
1

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 7: Interrupts (2)
September 23, 2014

Some slides prepared by Mark Brehob

Announcements

•  Homework 2 due now.

•  Homework 3 will be posted later this week.

•  Start thinking about projects

•  Start planning for “special topics”

2

High-level review of interrupts

•  Why do we need them? Why are the alternatives
unacceptable?
–  Convince me!

•  What sources of interrupts are there?
–  Hardware and software!

•  What makes them difficult to deal with?
–  Interrupt controllers are complex: there is a lot to do!

•  Enable/disable, prioritize, allow premption (nested
interrupts), etc.

–  Software issues are non-trivial
•  Can’t trash work of task you interrupted
•  Need to be able to restore state
•  Shared data issues are a real pain

3

4

SmartFusion interrupt sources

5

And the interrupt vectors
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

6

Interrupt handlers

7

Pending interrupts

8

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

9

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/O register)

10

11

Answer

12

Interrupt pulses before entering ISR

13

Answer

14

15

16

17

18

19

20

21

22

Masking

23

24

The xPSR register layout

25

ARM interrupt summary

1.  We’ve got a bunch of memory-mapped registers
that control things (NVIC)
–  Enable/disable individual interrupts
–  Set/clear pending
–  Interrupt priority and preemption

2.  We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3.  And how we figure out where to set the PC to
point to for a given interrupt source.

26

1. NVIC registers (example)

27

1. More registers (example)

28

1. Yet another part of the NVIC registers!

29

2. How external lines interact with the NVIC

30

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

3. How the hardware figures out what to set the PC to

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

31

So let’s say a GPIO pin goes high
 - When will we get an interrupt?
 - What happens if the interrupt is allowed to proceed?

32

What happens when we return from an ISR?

33

Other stuff: The xPSR register layout

34

Example of Complexity: The Reset Interrupt

1) No%power%
2)  System%is%held%in%RESET%as%long%as%VCC15%<%0.8V%

a)  In%reset:%registers%forced%to%default%
b) RCGOsc%begins%to%oscillate%
c)  MSS_CCC%drives%RCGOsc/4%into%FCLK%
d)  PORESET_N%is%held%low%

3) Once%VCC15GOOD,%PORESET_N%goes%high%
a) MSS%reads%from%eNVM%address%0x0%and%0x4

35

Interrupt types

•  Two main types
–  Level-triggered
–  Edge-triggered

36

Level-triggered interrupts

•  Signaled by asserting a line low or high
•  Interrupting device drives line low or high and holds it

there until it is serviced
•  Device deasserts when directed to or after serviced
•  Can share the line among multiple devices (w/ OD+PU)
•  Active devices assert the line
•  Inactive devices let the line float
•  Easy to share line w/o losing interrupts
•  But servicing increases CPU load ! example
•  And requires CPU to keep cycling through to check
•  Different ISR costs suggests careful ordering of ISR checks
•  Can’t detect a new interrupt when one is already asserted

37

Edge-triggered interrupts

•  Signaled by a level *transition* (e.g. rising/falling edge)
•  Interrupting device drive a pulse (train) onto INT line
•  What if the pulse is too short? Need a pulse extender!
•  Sharing *is* possible...under some circumstances
•  INT line has a pull up and all devices are OC/OD.
•  Devices *pulse* lines
•  Could we miss an interrupt? Maybe...if close in time
•  What happens if interrupts merge? Need one more ISR pass
•  Must check trailing edge of interrupt
•  Easy to detect "new interrupts”
•  Benefits: more immune to unserviceable interrupts
•  Pitfalls: spurious edges, missed edges
•  Source of "lockups" in early computers

38

Group talks in EECS 373

39

Special topics talks

•  Groups of 2-3 folks
–  Not your lab partner (or your project group member)
–  This is 1% of your grade (20% of the presentation)

•  12 minutes for the talk, ~3 minutes for questions

•  Four parts
–  Meet with me 2-3 weeks ahead of time to discuss topic
–  1st practice talk 1-2 weeks before scheduled date (20%)
–  2nd practice talk 1-2 days before scheduled date (20%)
–  Give talk in class (40%)

40

Special topics talk (2)

•  Each talk must include
–  Explanation of how the topic relates to embedded systems
–  An understanding of high-level issues including tradeoffs

•  Must produce at least two original graphs explaining tradeoffs.
–  Some detailed explanation of a relevant part of the topic
–  Where others can go to learn more information

•  Time permitting
–  We’ll take 10 minutes at the end of class to form groups of 2-3
–  We’ll discuss some topics that I’d like to see (BLE, Cortex-M3s,

accelerometers, gyroscopes, microphones, etc.)

41

