EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 3: Assembly, Tools, and ABI
January 15, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

Announcements

« Homework 2 was posted on 1/13 is due on 1/20

e No office hours next week

Today...

Software Development Tool Flow

The ARM architecture “book

s” for this class

ARMYV7-M Architecture
Reference Manual

ARM

Copyright © 2006-2010 ARM Limited. Allrghts reserved
DDI 0403C_errata_v3 (1D021810)

Cortex-M3

Revision r2p1

Technical Reference Manual

ARM

Prosedurs Cll tandad for the ARM Aroitectre

Procedure Call Standard for the
ARM® Architecture

Document number ARM IH1 00420, curret through ABI release 2.08
Date of fssve: 16" October, 2009
Abstract

Application forthe

ARM architecture

Keywords
Procedure cal functon cal, caing conventions, data ayout

How to find the latest release of this specification or report a defect in it

E [E—— o
b Tocts secion. Aopicsson B Ar,
Licence
e TERNS. ROVALTY 7 £D LICENGE T0 USE
1.4, Your R V20). PLEASE READ THEM
caREFLY.
BY DOWNLOADING OR OTHERWISE USING THS SPECIFICATION. YOL £ BOUND BY ALL OF TS
TERMS. IF YOU DG NOT AGREE TO THIS, DO NOT DOWNLOAD OR U FICATION
si5 SECTION 1.4 FOR DETALS).

Proprietary notice

ARM, Trumb, RealView, ARMTTOMI and ARMSTDMI ar registered rademarks of ARM Limited. The ARM logo,
is a rademark of ARM Limited. ARMS, ARMS25E..-5, ARMS4GE.S, ARM1136.-5 ARM(158T2F-S ARMI 176.2.5
Cortex, and Neon are rademarks of ARM Limited. All other producis or services mentioned

trademarks of thei respectve owners.

ARM 100420 oyt 20022000 ARM it Al s s Page 10134

Rate This Document

Actel SmartFusion™ Microcontroller
Subsystem User’s Guide

YActel

POWER MATTER

{'7 Rate This Document

SmartFusion Evaluation Kit

User’s Guide

7Rate This Document

Actel SmartFusion™ Programmable
Analog User’s Guide

PActel

POWER MA

The ARM software tools

“books” for this class

Sourcery G++ Lite
ARM EABI
Sourcery G++ Lite 2010q1-188
Getting Started

@ ConeSounceny

Using as

Using the GNU Compiler Collection

Dean Elsner, Jay Fenlason & friends

Richard M. Stallman and the ¢ce Developer Community

The GNU linker

Steve Chamberlain
Ian Lance Taylor

The ¢NU Binary Utilities

sland H. Pesch
effrey M. Osier
Cygnus Support

Debugging with ¢pB

Richard Stallman, Roland Pesch, Stan Shebs, et al

Exercise:
What is the value of r2 at done?

start:
movs ro, #1
movs ril, #1
movs r2, #1
sub re, ril
bne done
movs r2, #2
done:
b done

Updating the APSR

SUB Rx, Ry
- Rx =Rx - Ry
- APSR unchanged
SUBS
- Rx =Rx - Ry
- APSR N, Z, C, V updated

ADD Rx, Ry
- Rx =Rx + Ry
- APSR unchanged
ADDS
- Rx = Rx + Ry
- APSRN, Z, C, V updated

Application Program Status Register (APSR)

31 30 29 28 27 26 0

N|Z|C|IV(Q RESERVED

APSR bit fields are in the following two categories:

. Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits 1s available in The special-purpose program status

registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

. Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
1s regarded as a two's complement signed integer. then N == 1 if the result is negatrve and

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a companson.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V. bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if an SSAT or USAT instruction changes (saturates) the input value for the signed or
unsigned range of the result.

Conditional execution:
Append to many instructions for conditional execution

Table A6-1 Condition codes

cond rxlznms?glilc Meaning (integer) Meaning (floating-point) 3 Condition flags
0000 EQ Equal Equal Z=1

0010 cs°¢ Carry set Greater than, equal. or unordered C=1

0011 ccd Carry clear Less than C=0

0100 MI Minus, negative Less than N=1

0101 PL Plus, positive or zero Greater than, equal. or unordered N=0

0110 vs Overflow Unordered V=1

0111 VvC No overflow Not unordered V=0

1000 HI Unsigned higher Greater than. or unordered C=landZ==0
1001 LS Unsigned lower or same Less than or equal C=0o0rZ=1
1010 cE Signed greater than or equal Greater than or equal N=V

1011 LT Signed less than Less than. or unordered NI=V

1100 cT Signed greater than Greater than Z=0andN=V
1101 LE Signed less than or equal Less than equal. or unordered Z=1lorN!=V
1110 None (AL)® Always (unconditional) Always (uaconditional) Any

Solution:

what is the value of r2 at done?

start:

done:

movs
movs
movs
sub

bne

movs

ro, #1
rl, #1
r2, #1
ro, rl

done
r2, #2

done

//r
//r
//r
//
//
//
//
//
//

//

o

4\4‘4‘
"\l'\"\

Z
Z
Z

1
(W I Y

rO <r

but Z flag untouched
since sub vs subs

NE true when Z==

So, take the branch
not executed

r2 is still 1

Real assembly example

.equ STACK_TOP, 0x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

.word STACK_TOP, start

_start:
start:
m
m
loop:
a
S
b
deadloop:
b

ovs ro, #10
ovs rl, #0

dds rl1l, ro
ubs ro, #1
ne loop

deadloop

.end

What'’s i

t all mean?

.equ STACK_TOP, 0x20000800
.text

.syntax unified

.thumb

.global _start

.type start, %function

.word STACK_TOP, start

_start:
start:
m
m
loop:
a
S
b
deadloop:
b

ovs ro, #10
ovs rl, #0

dds rl1l, ro
ubs ro, #1
ne loop

deadloop

.end

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

Sets symbol to value (#define)*/
Tells AS to assemble region */
Means language is ARM UAL */
Means ARM ISA is Thumb */
.global exposes symbol */

_start label is the beginning */
...of the program region */
Specifies start is a function */
start label is reset handler */

Inserts word 0x20000800 */
Inserts word (start) */

We’ve seen the rest ... */

What happens after a power-on-reset (POR)?

« ARM Cortex-M3 (many others are similar)

e Reset procedure
- SP ¢ mem(0x00000000)
- PC € mem(0x00000004)

_start:
.word _ STACKTOP
.word Reset Handler
.word NMI Handler
.word HardFault Handler
.word MemManage_ Handler
.word BusFault handler

/*
/*
/*
/*
/*
/*

Top of Stack */

Reset Handler */

NMI Handler */

Hard Fault Handler */
MPU Fault Handler */
Bus Fault Handler */

Today...

Software Development Tool Flow

How does an assembly language program
get turned into a executable program image?

Binary program

file (.bin)
f.L.\isembly f.gbjeCt Executable
iles (.s) iles (.o0) image file@ Q*\

O
0D

o

1d
— (linker)

o

< 6
=" (assembler) o o,

Disassembled

Finker code (.lst)
script (.1d)

What are the real GNU executable names for the ARM?

o Just add the prefix “arm-none-eabi-” prefix

e Assembler (as)
- arm-none-eabi-as
e Linker (ld)
- arm-none-eabi-ld
e Object copy (objcopy)
- arm-none-eabi-objcopy
e Object dump (objdump)
- arm-none-eabi-objdump
e C Compiler (gcc)
- arm-none-eabi-gcc
o C++ Compiler (g++)

- arm-none-eabi-g++

Real-world example

e To the terminal!

(code at https://github.com/brghena/eecs373_toolchain_examples)

How are assembly files assembled?

« S arm-none-eabi-as
- Useful options

e -Mcpu
e -mthumb
e -0

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

A simple (hardcoded) Makefile example

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o
arm-none-eabi-1ld -Ttext 0x0 -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst

What information does the disassembled file provide?

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -o examplel.o

arm-none-eabi-1ld -Ttext Ox0 -o examplel.out examplel.o

arm-none-eabi-objcopy -Obinary examplel.out examplel.bin

arm-none-eabi-objdump -S examplel.out > examplel.lst

.equ STACK_TOP, 0x20000800 examplel.out: file format elf32-littlearm

.text

.syntax unified

.thumb Disassembly of section .text:

.global _start

.type start, %function 00000000 <_start>:

0: 20000800 .word 0x20000800

_start: 4: 00000009 .word 0x00000009

.word STACK_TOP, start
start: 00000008 <start>:

movs ro, #10 8: 200a movs ro, #10

movs rl, #O a: 2100 movs rl, #0
loop:

adds ri1, ro 0000000c <loop>:

subs ro, #1 c: 1809 adds rl, rl, ro

bne loop e: 3801 subs ro, #1
deadloop: 10: difc bne.n ¢ <loop>

b deadloop

.end 00000012 <deadloop>:

12: e7fe b.n 12 <deadloop>

Linker script

OUTPUT FORMAT ("elf32-littlearm")
OUTPUT_ARCH (arm)
ENTRY (main)

SECTIONS
{
.text
{
. = ALIGN (4) ;
* (.text¥)
. = ALIGN(4) ;
_etext = .;
}
}

end = .;

Specifies little-endian arm in ELF
format.

Specifies ARM CPU

Should start executing at label named
“main”

“

is a reference to the current
memory location

First align to a word (4 byte) boundary
Place all sections that include .text at
the start (* here is a wildcard)

Define a label hamed _etext to be the
current address.

How does a mixed C/Assembly program
get turned into a executable program image?

C files (.c)
Binary program
file (.bin)
1d
! (linker)
Assembly .Object <;\vw Executable
files (.s) files (.0) image file<ii;1.Q%
XX
"
gcc °
> >(compile::j>>
as + 11nk) 06
7" (assembler) o X

Disassembled
code (.lst)

| [

Library object Linker
files (.0) script (.1d)

Real-world example #2

e To the terminal! Again!

(code at https://github.com/brghena/eecs373_toolchain_examples)

Today...

Application Binary Interface (ABI)

Register | Synonym | Special Role in the procedure call standard
r1s PC The Program Counter.
ri4 LR The Link Register.
r13 SP The Stack Pointer.
r12 IP The Intra-Procedure-call scratch register.
ri1 v8 Variable-register 8.
r10 v7 Variable-register 7.
o 2 | Piatorm register.
R The meaning of this register is defined by the platform standard.
r8 v5 Variable-register 5.
r7 v4 Variable register 4.
ré v3 Variable register 3.
s v2 Variable register 2.
r4 vi Variable register 1.
r3 a4 Argument / scratch register 4.
r2 a3 Argument / scratch register 3.
r1 a2 Argument / result / scratch register 2.
r0 al Argument / result / scratch register 1.

- e s -~ o~ - P e

ABI Basic Rules

1. A subroutine must preserve the contents of the
registers r4-11 and SP

- Let’ s be careful with r9 though.

2. Arguments are passed though r0 to r3

- If we need more, we put a pointer into memory in one
of the registers.

« We'll worry about that later.

3. Return value is placed in r0
- r0 and r1 if 64-bits.

4. Allocate space on stack as needed. Use it as
needed. Put it back when done...

- Keep word aligned.

When is this relevant?

e The ABI is a contract with the compiler
- All assembled C code will follow this standard

e You need to follow it if you want C and Assembly
to work together correctly

o What if you are writing everything in Assembly
by hand?

- Maybe less important. Unless you’re ever going to
extend the code

Let’s write a simple ABI routine

e int bob(int a, int b)

- returns aZ + b?
e Instructions you might need

- add adds two values
- mul multiplies two values
- bx branch to register

Other useful facts

o Stack grows down.
- And pointed to by “sp”

o Address we need to go back to in “lr

7

Register

Synonym

rs

r4

r3

2

r11

v8

r10

v7

9

r8

r7

v4

6

v3

g}

v2

r4

vl

r3

a4

r2

a3

r1

a2

o

al

Questions?

Comments?

Discussion?

