

EECS 373 Practice Midterm / Homework #3
Winter 2015

Due February 19th

Name: ____________________________________ Uniquename: _____________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Problem # Points
1 /10
2 /5
3 /20
4 /10
5 /15
6 /10
7 /15
8 /15
Total /100

NOTES:

• PUT YOU NAME/UNIQUENAME ON EVERY PAGE TO ENSURE CREDIT!
• Can refer to the ARM Assembly Quick Ref. Guide and 1 page front/back cheat sheet
• Can use a basic/scientific calculator (but not a phone, PDA, or computer)
• Don’t spend too much time on any one problem.
• You have 80 minutes for the exam.
• The exam is 9 pages long, including the cover sheet.
• Show your work and explain what you are doing. Partial credit w/o this is rare.

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 2/9

1) Fill-in-the-blank or circle the best answer. [10 pts, all or no points for each question]

a) The ARM EABI specifies that registers __________ are caller-save.

b) The ARM Thumb-2 instruction set has 16-bit / 32-bit / 16- and 32-bit encodings.

c) To generate 8 ns pulses, a PWM controller with a 50 MHz clock needs a ____ duty cycle.

d) An ARM EABI-compliant procedure that calls another procedure should always /

sometimes / never save and restore the lr register.

e) UART / SPI / I2C supports flow control.

f) UART / SPI / I2C has built-in support for error checking by parity.

g) SPI bus transfers are asynchronous / synchronous and use dedicated chip select lines /

addresses embedded in frames.

h) In the Verilog hardware description language, an @(___________________) block

would be used when implementing a flip-flop.

i) If multiple devices share a single interrupt line and generate interrupts at the same rate,
then processor workload remains constant / grows linearly / grows quadratically with
the number of devices.

j) By default, uninitialized global variables go in the .text / .data / .bss section.

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 3/9

2) Hardware Design. [5 pts]

Imagine an arm with 3 positions: 0, 1, and 2. A motor controls
this arm. The motor can be driven forward by asserting
MOTOR_FWD and in reverse by asserting MOTOR_REV. It is an
error to assert both signals.

The arm position is measured by an encoder that reports current
arm position as an 8-bit value. Mechanical stops prevent the arm
from going past 0 to the left or 255 to the right. The positions are
at encoder values 20, 127, and 235. You may assume that the arm has no inertia, that is, if neither
MOTOR_FWD nor MOTOR_REV are asserted, the ARM_POSITION will not change.

Write a hardware module to control this arm. Your module should move the arm to the
TARGET_POSITION only when the MOVE_REQ signal is asserted. POSITION will not change
while MOVE_REQ is high. Your module should assert MOVE_DONE when the arm is in the desired
position. It should then wait until MOVE_REQ is de-asserted and de-assert MOVE_DONE in
response. MOVE_REQ will not re-assert until MOVE_DONE is de-asserted.

module	 arm_control	 (

input	 CLOCK,	
	
	 //	 control	 interface	
	 input	 [1:0]	 TARGET_POSITION,	
	 input	 MOVE_REQ,	
	 output	 MOVE_DONE,	
	
	 //	 arm	 interface	
	 input	 [7:0]	 ARM_POSITION	
	 output	 MOTOR_FWD,	
	 output	 MOTOR_REV	
)	
	
`define	 POS_0	 8'd20	
`define	 POS_1	 8'd127	
`define	 POS_2	 8'd235	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

endmodule

0	
1	

2	

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 4/9

3) Memory-Mapped I/O. [20 pts]

Using basic circuit elements (e.g. logic gates and flops), sketch the glue logic required to
interface the arm control module from Question 2 to the APB. Recall, the PSEL line is the
peripheral select (i.e. it goes high when the processor is addressing the arm). The POSITION
will be attached to data bits [1:0]. You should be able to change the arm position by writing to
memory and read the current value by reading. A memory write should not return until the move
is complete. Assume that PRDATA and PREADY are shared lines with other peripherals. The
APB signals are: PCLK, PADDR, PWRITE, PSEL, PENABLE, PWDATA, PRDATA, and
PREADY. You may ignore the motor I/O ports.

Sketch a timing diagram of an APB transaction that moves the arm from position 1 to position 2.
Assume the arm peripheral is at address 0x20000080. You only need to fill in relevant signals.

PCLK	
	
PADDR	
	
PWRITE	
	
PSEL	
	
PENABLE	
	
PWDATA	
	
PRDATA	
	
PREADY	

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 5/9

4) ARM Assembly Language. [10 pts]

0101 0000 1000 1000

a) What does the instruction 0x5088 do when executed?

b) Fill in machine code in hex around 0x5088 such that the arm peripheral from the
previous question moves to position 1 when the instructions are executed.

0x5088	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 6/9

5) Assembly, C, and the ABI. [15]

Recall the arm peripheral is at address 0x20000010 and encodes the arm position in the bottom two data bits.

a.) Write a C function, bool	 check_move(int	 change), that takes a move and returns 1 if
it is a possible move and 0 if the move cannot be made. The change argument describes
the change of arm position, e.g. change “2” would move an arm from position 0 to
position 0+2 = 2 and change “-1” would return an error if the arm were in position 0. This
function should not move the arm.

b.) Write an assembly function int	 move_arm(unsigned	 steps,	 bool	 reverse) that
moves the arm peripheral the requested number of steps forward or backward. Your
function must call the check_move() function from (a) to verify if the requested move is
valid before attempting to move the arm. move_arm() should return the current arm
position, regardless of whether the arm moved or not.

The assembly code should assemble without errors. Write clearly and comment the code.

+1 EC for a 13-instruction solution. +3 EC for <13-instructions. This is tricky. Do not try until you are
done with the exam. Use the last page and clearly indicate which we should grade if you try.

move_arm:	
	 push	 {r4,	 r5,	 lr}	
	
	 cmp	 r1,	 1	
	 it	 eq	
	 negeq	 r0	
	 movs	 r5,	 r0	
	 bl	 check_fn	
	 cmp	 r0,	 1	
	
	 ldr	 r4,	 addr	
	 ldr	 r0,	 [r4,	 0]	
	
	 itt	 eq	
	 addseq	 r0,	 r5	
	 streq	 r0,	 [r4,	 0]	
	
	 pop	 {r4,	 r5,	 pc}	
	
addr:	 .word	 0x20000080	

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 7/9

6) NVIC and Memory Map Comprehension. [10 pts]

Write a C function void	 enable_interrupts(int	 x) that enables interrupt x. You need not
check to validate that x is a legal interrupt number. The table below might be useful.

	
void	 enable_interrupts(int	 x)	 {	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
}

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 8/9

7) Startup and Interrupts [15 pts].

In addition to the motor, the system has two buttons. Button0 is wired to Interrupt 7 and Button1
is wired to Interrupt 8. Whenever Button0 is pressed, the arm should move left (decrement
position). If Button1 is pressed, the arm should move right (increment position).

Using the functions from Questions 5 and 6, write any remaining code required such that the arm
goes to position 1 when the system powers on and the buttons behave as intended.

Name: ____________________________________ uniqname: ____________

Practice Midterm / HW3 9/9

8) Logic Design [15 pts].

The motor controller actually requires a PWM signal to operate. Given a 50% duty cycle, the
motor will not move. At 70% it will drive forward, and at 30% it will drive in reverse. Design a
digital circuit with inputs MOTOR_FWD and MOTOR_REV that takes the system clock of
100 MHz (CLKIN) and converts it to an output clock of 5 MHz with a 30, 50, or 70% duty cycle
(MOTOR_CLK). You may use synchronously resettable D flip-flops and n-bit binary counters
(make sure to specify the value of n). You may express combinational logic as Boolean
expressions or using standard logic gates. You may assume that MOTOR_FWD and
MOTOR_REV will never assert at the same time. Label things and write neatly.

