Announcements

EECS 373 » Homework 2 was posted on 1/13 is due on 1/20
Design of Microprocessor-Based Systems

» No office hours next week

Prabal Dutta
University of Michigan

Lecture 3: Assembly, Tools, and ABI
January 15, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

Today... The ARM architecture “books” for this class

ARMV7-M Architecture
Reference Manual

Software Development Tool Flow -

ARM - e

PActel PActel PActel

The ARM software tools “books” for this class Exercise:
What is the value of r2 at done?

start:
movs ro, #1
movs rl, #1
movs r2, #1
sub ro, ri
bne done
movs r2, #2

@ Cootsouncenr

done:

b done

Updating the APSR

» SUB Rx, Ry
- Rx=Rx - Ry
- APSR unchanged
- SUBS
- Rx=Rx-Ry
- APSRN, Z, C, V updated
e ADD Rx, Ry
- Rx=Rx +Ry
- APSR unchanged
« ADDS
- Rx=Rx+Ry
- APSRN, Z, C, V updated

Application Program Status Register (APSR)

31 30 29 28 27 26 0

c|v(Q RESERVED

APSR bit fields are in the following two categories:

+ Reserved bits are allocated to system feafures or are available for future expansion. Further
information on currently allocated reserved bits is available in The special-purpose program status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

+ Flags that can be set by many instructions:
N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N' == 1 if the result is negative and
N =0 if it is positive or zero,
Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V. bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition.
for example a signed overflow on an addition.

Q. bit [27] Setto 1 ifan SSAT or USAT instruction changes (saturates) the input value for the signed or
unsigned range of the result.

Conditional execution:
Append to many instructions for conditional execution

Table A6-1 Condition codes

cond gxr:znmsoig: Meaning (integer) Meaning (floating-point) 3 Condition flags
0000 EQ Equal Equal z=1

0001 NE Not equal Not equal, or unordered z=0

0010 cs¢© Carry set Greater than, equal, or unordered C=1

0011 ccd Carry clear Less than C=0

0100 MI Minus, negative Less than.

o101 pL Plus, positive or zero Greater than, equal, or unordered

0110 vs Overflow Unordered

0111 Ve No overflow Not unordered

1000 HI Unsigned higher Greater than, or unordered C=1andZ=0
1001 LS Unsigned lower or same Less than or equal C=0orz=1
1010 ce Signed greater than or equal Greater than or equal N=V

1011 T Signed less than Less than, or unordered Ni=V

1100 ot Signed greater than Greater than Z=0adN=V
1101 LE Signed less than or equal Less than, equal, or unordered Z=1ouN!=V
1110 Nome(a)e Always Always

Solution:
what is the value of r2 at done?

start:
movs re, #1 // ro € 1, z=0
movs rl, #1 // rl € 1, Z=0
movs r2, #1 // r2 € 1, zZ=0
sub ro, ri // re € ro-ri
// but Z flag untouched
// since sub vs subs
bne done // NE true when Z==
// So, take the branch
movs r2, #2 // not executed
done:
b done // r2 is still 1

Real assembly example

.equ STACK_TOP, ©x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start
start:
movs ro, #10
movs ri1, #0
loop:
adds ri1, re
subs re, #1
bne loop
deadloop:

b deadloop
.end

What'’s it all mean?

.equ STACK_TOP, ©x20000800 /* Sets symbol to value (#define)*/

.text /* Tells AS to assemble region */
.syntax unified /* Means language is ARM UAL */
.thumb /* Means ARM ISA is Thumb */
.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */
.type start, %function /* Specifies start is a function */

/* start label is reset handler */

start:
.word STACK_TOP, start /* Inserts word 0x20000800 */
/* Inserts word (start) */
start:
movs ro, #10 /* We’ve seen the rest ... */
movs ril, #0
loop:
adds ri1, re
subs re, #1
bne loop
deadloop:
b deadloop
.end

What happens after a power-on-reset (POR)?

* ARM Cortex-M3 (many others are similar)

« Reset procedure
- SP € mem(0x00000000)
- PC € mem(0x00000004)

_start:
.word __STACKTOP /* Top of Stack */
.word Reset_Handler /* Reset Handler */
.word NMI_Handler /* NMI Handler */
.word HardFault_Handler /* Hard Fault Handler */
.word MemManage_Handler /* MPU Fault Handler */
.word BusFault_handler /* Bus Fault Handler */

Today...

Software Development Tool Flow

How does an assembly language program
get turned into a executable program image?

Binary program
file (.bin)

Assembly Object
files (.s) files (.0)

—> it O
25 (linker)
N (assembler)\ ﬁl

Memory
layout

Executable
image f11e<ii;§§§
3
&
0,
%%
4,
%

N

Disassembled

Linker code (.1lst)

script (.1d)

What are the real GNU executable names for the ARM?

Just add the prefix “arm-none-eabi-” prefix
Assembler (as)

- arm-none-eabi-as

Linker (ld)

- arm-none-eabi-ld

Object copy (objcopy)

- arm-none-eabi-objcopy
Object dump (objdump)
- arm-none-eabi-objdump

C Compiler (gcc)
- arm-none-eabi-gcc
C++ Compiler (g++)

- arm-none-eabi-g++

Real-world example

e To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)

How are assembly files assembled?

e § arm-none-eabi-as
- Useful options

e -mcpu
o -mthumb
o)

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

A simple (hardcoded) Makefile example

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o
arm-none-eabi-1d -Ttext @x@ -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst

What information does the disassembled file provide?

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

arm-none-eabi-1d -Ttext @x@ -o examplel.out examplel.o

arm-none-eabi-objcopy -Obinary examplel.out examplel.bin

arm-none-eabi-objdump -S examplel.out > examplel.lst

.equ STACK_TOP, ©x20000800 examplel.out: file format elf32-littlearm

Ltext

.syntax unified

~thumb Disassembly of section .text:

.global _start

.type start, %function 00000000 <_start>:

o: 20000860 .word 0x20000800

_start: 4: 00000009 .word 0x00000009

.word STACK_TOP, start
start: 00000008 <start>:

movs re, #10 8: 200a movs re, #10

movs ri, #0 a: 2100 movs rl, #0
loop:

adds r1, ro 0600000C <loop>:

subs ro, #1 c: 1809 adds r1, rl, re

bne loop e: 3801 subs re, #1
deadloop: 10: difc bne.n ¢ <loop>

b deadloop

.end 00000012 <deadloop>:

12: e7fe b.n 12 <deadloop>

Linker script

OUTPUT_FORMAT ("elf32-littlearm")
OUTPUT_ARCH (arm)
ENTRY (main)

SECTIONS
{
text :
{
. = ALIGN(4);
* (. text*)
. = ALIGN(4);
_etext = .;
}
}

end = .;

Specifies little-endian arm in ELF
format.

Specifies ARM CPU

Should start executing at label named
“main”

is a reference to the current
memory location

First align to a word (4 byte) boundary
Place all sections that include .text at
the start (* here is a wildcard)

Define a label named _etext to be the
current address.

How does a mixed C/Assembly program
get turned into a executable program image?
C files (.c)

Binary program
file (.bin)
1d
(linker)
Y
fl.\isemlzly) fi‘]).:geztg) @ Executable
iles (.s . ; b
— image file @9@
N
gcc o
[::::j;> [:i;>(compile [j:>
as + 1link) o
N (assembler)____ i %,
AT Ny
’_l:
Memory
layout
i led
N Disassemb
.1
Library object Linker code (.1st)

files (.0) script (.1d)

Real-world example #2

o To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)

Today...

Application Binary Interface (ABI)

Register | Synonym | Special Role in the procedure call standard

5 PC The Program Counter.
4 LR The Link Register.
3 SP The Stack Pointer.
2 P The Intra-Procedure-call scratch register.
M v8 Variable-register 8.
ro v7 Variable-register 7.
9 ;g Platform register. _
1R The meaning of this register is defined by the platform standard.
B v5 Variable-register 5.
7 v4 Variable register 4.
B v3 Variable register 3.
5 v2 Variable register 2.
4 vi Variable register 1.
3 ad Argument / scratch register 4.
7] a3 Argument / scratch register 3.
1 a2 Argument / result / scratch register 2.
0 at Argument / result / scratch register 1.

ABI Basic Rules

1. A subroutine must preserve the contents of the
registers r4-11 and SP
- Let’s be careful with r9 though.

2. Arguments are passed though r0 to r3

- If we need more, we put a pointer into memory in one
of the registers.

« We’ll worry about that later.

3. Return value is placed in r0
- r0and r1 if 64-bits.

4. Allocate space on stack as needed. Use it as
needed. Put it back when done...
- Keep word aligned.

When is this relevant?

« The ABI is a contract with the compiler
- All assembled C code will follow this standard

» You need to follow it if you want C and Assembly
to work together correctly

« What if you are writing everything in Assembly
by hand?
- Maybe less important. Unless you’re ever going to
extend the code

Let’s write a simple ABI routine

Register | Synonym

« int bob(int a, int b) s
- returns aZ + b? 4
« Instructions you might need ’:;
r
- add adds two values Py "y
- mul multiplies two values o v7
- bx branch to register o
e} v5
Other useful facts = =
» Stack grows down. rG v
- And pointed to by “sp” 5 v2
+ Address we need to go back to in “Ir” —
2 a3
r a2
0 at

Questions?

Comments?

Discussion?

