
1

EECS 373
Design of Microprocessor-Based Systems

Prabal Dutta
University of Michigan

Lecture 3: Assembly, Tools, and ABI
January 15, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

2

Announcements

•  Homework 2 was posted on 1/13 is due on 1/20

•  No office hours next week

Today…

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

3

4

The ARM architecture “books” for this class

5

The ARM software tools “books” for this class

6

..."
start:"

"movs"r0,"#1"
"movs"r1,"#1"
"movs"r2,"#1"
"sub""r0,"r1"
"bne""done"
"movs"r2,"#2"

done:"
"b""""done"

..."

Exercise:
What is the value of r2 at done?

Updating the APSR

•  SUB Rx, Ry
–  Rx = Rx - Ry
–  APSR unchanged

•  SUBS
–  Rx = Rx - Ry
–  APSR N, Z, C, V updated

•  ADD Rx, Ry
–  Rx = Rx + Ry
–  APSR unchanged

•  ADDS
–  Rx = Rx + Ry
–  APSR N, Z, C, V updated

Application Program Status Register (APSR)

Conditional execution:
Append to many instructions for conditional execution

10

..."
start:"

"movs"r0,"#1 "//"r0"!"1,"Z=0"
"movs"r1,"#1 "//"r1"!"1,"Z=0"
"movs"r2,"#1 "//"r2"!"1,"Z=0"
"sub""r0,"r1 "//"r0"!"r08r1"
" " " "//"but"Z"flag"untouched"
" " " "//"since"sub"vs"subs"
"bne""done " "//"NE"true"when"Z==0"
" " " "//"So,"take"the"branch"
"movs"r2,"#2 "//"not"executed"

done:"
"b""""done " "//"r2"is"still"1"

..."

Solution:
what is the value of r2 at done?

11

".equ "STACK_TOP,"0x20000800 "/*"Equates"symbol"to"value"*/"
".text " " " "/*"Tells"AS"to"assemble"region"*/"
".syntax"unified" " "/*"Means"language"is"ARM"UAL"*/"
".thumb " " " "/*"Means"ARM"ISA"is"Thumb"*/"
".global"_start " " "/*".global"exposes"symbol"*/"
" " " " "/*"_start"label"is"the"beginning"*/"
" " " " "/*"...of"the"program"region"*/"
".type "start,"%function" "/*"Specifies"start"is"a"function"*/"
" " " " "/*"start"label"is"reset"handler"*/"

_start:" " " " ""
".word "STACK_TOP,"start" "/*"Inserts"word"0x20000800"*/"
" " " " "/*"Inserts"word"(start)"*/"

start: " " " " ""
"movs"r0,"#10 " " "/*"We’ve"seen"the"rest"..."*/"
"movs"r1,"#0 " " ""

loop: " " " " ""
"adds"r1,"r0 " " ""
"subs"r0,"#1 " " ""
"bne""loop " " ""

deadloop: " " " ""
"b""""deadloop " " ""
".end"

"

Real assembly example

12

".equ "STACK_TOP,"0x20000800 "/*"Sets"symbol"to"value"(#define)*/"
".text " " " "/*"Tells"AS"to"assemble"region"*/"
".syntax"unified" " "/*"Means"language"is"ARM"UAL"*/"
".thumb " " " "/*"Means"ARM"ISA"is"Thumb"*/"
".global"_start " " "/*".global"exposes"symbol"*/"
" " " " "/*"_start"label"is"the"beginning"*/"
" " " " "/*"...of"the"program"region"*/"
".type "start,"%function" "/*"Specifies"start"is"a"function"*/"
" " " " "/*"start"label"is"reset"handler"*/"

_start:" " " " ""
".word "STACK_TOP,"start" "/*"Inserts"word"0x20000800"*/"
" " " " "/*"Inserts"word"(start)"*/"

start: " " " " ""
"movs"r0,"#10 " " "/*"We’ve"seen"the"rest"..."*/"
"movs"r1,"#0 " " ""

loop: " " " " ""
"adds"r1,"r0 " " ""
"subs"r0,"#1 " " ""
"bne""loop " " ""

deadloop: " " " ""
"b""""deadloop " " ""
".end"

"

What’s it all mean?

What happens after a power-on-reset (POR)?

•  ARM Cortex-M3 (many others are similar)

•  Reset procedure
–  SP ! mem(0x00000000)
–  PC ! mem(0x00000004)

_start:'
'.word'__STACKTOP ' '/*'Top'of'Stack'*/'
'.word'Reset_Handler ' '/*'Reset'Handler'*/'
'.word'NMI_Handler ' '/*'NMI'Handler'*/'
'.word'HardFault_Handler '/*'Hard'Fault'Handler'*/'
'.word'MemManage_Handler '/*'MPU'Fault'Handler'*/'
'.word'BusFault_handler '/*'Bus'Fault'Handler'*/'
'...'

13

Today…

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

14

15

How does an assembly language program
get turned into a executable program image?

Assembly"
files"(.s)"

Object"
files"(.o)"

as"
(assembler)"

ld"
(linker)"

"
Memory"
layout"

Linker"
script"(.ld)"

Executable"
image"file"

Binary"program"
file"(.bin)"

Disassembled"
code"(.lst)"

16

What are the real GNU executable names for the ARM?

•  Just add the prefix “arm-none-eabi-” prefix
•  Assembler (as)

–  arm-none-eabi-as

•  Linker (ld)
–  arm-none-eabi-ld

•  Object copy (objcopy)
–  arm-none-eabi-objcopy

•  Object dump (objdump)
–  arm-none-eabi-objdump

•  C Compiler (gcc)
–  arm-none-eabi-gcc

•  C++ Compiler (g++)
–  arm-none-eabi-g++

Real-world example

•  To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)

17

18

$"arm8none8eabi8as"8mcpu=cortex8m3"8mthumb"example1.s"8o"example1.o"
"
"

How are assembly files assembled?

•  $ arm-none-eabi-as
–  Useful options

• -mcpu
• -mthumb
• -o

19

all:"
"arm8none8eabi8as"8mcpu=cortex8m3"8mthumb"example1.s"8o"example1.o"
"arm8none8eabi8ld"8Ttext"0x0"8o"example1.out"example1.o"
"arm8none8eabi8objcopy"8Obinary"example1.out"example1.bin"
"arm8none8eabi8objdump"8S"example1.out">"example1.lst"

A simple (hardcoded) Makefile example

20

What information does the disassembled file provide?

".equ "STACK_TOP,"0x20000800""
".text"
".syntax "unified"
".thumb"
".global "_start"
".type "start,"%function"

"
_start:"

".word "STACK_TOP,"start"
start:"

"movs"r0,"#10"
"movs"r1,"#0"

loop:"
"adds"r1,"r0"
"subs"r0,"#1"
"bne""loop"

deadloop:"
"b""""deadloop"
".end"

"
"

example1.out:"""""file"format"elf328littlearm"
"
"
Disassembly"of"section".text:"
"
00000000"<_start>:"
"""0: "20000800" ".word "0x20000800"
"""4: "00000009" ".word "0x00000009"
"
00000008"<start>:"
"""8: "200a"""""""movs "r0,"#10"
"""a: "2100"""""""movs "r1,"#0"
"
0000000c"<loop>:"
"""c: "1809"""""""adds "r1,"r1,"r0"
"""e: "3801"""""""subs "r0,"#1"
""10: "d1fc"""""""bne.n "c"<loop>"
"
00000012"<deadloop>:"
""12: "e7fe"""""""b.n "12"<deadloop>"
"

all:"
"arm8none8eabi8as"8mcpu=cortex8m3"8mthumb"example1.s"8o"example1.o"
"arm8none8eabi8ld"8Ttext"0x0"8o"example1.out"example1.o"
"arm8none8eabi8objcopy"8Obinary"example1.out"example1.bin"
"arm8none8eabi8objdump"8S"example1.out">"example1.lst"

Linker script

OUTPUT_FORMAT("elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(main)

MEMORY
{
 /* SmartFusion internal eSRAM */
 ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k
}

SECTIONS
{
 .text :
 {
 . = ALIGN(4);
 (.text)

 . = ALIGN(4);
 _etext = .;
 } >ram
}
end = .;

•  Specifies little-endian arm in ELF
format.

•  Specifies ARM CPU
•  Should start executing at label named
�main�

•  We have 64k of memory starting at
0x20000000. You can read, write and
execute out of it. We�ve named it
�ram�

•  �.� is a reference to the current
memory location

•  First align to a word (4 byte) boundary
•  Place all sections that include .text at

the start (* here is a wildcard)
•  Define a label named _etext to be the

current address.
•  Put it all in the memory location

defined by the ram memory location.

21

22

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly"
files"(.s)"

Object"
files"(.o)"

as"
(assembler)"

gcc"
(compile"
+"link)"

"
Memory"
layout"

Linker"
script"(.ld)"

Executable"
image"file"

Binary"program"
file"(.bin)"

Disassembled"
code"(.lst)"

ld"
(linker)"

Library"object"
files"(.o)"

C"files"(.c)"

Real-world example #2

•  To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)

23

Today…

Finish ARM assembly example from last time

Walk though of the ARM ISA

Software Development Tool Flow

Application Binary Interface (ABI)

24

25

ABI Basic Rules

1.  A subroutine must preserve the contents of the
registers r4-11 and SP
–  Let�s be careful with r9 though.

2.  Arguments are passed though r0 to r3
–  If we need more, we put a pointer into memory in one

of the registers.

•  We�ll worry about that later.

3.  Return value is placed in r0
–  r0 and r1 if 64-bits.

4.  Allocate space on stack as needed. Use it as
needed. Put it back when done…
–  Keep word aligned.

 26

When is this relevant?

•  The ABI is a contract with the compiler
–  All assembled C code will follow this standard

•  You need to follow it if you want C and Assembly
to work together correctly

•  What if you are writing everything in Assembly
by hand?
–  Maybe less important. Unless you’re ever going to

extend the code

27

Let’s write a simple ABI routine

•  int bob(int a, int b)
–  returns a2 + b2

•  Instructions you might need
–  add adds two values
–  mul multiplies two values
–  bx branch to register

Other useful facts
•  Stack grows down.

–  And pointed to by �sp�

•  Address we need to go back to in �lr�

28

29

Questions?

Comments?

Discussion?

