pointer parameter unmodifiable 
–  const foo = 32; 

•  register 
–  Tells compiler to locate variables in a CPU register if possible 
–  register int x; 

•  static 
–  Preserve variable value after its scope ends 
–  Does not go on the stack 
–  static int x; 

•  volatile 
–  Opposite of const 
–  Can be changed in the background 
–  volatile int I; 
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#include!<stdio.h>!
#include!<inttypes.h>!
!
#define!REG_FOO!0x40000140!
!
main!()!{!
!!uint32_t!*reg!=!(uint32_t!*)(REG_FOO);!
!!*reg!+=!3;!
!
!!printf(�0x%x\n�,!*reg);!//!Prints!out!new!value!
}!

What happens when this �instruction� executes? 
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�*reg += 3� is turned into a ld, add, str sequence 

•  Load instruction 
–  A bus read operation commences 
–  The CPU drives the address �reg� onto the address bus 
–  The CPU indicated a read operation is in process (e.g. R/W#) 
–  Some �handshaking� occurs 
–  The target drives the contents of �reg� onto the data lines 
–  The contents of �reg� is loaded into a CPU register (e.g. r0) 

•  Add instruction 
–  An immediate add (e.g. add r0, #3) adds three to this value 

•  Store instruction 
–  A bus write operation commences 
–  The CPU drives the address �reg� onto the address bus 
–  The CPU indicated a write operation is in process (e.g. R/W#) 
–  Some �handshaking� occurs 
–  The CPU drives the contents of �r0� onto the data lines 
–  The target stores the data value into address �reg� 



Modern embedded systems have multiple busses 
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Atmel SAM3U 

Historical  
373 focus 

Expanded 
373 focus 

14 

Why have so many busses? 
 

•  Many designs considerations 
–  Master vs Slave 
–  Internal vs External 
–  Bridged vs Flat 
–  Memory vs Peripheral 
–  Synchronous vs Asynchronous 
–  High-speed vs low-speed 
–  Serial vs Parallel 
–  Single master vs multi master 
–  Single layer vs multi layer 
–  Multiplexed A/D vs demultiplexed A/D 

•  Discussion: what are some of the tradeoffs? 
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APB 

•  IDLE 
–  Default APB state 

•  SETUP 
–  When transfer required 
–  PSELx is asserted 
–  Only one cycle 

•  ACCESS 
–  PENABLE is asserted 
–  Addr, write, select, and 

write data remain stable 
–  Stay if PREADY = L 
–  Goto IDLE if PREADY = H 

and no more data 
–  Goto SETUP is PREADY = H 

and more data pending 

Setup phase begins 
with this rising edge 

Setup 
Phase 

Access 
Phase 
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APB signal definitions 

•  PCLK: the bus clock source (rising-edge triggered) 
•  PRESETn: the bus (and typically system) reset signal (active low) 
•  PADDR: the APB address bus (can be up to 32-bits wide) 
•  PSELx: the select line for each slave device 
•  PENABLE: indicates the 2nd and subsequent cycles of an APB xfer 
•  PWRITE: indicates transfer direction (Write=H, Read=L) 
•  PWDATA: the write data bus (can be up to 32-bits wide) 
•  PREADY: used to extend a transfer 
•  PRDATA: the read data bus (can be up to 32-bits wide) 
•  PSLVERR: indicates a transfer error (OKAY=L, ERROR=H) 

Let’s say we want a device that provides data from 
a switch on a read to any address it is assigned.  
(so returns a 0 or 1) 
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Mr. 
Switch 

!

!!

PWRITE!!

!!

PENABLE!

!!

PSEL!!

!!

PADDR[7:0]!

!!

PCLK!

!!

PREADY 
 
PRDATA[32:0] 

Device provides data from switch A if address  
0x00001000 is read from. B if address 0x00001004 
is read from 
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Mr. 
Switch 

Mrs. 
Switch 
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All reads read from register, all writes write… 
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PWDATA[31:0]!

!!

PWRITE!!

!!

PENABLE!

!!

PSEL!!

!!

PADDR[7:0]!

!!

PCLK!

!!

PREADY!

!!

328bit!Reg!
!

D[31:0]!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!Q[31:0]!
EN!
!!
!!!!C!!!!!!!!!!!!!!!!

!!

We are assuming APB only gets lowest 8 bits of address here… 

PREADY 
 
PRDATA[32:0] 
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Outline 

•  Announcements 

•  Review 

•  ARM AHB-Lite 

Advanced Microcontroller Bus Architecture (AMBA) 
- Advanced High-performance Bus (AHB) 
- Advanced Peripheral Bus (APB) 

AHB 
•  High performance 
•  Pipelined operation 
•  Burst transfers 
•  Multiple bus masters 
•  Split transactions 

APB 
•  Low power 
•  Latched address/control 
•  Simple interface 
•  Suitable of many 

peripherals 
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Actel SmartFusion system/bus architecture 

23 

AHB-Lite supports single bus master 
and provides high-bandwidth operation 

•  Burst transfers 

•  Single clock-edge 
operation 

•  Non-tri-state 
implementation 

•  Configurable bus width 
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AHB-Lite bus master/slave interface 

•  Global signals 
–  HCLK 
–  HRESETn 

•  Master out/slave in 
–  HADDR (address) 
–  HWDATA (write data) 
–  Control 

•  HWRITE 
•  HSIZE 
•  HBURST 
•  HPROT 
•  HTRANS 
•  HMASTLOCK 

•  Slave out/master in 
–  HRDATA (read data) 
–  HREADY 
–  HRESP 
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AHB-Lite signal definitions 

•  Global signals 
–  HCLK: the bus clock source (rising-edge triggered) 
–  HRESETn: the bus (and system) reset signal (active low) 

•  Master out/slave in 
–  HADDR[31:0]: the 32-bit system address bus 
–  HWDATA[31:0]: the system write data bus 
–  Control 

•  HWRITE: indicates transfer direction (Write=1, Read=0) 
•  HSIZE[2:0]: indicates size of transfer (byte, halfword, or word) 
•  HBURST[2:0]: indicates single or burst transfer (1, 4, 8, 16 beats) 
•  HPROT[3:0]: provides protection information (e.g. I or D; user or handler) 
•  HTRANS: indicates current transfer type (e.g. idle, busy, nonseq, seq) 
•  HMASTLOCK: indicates a locked (atomic) transfer sequence 

•  Slave out/master in 
–  HRDATA[31:0]: the slave read data bus 
–  HREADY: indicates previous transfer is complete 
–  HRESP: the transfer response (OKAY=0, ERROR=1) 
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Key to timing diagram conventions  

•  Timing diagrams 
–  Clock 
–  Stable values 
–  Transitions 
–  High-impedance 

•  Signal conventions 
–  Lower case �n� denote 

active low (e.g. RESETn) 
–  Prefix �H� denotes AHB 
–  Prefix �P� denotes APB 
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Basic read and write transfers with no wait states 
 

Pipelined 
Address 
& Data 
Transfer  
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Read transfer with two wait states 

Two wait states 
added by slave 
by asserting 
HREADY low 

Valid data 
produced 
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Write transfer with one wait state 

One wait state 
added by slave 
by asserting 
HREADY low 

Valid data 
held stable 
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Wait states extend the address phase of next transfer 

One wait state 
added by slave 
by asserting 
HREADY low 

Address stage of  
the next transfer 
is also extended 
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Transfers can be of four types (HTRANS[1:0]) 

•  IDLE (b00) 
–  No data transfer is required 
–  Slave must OKAY w/o waiting 
–  Slave must ignore IDLE 

•  BUSY (b01) 
–  Insert idle cycles in a burst 
–  Burst will continue afterward 
–  Address/control reflects next transfer in 

burst 
–  Slave must OKAY w/o waiting 
–  Slave must ignore BUSY 

•  NONSEQ (b10) 
–  Indicates single transfer or first transfer of 

a burst 
–  Address/control unrelated to prior 

transfers 

•  SEQ (b11) 
–  Remaining transfers in a burst 
–  Addr = prior addr + transfer size 
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A four beat burst with master busy and slave wait 

One wait state 
added by slave 
by asserting 
HREADY low 

Master busy 
indicated by 
HTRANS[1:0] 
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Controlling the size (width) of a transfer 

•  HSIZE[2:0] encodes the size 

•  The cannot exceed the data bus 
width (e.g. 32-bits) 

•  HSIZE + HBURST is determines 
wrapping boundary for wrapping 
bursts 

•  HSIZE must remain constant 
throughout a burst transfer 
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Controlling the burst beats (length) of a transfer 

•  Burst of 1, 4, 8, 16, and undef 

•  HBURST[2:0] encodes the type 

•  Incremental burst  

•  Wrapping bursts  
–  4 beats x 4-byte words wrapping 
–  Wraps at 16 byte boundary 
–  E.g. 0x34, 0x38, 0x3c, 0x30,… 

•  Bursts must not cross 1KB 
address boundaries 
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A four beat wrapping burst (WRAP4) 
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A four beat incrementing burst (INCR4) 
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An eight beat wrapping burst (WRAP8) 
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An eight beat incrementing burst 
(INCR8) using half-word transfers 
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An undefined length incrementing burst (INCR) 
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Multi-master AHB-Lite  
requires a multi-layer interconnect 

•  AHB-Lite is single-master 

•  Multi-master operation 
–  Must isolate masters 
–  Each master assigned to layer 
–  Interconnect arbitrates slave 

accesses 

•  Full crossbar switch often 
unneeded 
–  Slaves 1, 2, 3 are shared 
–  Slaves 4, 5 are local to Master 1 
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Questions? 
 

Comments? 
 

Discussion? 


