EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 6: AHB-Lite, Interrupts (1)
September 18, 2014

Slides developed in part by Mark Brehob

Today

* Announcements

Announcements

* HW2 assigned; Due on 9/23

* Questions
— Synchronizers
— Why separate read/write busses on APB?

Today

* ARM AHB-Lite

Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

High-performance | | High-bandwidth
ARM processor on-chip RAM
I I B UART Timer
R \—I—l \—I—l
High-bandwidth AH| | APB

Memory Interface
G
: o]
DMA bus

Actel SmartFusion system/bus architecture

ARM Cortex=M3 | (= wnl SmaRrTFuUsIoN:

Q@m T
‘a o wl e

T 1 ;.,._m I‘—l—.ﬁﬂ
= =emen e ||

AHB

o High performance
» Pipelined operation
 Burst transfers

Split transactions

Multiple bus masters

APB

« Low power

« Latched address/control
« Simple interface

« Suitable of many
peripherals

on [
Nor. | (a8eS, — a0 e — — 5
Cmdl Exane.
o

-

AHB-Lite supports single bus master
and provides high-bandwidth operation

AHB-Lite bus master/slave interface

« Global signals

- HCLK |—rADDR(31 0
e Burst transfers _ HRESETn Tt ¢ .
« Master out/slave in Gobal ——HRESET—>| s [heromgs, | ==
. HADDR (address) s e [Chmasnioo—_
 Single f:lock edge HWDATA (write data) 0w
operation HSEL - Control
Decoder -HSEL_2-
- WeeLs + HWRITE
Mastor
X e « HSIZE
» Non-tri-state T « HBURST S
implementation B=== - HPROT e
i « HTRANS : Transter
« HMASTLOCK oo —rrromal o "
. . 2 slave
L4 Conﬁgurable buS W]dth « Slave out/master in :N!:‘A;TALDOVS
- HRDATA (read data) Data :0) Data
- HREADY Global /~——HRESETn—]
~ HRESP signals. HCLK—»|
AHB-Lite signal definitions Key to timing diagram conventions
« Global signals
- HCLK: the bus clock source (rising-edge triggered) .. .
- HRESETn: the bus (and system) reset signal (active low) * T]mlng d]agrams Clock
+ Master out/slave in - Clock HIGH to LOW
HADDR[31:0]: the 32-bit system address bus - Stable values
HWDATA[31:0]: the system write data bus - Transitions Transient

- Control

« HWRITE: indicates transfer direction (Write=1, Read=0)
HSIZE[2:0]: indicates size of transfer (byte, halfword, or word)
HBURST[2:0]: indicates single or burst transfer (1, 4, 8, 16 beats)
HPROT[3:0]: provides protection information (e.g. | or D; user or handler)
HTRANS: indicates current transfer type (e.g. idle, busy, nonseq, seq)
HMASTLOCK: indicates a locked (atomic) transfer sequence
« Slave out/master in

- HRDATA[31:0]: the slave read data bus

- HREADY: indicates previous transfer is complete

- HRESP: the transfer response (OKAY=0, ERROR=1)

- High-impedance HIGH/LOW to HIGH

Bus stable

° Slgnal Conven‘tlyons Bus to high impedance
- Lower case ‘n’ denote

active low (e.g. RESETn)

- Prefix ‘H" denotes AHB High impedance to stable bus
- Prefix ‘P’ denotes APB

Bus change

AT

Basic read and write transfers with no wait states

ddress ph: Data ph .
HCLK |
HADDR[31:0] | [} A)it B o
HWRITE || i \ C
HRDATA[31:0] | (Y b) pata (A} N
HREADY |/ v 1
Pipelined
Figure 3-1 Read transfer Address
& Data
ddi ph: Data ph:
HCLK _| Bl I Transfer
HADDR{31:0] _) A i B Ky
HWRITE |] \ DoC
HWDATA31:0] | (X 4 Data (A) 0
HREADY |/ v T

Figure 3-2 Write transfer

Read transfer with two wait states

HCLK | \; L Datap L
HADDR(31:0] _) A 4 B 10
HWRITE | i e
HRDATA31:0] | () X J(Data (A))
HREADY | |/ 1 I T
Two wait states Valid data
added by slave produced

by asserting
HREADY low

Write transfer with one wait state

i«Address ph: Data ph,
wew [1 1 [
HADDR[31:0] |) A i B 0C
HWRITE _ /] 1 oC
HWDATA[31:0] 1 (Y i Data (A) 0C
HREADY |/ T T

One wait state Valid data
added by slave held stable

by asserting
HREADY low

Wait states extend the address phase of next transfer

Address stage of
the next transfer
is also extended

) T 2 3 4 T5
HoLK | || L [E e N
HADDR(31:0] |) A b4 B X c b 0
HWRITE | | Wite (A) | \\ Read(8) | [Wite (C) L)
HRDATA[31:0] | Y 04 {) Data @)) o
HREADY |V v ¥ T
HWDATA[31:0] |)Y i)

I
) Data(A) U\/l' X oatac))

One wait state
added by slave
by asserting
HREADY low

Transfers can be of four types (HTRANS[1:0])

« IDLE (b0O)
- No data transfer is required
- Slave must OKAY w/o waiting
- Slave must ignore IDLE

« BUSY (b01)

A four beat burst with master busy and slave wait

Master busy
indicated by
HTRANS[1:0]

T T ir] 3 T4 5 6 g
Ho [|| o

Insert idle cycles in a burst
- Burst will continue afterward HTRANS[1:0] _J{NONSEQ)) BUSY) sEa i} sea i EQ i 0
éddrtess/control reflects next transfer in HADDR(31:0] T} 0x20 02z i) oxze) oxs i 2C 0 0|
urs b
- Slave must OKAY w/o waiting HWRITE 7\\ A A A A I Oi
- Slave must ignore BUSY HBURST2:0] Y INCR 0 X
« NONSEQ (b10) HREADY " v v v L 7 v T
Indicates single transfer or first transfer of HRDATA31:0] (Y) ?O{ i Data (0x28) i} (> 00
a burst Data (0x20) Data (0x24)~ Data (0x2C)
- Address/control unrelated to prior
transfers X
One wait state
+ SEQ (b11) added by slave
- Remaining transfers in a burst by asserting
- Addr = prior addr + transfer size HREADY low
Controlling the size (width) of a transfer Controlling the burst beats (length) of a transfer
e Burst of 1, 4, 8, 16, and undef
o HSIZE[2:0] encodes the size
Size « HBURST[2:0] encodes the type
« The cannot exceed the data bus "7} HSZEL HSZEL) Description HBURST[2:0] Type Description
width (e.g. 3Z-bitS) 0 0 0 8 Byte « Incremental burst 5000 SINGLE Single burst
0 0 1 16 Halfword b001 INCR Incrementing burst of undefined length
: . 0 1 0 32 Word . b010 WRAP4 4-beat wrapping burst
+ HSIZE + HBURST is determmes_ o " A o D:\Inhlcwnrd M Wrappmg bursts bO11 INCR4 4-beat incrementing burst
wrapping boundary for wrapping 4 beats x 4-byte words wrapping 100 WRAPS _5-beat wrapping burst
1 0 0 128 4-word line -
burSts ~ i f“ Wraps at 16 byte boundary blo1 INCRS 8-beat incrementing burst
! 0 ! 236 S-word line - E.g. 0x34, 0x38, Ox3c, 0x30,... b110 WRAPI6 16-beat wrapping burst
e HSIZE must remain constant ! ! ° e b1l INCRI6 16-beat incrementing burst
1 1 1 1024

throughout a burst transfer

o Bursts must not cross 1KB
address boundaries

A four beat wrapping burst (WRAP4)

TO T1 T2 T3 T4 T5 T6

A four beat incrementing burst (INCR4)

T0 T T2 T3 T4 5 T6

HOLK [| 1] B HCLK | B

HTRANS[1:0] _{{NONSEQ(}(EQ N sea) sea Y 0 HTRANSI[1:0]) NONSEQ)() EQ 0sea i)Y sea iy 0C

HADDR[31:0] _{0x38 x3C 0x30)} 0x34 Y 0C HADDR[31:0])} 0x38 Y 0x3C 0 oxa0) oxaa) 0

wome] U/ A W— wwte T\) P T —

HBURST[2:0]) WRAP4 i e HBURST(2:0] Y INCR4 i 0C

Hsizer20) Y Word H 0C Hsizef:0] i) Word (e

HPROTI3:0] ¥ i 0C HPROT(3:0] (Y 0 0C

meay VNV vV L wReADY Y v U

| Data (0x30) B Data (0X38). Data {0x40)
HWDATA[31:0] _ (Y Datd (0x38) VA T HRDATA[31:0] _| i V) P | > X i
Data (0x3C) Data (0x34) Data(0x3C)~ Data (0x44)
An eight beat wrapping burst (WRAP8) An eight beat incrementing burst
(INCR8) using half-word transfers

T0 hel T2 T3 T4 T5 T6 T7 T8 T9 TO T T2 T3 T4 T5 T6 T7 T8 T9

L08g py T y T p wew] L L L L L
HTRANS{1:0]) x 0 sE) sEa) sea) sea () sea) sea) sea) C wrRansto])<) SEa) sEa () Sea) sEa) sEa) sEaji(sEal)
HADDR(31:0]) 0x34) 0x38) 0x3C) 0x20)} 0x24)} ox28)} ox2C)} 0x30)) M Haopriatol i) 0x34)) 0x3 6} ox38) ox3Af) ox3C ox3E)) oxa0)) oxazi) i
wrmE W A A A A A A A U R TV (Vo Vv Vv vV 1 C
HBURSTE2:0]) WRAPS 0 HBURST20] [\ INCR8 J0C
Hsize:0] i) jord I H0C HsizE[20]) |Halfword | 10C
HPROT[3:0] () 0 HPROTI3:0])} 0 0C
HREADY |/ T HREADY |/ vV v \
Data (0x38), | Data(0x20) | Data(0x28)- | Data (0x30)-, 0 [ztya(()l%qft aaMA)ﬂ Eaa (0x3, E),L’ W&\Tﬂf
HRDATA(31:0] [(v >) > o) HwoATAB1:0] T) S0 (S 0~ e (

" “Data (0x34)~ ' Data (0x3C)— | Data(0x24)~ ' Data (0x2C) o Dma(0x34)"(> Data (0x3é)"” Data (Oxi[)'j Data mxaorr

An undefined length incrementing burst (INCR)

To T T2] T4 T5 6 L
HCLK | 1
HTRANS[1:0] _({NONSEQ)() SEQ |(NONSEQ() EQ 0 sea) 0C
HADDR[31:0] [} 0x20 jj_0x22 i} 0x5C i} x60 (oxea i) 0C
HWRITE _ | Write |/ T Read ‘A A Ji 0C
HBURST[2:0] _i(INCR 10 INCR 0C
HSIZE[2:0] | Haifword i ord i 0C
v

HREADY

v | v

Data (0%20)

I
HPROT(3:0] (¥
v
X

HWDATA[31:0] |

HRDATAR31:0] T)

~ \
Data (0%22)~ Data (Gx5C) Data (0x64)_
S

A
Data (0x60)~

Multi-master AHB-Lite
requires a multi-layer interconnect

o AHB-Lite is single-master

« Multi-master operation
- Must isolate masters
- Each master assigned to layer

- Interconnect arbitrates slave
accesses

o Full crossbar switch often
unneeded
- Slaves 1, 2, 3 are shared
- Slaves 4, 5 are local to Master 1

Multidayer
interconnect

AHBLite
slave 1
AHBLite
siave 2

AHBLite
siave 3

Today

 Start on interrupts

Interrupts

Merriam-Webster:
- “to break the uniformity or continuity of”

» Informs a program of some external events
» Breaks execution flow

Key questions:

« Where do interrupts come from?

» How do we save state for later continuation?
« How can we ignore interrupts?

» How can we prioritize interrupts?

« How can we share interrupts?

I1/0 Data Transfer

Two key questions to determine how data is
transferred to/from a non-trivial 1/0 device:

1. How does the CPU know when data is available?
a. Polling
b. Interrupts

2. How is data transferred into and out of the
device?
a. Programmed I/0
b. Direct Memory Access (DMA)

Interrupts

Interrupt (a.k.a. exception or trap):

* An event that causes the CPU to stop executing the current
program and begin executing a special piece of code called an
interrupt handler or interrupt service routine (ISR).
Typically, the ISR does some work and then resumes the
interrupted program.

Interrupts are really glorified procedure calls, except that they:
* can occur between any two instructions
+ are transparent to the running program (usually)
» are not explicitly requested by the program (typically)
+ call a procedure at an address determined by the type of
interrupt, not the program

Two basic types of interrupts
(1/2)
» Those caused by an instruction
- Examples:
e TLB miss
« lllegal/unimplemented instruction
e divby 0
- Names:
« Trap, exception

Two basic types of interrupts
(2/2)
 Those caused by the external world
- External device
- Reset button
- Timer expires
- Power failure
- System error
 Names:
- interrupt, external interrupt

How it works

« Something tells the processor core there is an
interrupt

o Core transfers control to code that needs to be
executed
» Said code “returns” to old program
¢ Much harder then it looks.
- Why?

... is in the details

» How do you figure out where to branch to?

« How to you ensure that you can get back to
where you started?

» Don’t we have a pipeline? What about partially
executed instructions?

« What if we get an interrupt while we are
processing our interrupt?

« What if we are in a “critical section?”

Where

« If you know what caused the interrupt
then you want to jump to the code that
handles that interrupt.

- If you number the possible interrupt cases,
and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

- If you don’t have the number, you need to
poll all possible sources of the interrupt to
see who caused it.

» Then you branch to the right code

Get back to where you once belonged

» Need to store the return address somewhere.
- Stack might be a scary place.
» That would involve a load/store and might cause an
interrupt (page fault)!
- So a dedicated register seems like a good choice
« But that might cause problems later...

Snazzy architectures

A modern processor has many (often 50+)
instructions in-flight at once.

- What do we do with them?

Drain the pipeline?

- What if one of them causes an exception?
Punt all that work

- Slows us down

What if the instruction that caused the
exception was executed before some
other instruction?

- What if that other instruction caused an
interrupt?

Nested interrupts

« If we get one interrupt while handling
another what to do?
- Just handle it
» But what about that dedicated register?
» What if I’m doing something that can’t be stopped?
- Ignore it
» But what if it is important?
- Prioritize
« Take those interrupts you care about. Ignore the
rest
« Still have dedicated register problems.

Critical section

« We probably need to ignore some interrupts but

take others.
- Probably should be sure our code can’t cause an

exception.

- Use same prioritization as before.

« What about instructions that shouldn’t be

interrupted?

Our processor

« Over 100 interrupt sources
- Power on reset, bus errors, 1/0 pins changing state,
data in on a serial bus etc.
« Need a great deal of control
- Ability to enable and disable interrupt sources
- Ability to control where to branch to for each interrupt
- Ability to set interrupt priorities
« Who wins in case of a tie
« Can interrupt A interrupt the ISR for interrupt B?
- If so, A can “preempt” B.
« All that control will involve memory mapped 1/0.

- And given the number of interrupts that’s going to be a
pain in the rear.

Enabling and disabling interrupt sources

« Interrupt Set Enable and Clear Enable

- OxEOOOE100-0xEOOOE11C, OxEOOOE180-0xEO00E19C

0xEO00E100

SETENAO

R/W

0

Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEOO0E180

CLRENAO

Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

How to know where to go on an interrupt.
5 penvectorsh

24 .word _estack

.word Reset_Handler
.word NMI_Handler

.word HardFault_Handler
.word MemManage T
.word BusFault_Har
.word UsageFault_Handler
.word O

32 .word

y o

195 .global Reset_Handler
.type Reset_Handler, %function
7Reset_Handler:
&_start:

