

EECS 373 Design of Microprocessor-Based Systems

Prabal Dutta University of Michigan

Lecture 5: Memory and Peripheral Busses September 16, 2014

Announcements

- Homework #2
- Where was I last week?
 - VLCS'14
 - MobiCom'14
 - HotWireless'14

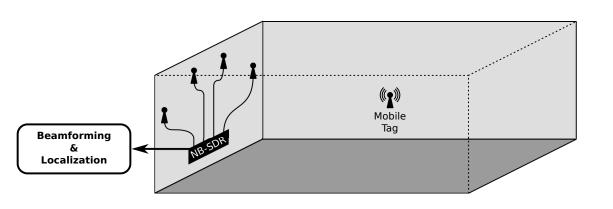
Emerging Retail Environment: A Walled Garden

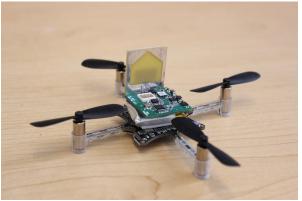
BUY

- Often have line-of-sight to lighting
 - Groceries
 - Drugstores
 - Megastores
 - Hardware stores
 - Enterprise settings
- Lots of overhead lighting in retail
- Retailers deploying LED lighting
- Customers using phones in stores
 - Surf, Scan, Share
- Customers installing retailer apps
 - Maps, Barcodes, Deals, Shopping

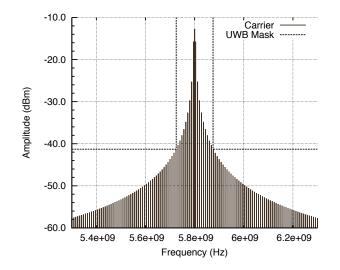
Visible Light Communications and Positioning

S1




01100101000 Illuminate Idle TX <66> TX packet Smart Phone LED Luminaire Captured using a rolling shutter S4 \mathbf{O} **S**3 S4 Image processing extracts beacon locations and frequencies S2 **S**3 $d_{0,1}^2 = (u_0 - u_1)^2 + (v_0 - v_1)^2 + (w_0 - w_1)^2$ 3 $= (K_0 a_0 - K_1 a_1)^2 + (K_0 b_0 - K_1 b_1)^2 + Z_f^2 (K_0 - K_1)^2$ = $K_0^2 \left| \overrightarrow{Oi_0} \right|^2 + K_0^2 \left| \overrightarrow{Oi_1} \right|^2 - 2K_0 K_1 (\overrightarrow{Oi_0} \cdot \overrightarrow{Oi_1})$ = $(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2,$ S2


$$\sum_{m=1}^{N} \{ (T_x - x_m)^2 + (T_y - y_m)^2 + b_m^2 + b_m^2 - K_m^2 (a_m^2 + b_m^2 + Z_f^2) \}^2$$


Harmonia Tag

Outline

- Announcements
- Review
- ARM AHB-Lite

What happens after a power-on-reset (POR)?

• On the ARM Cortex-M3 .equ STACK TOP, 0x20000800 .text • SP and PC are loaded from unified .svntax .thumb the code (.text) segment .global start start, %function .type Initial stack pointer • _start: LOC: 0x0000000 _ .word STACK TOP, start - POR: SP ← mem(0x0000000) start: movs r0, #10 Interrupt vector table Initial base: 0x00000004 Vector table is relocatable 0x40000000 Entries: 32-bit values 0.5GB SRAM Each entry is an address -Entry #1: reset vector _ 0x20000000 • LOC: 0x0000004 POR: PC ← mem(0x0000004) 0.5GB Code **Execution begins** 7 0x00000000

System Memory		Memory Map of Cortex-M3	Memory Map of FPGA Fabric Master, Ethernet MAC, Peripheral DMA	
MEILIUIY				0xE0043000 - 0xFFFE2FFF
		System Registers		0xE0042000 - 0xE0042FFF
Мар				0x78000000 - 0xE0041FFF
map		External Memory Type 1	External Memory Type 1	0x74000000 - 0x77FFFFF
		External Memory Type 0	External Memory Type 0	0x70000000 - 0x73FFFFFF
				0x601D0000 - 0x6FFFFFF
				0x60180000 - 0x601CFFFF
				0x60100100 - 0x6017FFFF
		eNVM Controller	eNVM Controller	0x60100000 - 0x601000FF
				0x60088200 - 0x600FFFF
		eNVM Aux Block (spare pages)	eNVM Aux Block (spare pages)	0x60088000 - 0x600881FF
		eNVM Aux Block (array)	eNVM Aux Block (array)	0x50084000 - 0x60087FFF
		eNVM Spare Pages	eNVM Spare Pages	0x50080000 - 0x60083FFF
		eNVM Array	eNVM Array	0x6000000 - 0x6007FFF
	Peripheral Bit-Band Alias (Partabarak (PD view)		0x44000000 - 0x5FFFFFF
	Region of Cortex-M3	Peripherals (BB view)		0x42000000 – 0x43FFFFF 0x40100000 – 0x41FFFFF
		TRCA Select	FPGA Fabric	0x40100000 - 0x41FFFFF 0x40050000 - 0x400FFFFF
		FPGA Fabric FPGA Fabric eSRAM Backdoor	FPGA Fabric eSRAM Backdoor	0x40040000 - 0x4004FFFF
		FPGA Fabric eskawi Backuoor	FPGA Fabric ESRAW Backdoor	0x40020004 0x4002000
			APB Extension Register	wisible only
		Analog Compute Engine	Analog Compute Engine	0x40030000 – 0x40030003
		Analog compute Engine	Analog compute Engine	0x40017000 - 0x4001FFFF
		IAP Controller	IAP Controller	0x40016000 - 0x40016FFF
		eFROM	eFROM	0x40015000 - 0x40015FFF
		RTC	RTC	0x40014000 - 0x40014FFF
		MSS GPIO	MSS GPIO	0x40013000 - 0x40013FFF
		IZC_1	12C_1	0x40012000 - 0x40012FFF
		SPL 1	SPI 1	0x40011000 - 0x40011FFF
		UART 1	UART 1	0x40010000 - 0x40010FFF
			and a	0x40008000 - 0x4000FFFF
		Fabric Interface Interrupt Controller	Fabric Interface Interrupt Controller	0x40007000 - 0x40007FFF
		Watchdog	Watchdog	0x40006000 - 0x40006FFF
		Timer	Timer	0x40005000 - 0x40005FFF
		Peripheral DMA	Peripheral DMA	0x40004000 - 0x40004FFF
		Ethernet MAC	Ethernet MAC	0x40003000 - 0x40003FFF
		I2C_0	12C_0	0x40002000 - 0x40002FFF
		SPI_0	SPI_0	0x40001000 - 0x40001FFF
		UART_0	UART_0	0x4000000 - 0x40000FFF
				0x24000000 - 0x3FFFFFF
	SRAM BIt-Band Alias	eSRAM_0 / eSRAM_1 (BB view)		0x22000000 - 0x23FFFFFF
	Region of Cortex-M3 L			0x20010000 - 0x21FFFFFF
	Cortex-M3	eSRAM_1	eSRAM_1	0x20008000 - 0x2000FFFF
	System Region	eSRAM_0	eSRAM_0	0x20000000 - 0x20007FFF
	Cortex-M3			0x00088200 - 0x1FFFFFF
	Code Region			0x000881FF
		eNVM (Cortex-M3) Virtual View	eNVM (fabric) Virtual View	Visible only to FPGA Fabric Master
				TT SPY FAMILY, INCOVER
				0x00000000
		L]/

M

Figure 2-4 • System Memory Map with 64 Kbytes of SRAM

Accessing memory locations from C

- Memory has an address and value
- Can equate a pointer to desired address
- Can set/get de-referenced value to change memory

```
#define SYSREG_SOFT_RST_CR 0xE0042030
uint32_t *reg = (uint32_t *)(SYSREG_SOFT_RST_CR);
main () {
    *reg |= 0x00004000; // Reset GPIO hardware
    *reg &= ~(0x00004000);
}
```

Some useful C keywords

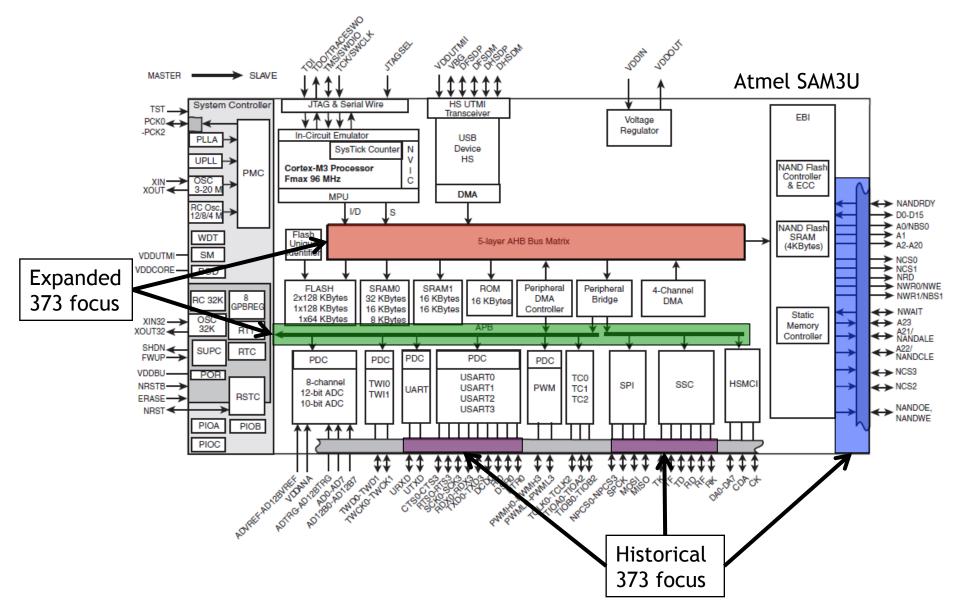
- const
 - Makes variable value or pointer parameter unmodifiable
 - const foo = 32;
- register
 - Tells compiler to locate variables in a CPU register if possible
 - register int x;
- static
 - Preserve variable value after its scope ends
 - Does not go on the stack
 - static int x;
- volatile
 - Opposite of const
 - Can be changed in the background
 - volatile int I;

What happens when this "instruction" executes?


```
#include <stdio.h>
#include <inttypes.h>
```

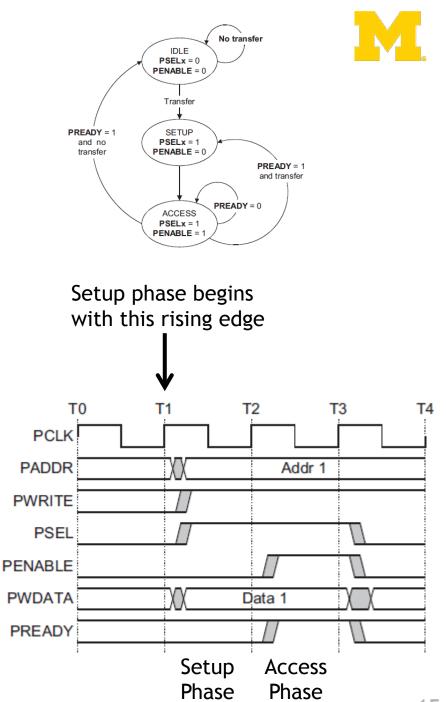
#define REG_F00 0x40000140

```
main () {
    uint32_t *reg = (uint32_t *)(REG_FOO);
    *reg += 3;
    printf("0x%x\n", *reg); // Prints out new value
}
```


"*reg += 3" is turned into a ld, add, str sequence

- Load instruction
 - A bus read operation commences
 - The CPU drives the address "reg" onto the address bus
 - The CPU indicated a read operation is in process (e.g. R/W#)
 - Some "handshaking" occurs
 - The target drives the contents of "reg" onto the data lines
 - The contents of "reg" is loaded into a CPU register (e.g. r0)
- Add instruction
 - An immediate add (e.g. add r0, #3) adds three to this value
- Store instruction
 - A bus write operation commences
 - The CPU drives the address "reg" onto the address bus
 - The CPU indicated a write operation is in process (e.g. R/W#)
 - Some "handshaking" occurs
 - The CPU drives the contents of "r0" onto the data lines
 - The target stores the data value into address "reg"

Modern embedded systems have multiple busses

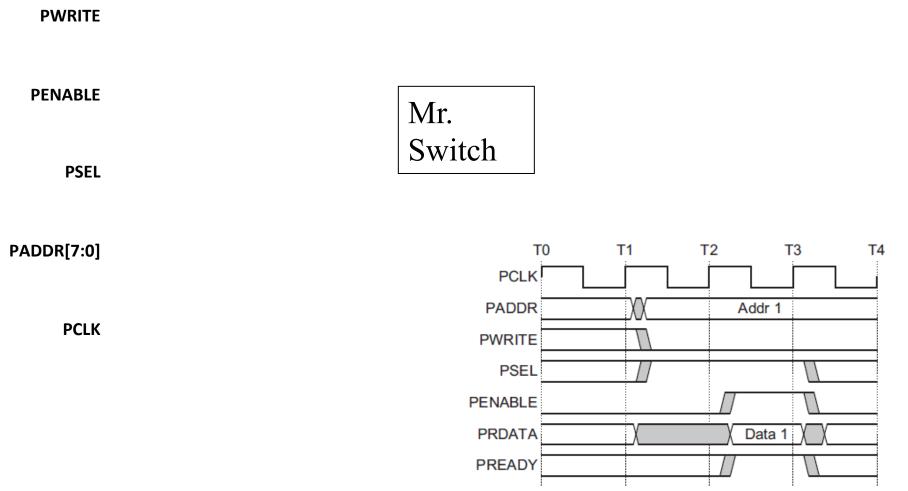

Why have so many busses?

- Many designs considerations
 - Master vs Slave
 - Internal vs External
 - Bridged vs Flat
 - Memory vs Peripheral
 - Synchronous vs Asynchronous
 - High-speed vs low-speed
 - Serial vs Parallel
 - Single master vs multi master
 - Single layer vs multi layer
 - Multiplexed A/D vs demultiplexed A/D
- Discussion: what are some of the tradeoffs?

APB

- IDLE
 - Default APB state
- SETUP
 - When transfer required
 - PSELx is asserted
 - Only one cycle
- ACCESS
 - PENABLE is asserted
 - Addr, write, select, and write data remain stable
 - Stay if PREADY = L
 - Goto IDLE if PREADY = H and no more data
 - Goto SETUP is PREADY = H and more data pending

APB signal definitions

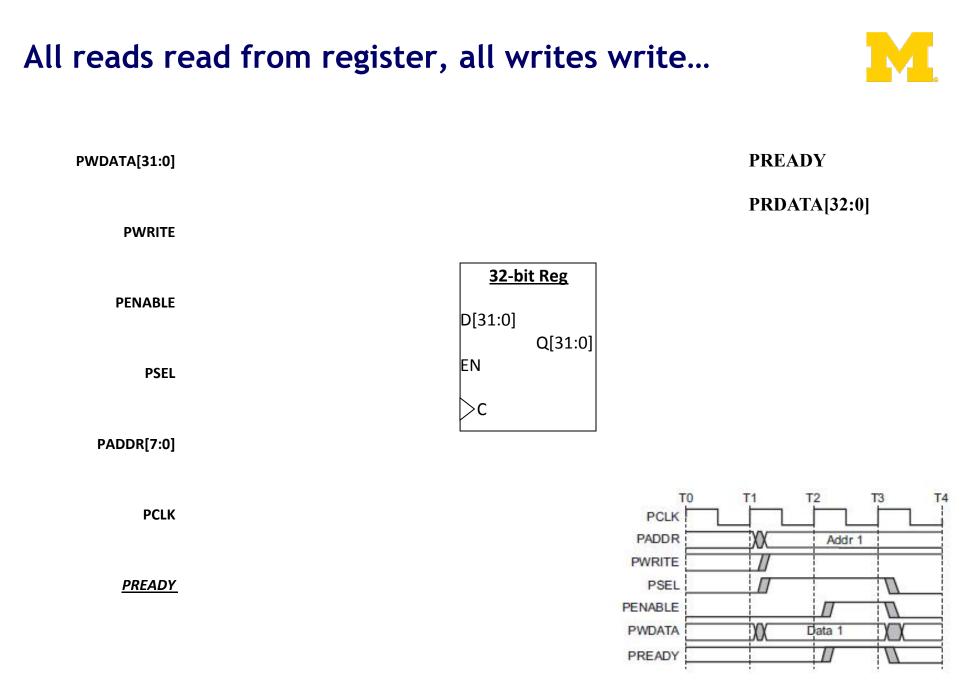

- PCLK: the bus clock source (rising-edge triggered)
- PRESETn: the bus (and typically system) reset signal (active low)
- PADDR: the APB address bus (can be up to 32-bits wide)
- PSELx: the select line for each slave device
- PENABLE: indicates the 2nd and subsequent cycles of an APB xfer
- PWRITE: indicates transfer direction (Write=H, Read=L)
- PWDATA: the write data bus (can be up to 32-bits wide)
- PREADY: used to extend a transfer
- PRDATA: the read data bus (can be up to 32-bits wide)
- PSLVERR: indicates a transfer error (OKAY=L, ERROR=H)

Let's say we want a device that <u>provides</u> data from a switch on a read to any address it is assigned. (so returns a 0 or 1)

PREADY

PRDATA[32:0]

Device provides data from switch A if address 0x00001000 is read from. B if address 0x00001004 is read from



PREADY

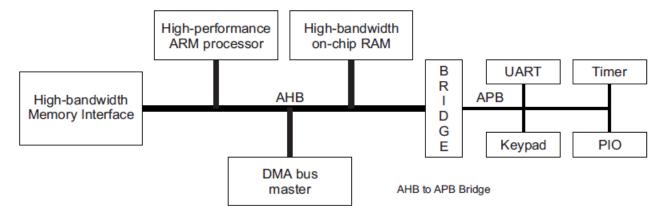
PRDATA[32:0]

PWRITE	
PENABLE PSEL	Mr. Switch
PADDR[7:0]	Mrs. Switch

PCLK

We are assuming APB only gets lowest 8 bits of address here...

Outline

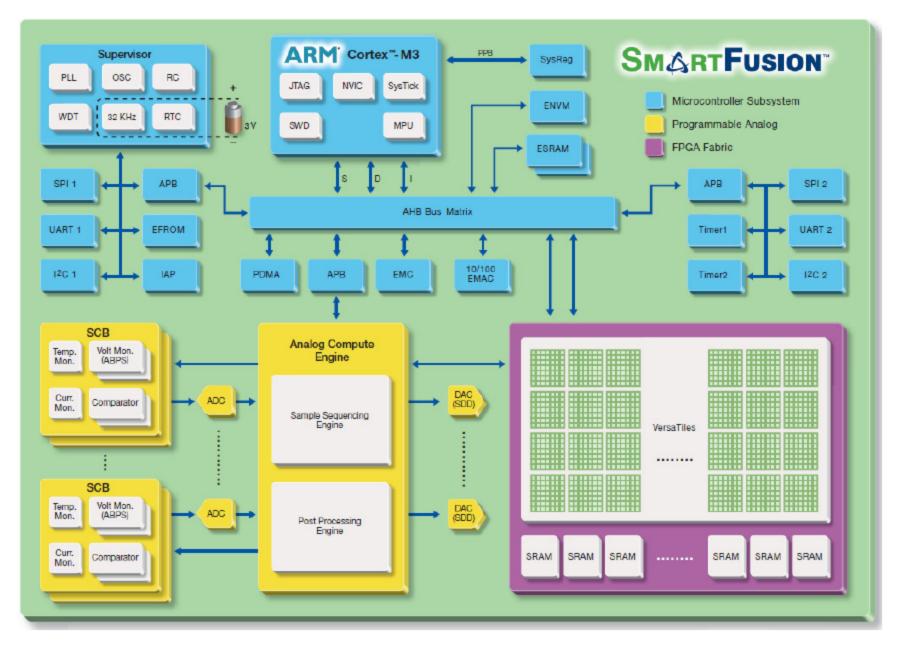


- Announcements
- Review
- ARM AHB-Lite

Advanced Microcontroller Bus Architecture (AMBA) - Advanced High-performance Bus (AHB)

- Advanced Peripheral Bus (APB)

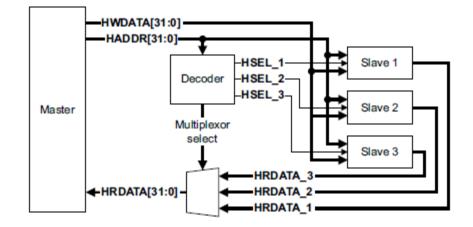
AHB


- High performance
- Pipelined operation
- Burst transfers
- Multiple bus masters
- Split transactions

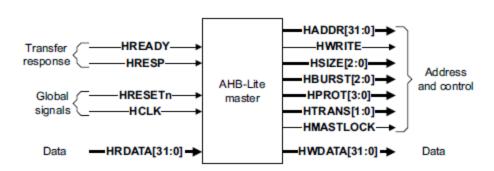
APB

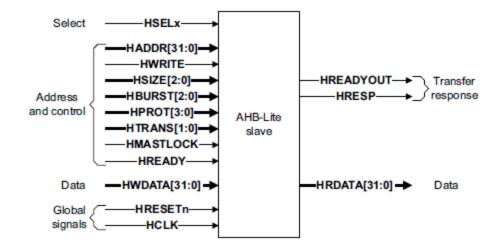
- Low power
- Latched address/control
- Simple interface
- Suitable of many peripherals

Actel SmartFusion system/bus architecture



AHB-Lite supports single bus master and provides high-bandwidth operation


- Burst transfers
- Single clock-edge operation
- Non-tri-state implementation



• Configurable bus width

AHB-Lite bus master/slave interface

- Global signals
 - HCLK
 - HRESETn
- Master out/slave in
 - HADDR (address)
 - HWDATA (write data)
 - Control
 - HWRITE
 - HSIZE
 - HBURST
 - HPROT
 - HTRANS
 - HMASTLOCK
- Slave out/master in
 - HRDATA (read data)
 - HREADY
 - HRESP

AHB-Lite signal definitions

- Global signals
 - HCLK: the bus clock source (rising-edge triggered)
 - HRESETn: the bus (and system) reset signal (active low)
- Master out/slave in
 - HADDR[31:0]: the 32-bit system address bus
 - HWDATA[31:0]: the system write data bus
 - Control
 - HWRITE: indicates transfer direction (Write=1, Read=0)
 - HSIZE[2:0]: indicates size of transfer (byte, halfword, or word)
 - HBURST[2:0]: indicates single or burst transfer (1, 4, 8, 16 beats)
 - HPROT[3:0]: provides protection information (e.g. I or D; user or handler)
 - HTRANS: indicates current transfer type (e.g. idle, busy, nonseq, seq)
 - HMASTLOCK: indicates a locked (atomic) transfer sequence
- Slave out/master in
 - HRDATA[31:0]: the slave read data bus
 - HREADY: indicates previous transfer is complete
 - HRESP: the transfer response (OKAY=0, ERROR=1)

Key to timing diagram conventions

Clock HIGH to LOW Transient HIGH/LOW to HIGH Bus stable Bus to high impedance Bus change) High impedance to stable bus -

- Timing diagrams - Clock
 - Stable values
 - Transitions _
 - High-impedance
 - Signal conventions
 - Lower case 'n' denote active low (e.g. RESETn)
 - Prefix 'H' denotes AHB
 - Prefix 'P' denotes APB

Basic read and write transfers with no wait states

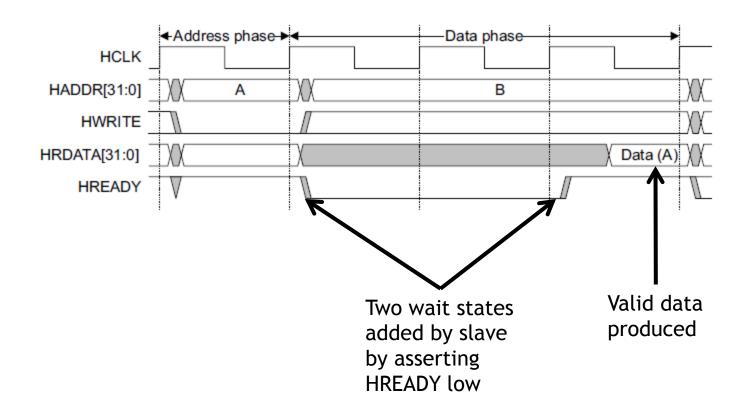
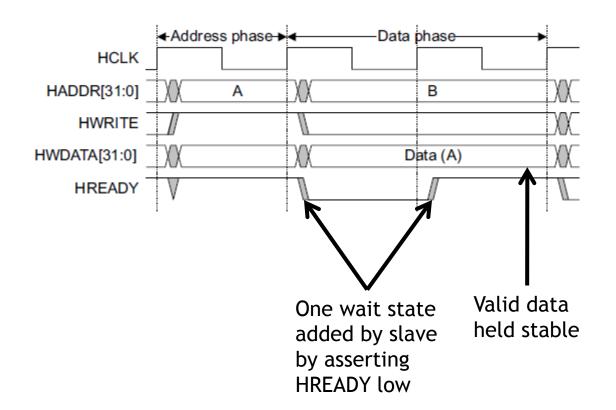
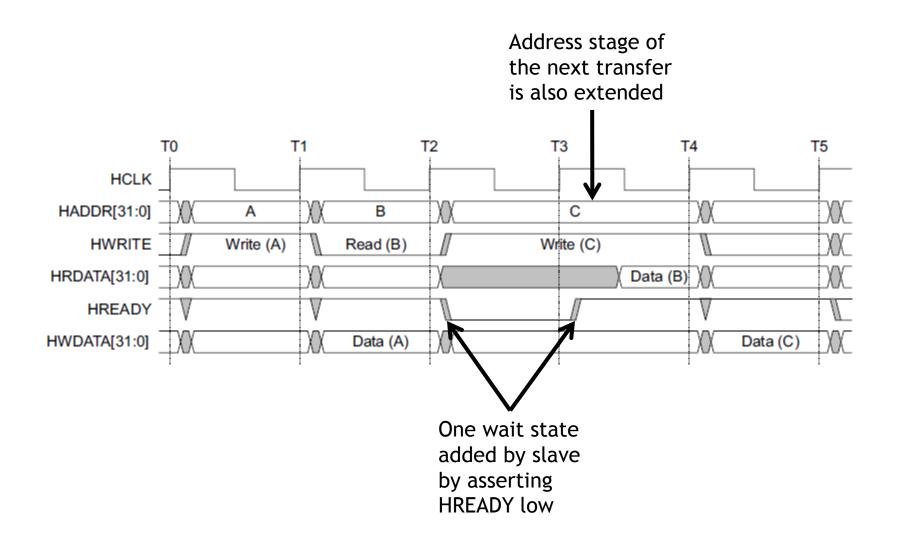
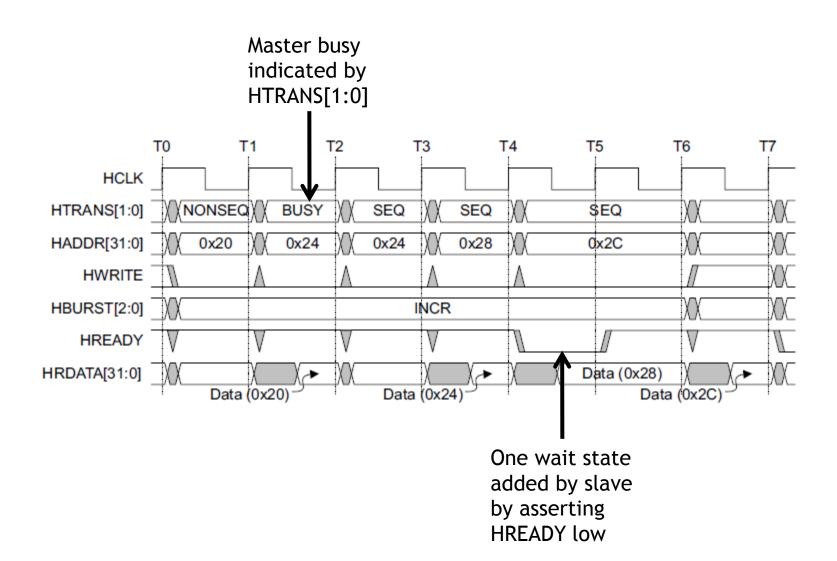



Figure 3-2 Write transfer


Read transfer with two wait states



Write transfer with one wait state


Transfers can be of four types (HTRANS[1:0])

- IDLE (b00)
 - No data transfer is required
 - Slave must OKAY w/o waiting
 - Slave must ignore IDLE
- BUSY (b01)
 - Insert idle cycles in a burst
 - Burst will continue afterward
 - Address/control reflects next transfer in burst
 - Slave must OKAY w/o waiting
 - Slave must ignore BUSY
- NONSEQ (b10)
 - Indicates single transfer or first transfer of a burst
 - Address/control unrelated to prior transfers
- SEQ (b11)
 - Remaining transfers in a burst
 - Addr = prior addr + transfer size

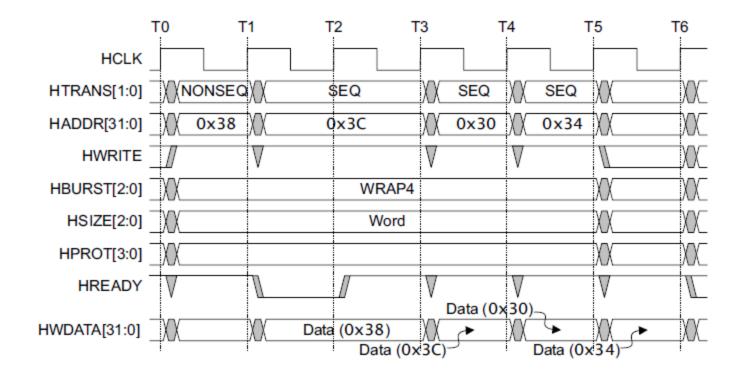
A four beat burst with master busy and slave wait

Controlling the size (width) of a transfer

- HSIZE[2:0] encodes the size
- The cannot exceed the data bus width (e.g. 32-bits)
- HSIZE + HBURST is determines wrapping boundary for wrapping bursts
- HSIZE must remain constant throughout a burst transfer

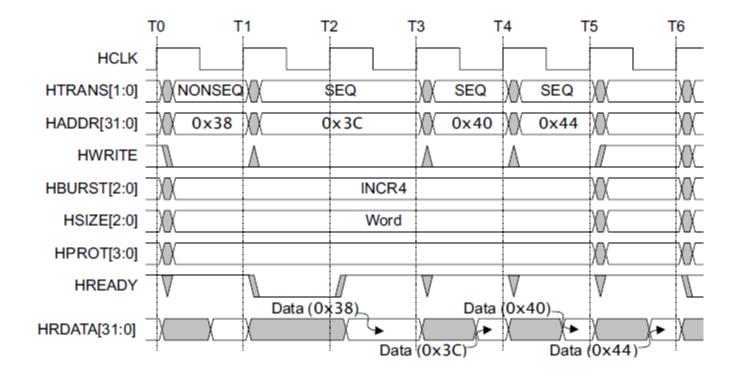
HSIZE[2]	HSIZE[1]	HSIZE[0]	Size (bits)	Description
0	0	0	8	Byte
0	0	1	16	Halfword
0	1	0	32	Word
0	1	1	64	Doubleword
1	0	0	128	4-word line
1	0	1	256	8-word line
1	1	0	512	-
1	1	1	1024	-

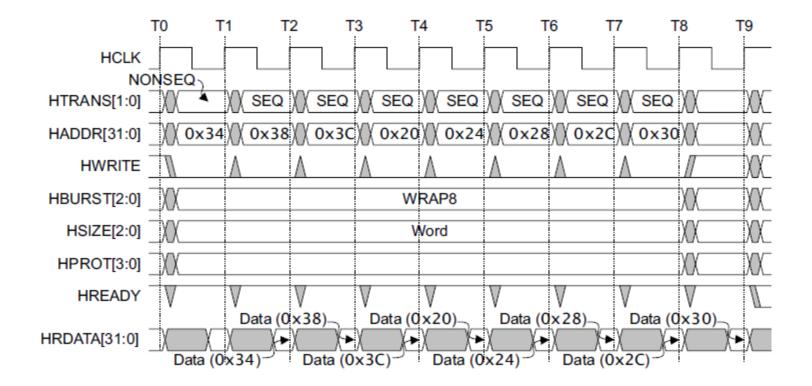
Controlling the burst beats (length) of a transfer

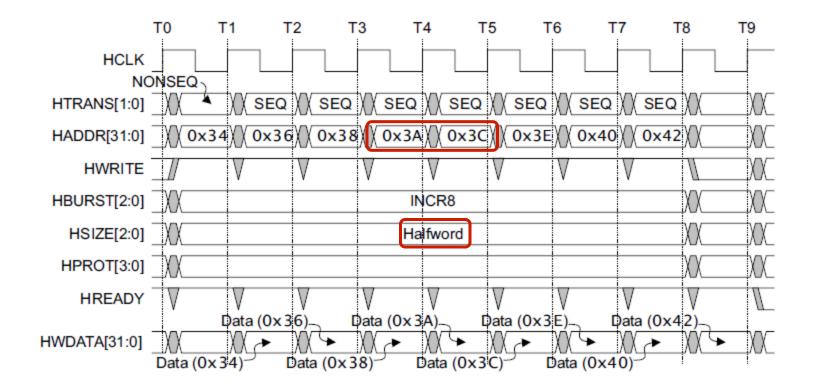


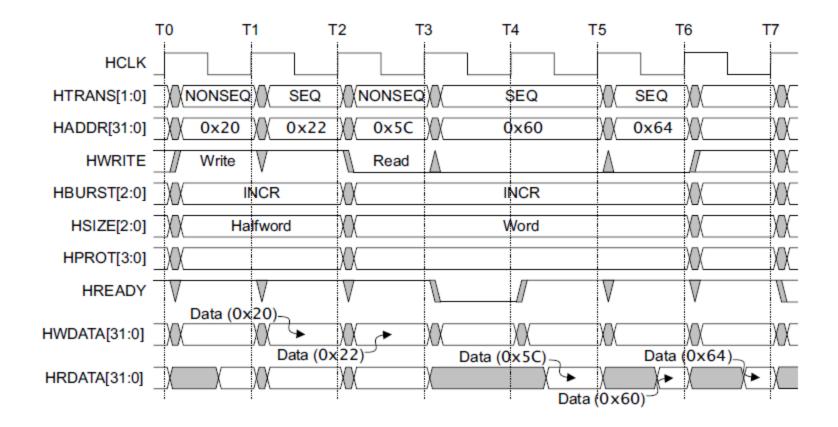
- Burst of 1, 4, 8, 16, and undef
- HBURST[2:0] encodes the type
- Incremental burst
- Wrapping bursts
 - 4 beats x 4-byte words wrapping
 - Wraps at 16 byte boundary
 - E.g. 0x34, 0x38, 0x3c, 0x30,...
- Bursts must not cross 1KB address boundaries

HBURST[2:0]	Туре	Description
b000	SINGLE	Single burst
b001	INCR	Incrementing burst of undefined length
b010	WRAP4	4-beat wrapping burst
b011	INCR4	4-beat incrementing burst
b100	WRAP8	8-beat wrapping burst
b101	INCR8	8-beat incrementing burst
b110	WRAP16	16-beat wrapping burst
b111	INCR16	16-beat incrementing burst

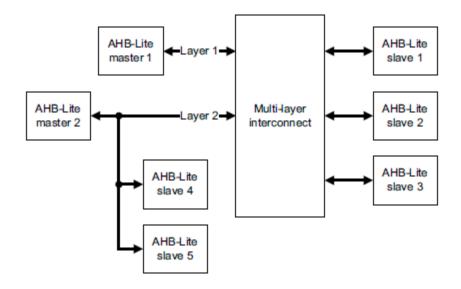

A four beat wrapping burst (WRAP4)


A four beat incrementing burst (INCR4)


An eight beat wrapping burst (WRAP8)


An eight beat incrementing burst (INCR8) using half-word transfers

An undefined length incrementing burst (INCR)



Multi-master AHB-Lite requires a multi-layer interconnect

- AHB-Lite is single-master
- Multi-master operation
 - Must isolate masters
 - Each master assigned to layer
 - Interconnect arbitrates slave accesses
- Full crossbar switch often unneeded
 - Slaves 1, 2, 3 are shared
 - Slaves 4, 5 are local to Master 1

Questions?

Comments?

Discussion?